Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Manage ; 73(2): 354-364, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37610662

RESUMO

An initial and comprehensive map of ecological regions across the conterminous United States was provided by Omernik in 1987. Because that paper was the most-cited published by the Annals of the American Association of Geographers, we sought to assess and quantify its contribution to science. To do so, we conducted a scientometric analysis to address the following main questions: 1) What are the temporal and spatial citation trends? We expected that Omernik's paper would still be employed 36 years after its publication, and mostly in the United States of America. 2) For what types of environments and organisms has it been applied? Based on its generality, we expected that it had been applied to both terrestrial and aquatic ecosystems. 3) What are the main applications of Omernik's article? We predicted that it would mostly be used for describing and delineating study sites and management areas, as well as for selecting regional reference sites. The number of citations presented a positive temporal increase, indicating its continued applicability. Most papers dealt with aquatic environments, mainly in streams carried out predominantly in the United States of America, as was one of its earliest applications. The usefulness of ecoregions for assessing and managing biotic and abiotic patterns and distributions were the main topics addressed by scientists. Ecoregions have offered a general framework for developing regional expectations and rational regional management policies across large areas, as was their original intent. In addition, ecoregion maps were used for communicating patterns-or the lack of them-to interested scientists, citizens, and decision-makers. That comprehensiveness of Omernik's ecoregion approach has led to its widespread applicability and continued usefulness to a diverse set of scientific and management disciplines.


Assuntos
Ecossistema , Rios , Estados Unidos
2.
Ecology ; 104(3): e3947, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36494323

RESUMO

The movement of plant species across the globe exposes native communities to new species introductions. While introductions are pervasive, two aspects of variability underlie patterns and processes of biological invasions at macroecological scales. First, only a portion of introduced species become invaders capable of substantially impacting ecosystems. Second, species that do become invasive at one location may not be invasive in others; impacts depend on invader abundance and recipient species and conditions. Accounting for these phenomena is essential to accurately understand the patterns of plant invasion and explain the idiosyncratic results reflected in the literature on biological invasions. The lack of community-level richness and the abundance of data spanning broad scales and environmental conditions have until now hindered our understanding of invasions at a macroecological scale. To address this limitation, we leveraged quantitative surveys of plant communities in the USA and integrated and harmonized nine datasets into the Standardized Plant Community with Introduced Status (SPCIS) database. The database contains 14,056 unique taxa identified within 83,391 sampling units, of which 52.6% have at least one introduced species. The SPCIS database includes comparable information on plant species occurrence, abundance, and native status across the 50 U.S. States and Puerto Rico. SPCIS can be used to answer macro-scale questions about native plant communities and interactions with invasive plants. There are no copyright restrictions on the data, and we ask the users of this dataset to cite this paper, the respective paper(s) corresponding to the dataset sampling design (all references are provided in Data S1: Metadata S1: Class II-B-2), and the references described in Data S1: Metadata S1: Class III-B-4 as applicable to the dataset being utilized.


Assuntos
Ecossistema , Plantas , Espécies Introduzidas , Porto Rico , Biodiversidade
3.
Artigo em Inglês | MEDLINE | ID: mdl-36612534

RESUMO

Previous studies suggested either census-tract-level median household income (MHI) or median family income (MFI) estimates may be used as a unidimensional measure of neighborhood socioeconomic status (SES) in the United States (US). To better understand its general use, the purpose of this study was to assess the usefulness of MHI and MFI in a wide range of geographic areas. Area-based socioeconomic data at the census tract level were obtained from the 2000 Census as well as the 2005-2009, 2010-2014, and 2015-2019 American Community Survey. MHI and MFI were used as two simple measures of neighborhood SES. Based on the five area-based indexes developed in the US, several census-tract-level socioeconomic indicators were used to derive five composite measures of neighborhood SES. Then, a series of correlation analyses was conducted to assess the relationships between these seven measures in the State of California and its seven Metropolitan Statistical Areas. Two simple measures were very strongly and positively correlated with one another, and were also strongly or very strongly correlated, either positively or negatively, with five composite measures. Hence, the results of this study support an analytical thinking that simple measures and composite measures may capture the same dimension of neighborhood SES in different geographic areas.


Assuntos
Setor Censitário , Censos , Estados Unidos , Renda , Fatores Socioeconômicos , Características de Residência
4.
Ecol Appl ; 31(5): e02323, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33655567

RESUMO

Tracking phenological change in a regionally explicit context is a key to understanding ecosystem status and change. The current study investigated long-term trends of satellite-observed land surface phenology (LSP) in the 17 National Ecological Observatory Network (NEON) domains across the conterminous United States (CONUS). Characterization of LSP trends was based on a high temporal resolution (3-d) time series of the two-band enhanced vegetation index (EVI2) derived from a long-term data record (LTDR) of the Advanced Very High Resolution Radiometer (AVHRR) and the Moderate Resolution Imaging Spectroradiometer (MODIS). We identified significant trend patterns in LSP and their seasonal climate and land use/land cover drivers for each NEON domain. Key findings include (1) the start of season (SOS) predominantly shifted later in 13 out of 17 domains (24.3% of CONUS by area) due potentially to both a lack of spring warming in the eastern United States and changes in agronomic practices over agricultural lands; (2) the end of season (EOS) became predominantly later in nine domains dominated by natural vegetation (14.1% of CONUS by area) in response to widespread warming in autumn; (3) the EOS predominantly shifted earlier in three domains (10.6% of CONUS by area) over primarily agricultural lands as potentially affected by changes in crop growth cycles; and (4) earlier shift in the SOS was mostly found in the Northwest (3.6% of CONUS by area) and was predominant only in the moist Pacific Northwest (27.7% of the domain by area) in response to more pronounced spring warming in the region. The overall patterns of SOS and EOS trends across CONUS appeared constrained by continental-scale temperature trends as characterized by a west-east dipole and the distribution of the nation's agricultural lands. In addition, seasonal trend analysis revealed that most NEON domains (15/17) became predominantly greener in part of or throughout the growing season, potentially contributed by both climate change-induced growth increase and improved agricultural productivity. The domain-wide LSP trends with their underlying drivers identified here provide important contextual information for NEON science as well as for investigations within CONUS using other distributed observatories (e.g., LTER, LTAR, FLUXNET, USA-NPN, etc.).


Assuntos
Ecossistema , Desenvolvimento Vegetal , Mudança Climática , Imagens de Satélites , Estações do Ano , Estados Unidos
5.
Glob Chang Biol ; 25(11): 3741-3752, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31310672

RESUMO

Carbon (C) emission and uptake due to land use and land cover change (LULCC) are the most uncertain term in the global carbon budget primarily due to limited LULCC data and inadequate model capability (e.g., underrepresented agricultural managements). We take the commonly used FAOSTAT-based global Land Use Harmonization data (LUH2) and a new high-resolution multisource harmonized national LULCC database (YLmap) to drive a land ecosystem model (DLEM) in the conterminous United States. We found that recent cropland abandonment and forest recovery may have been overestimated in the LUH2 data derived from national statistics, causing previously reported C emissions from land use have been underestimated due to the definition of cropland and aggregated LULCC signals at coarse resolution. This overestimation leads to a strong C sink (30.3 ± 2.5 Tg C/year) in model simulations driven by LUH2 in the United States during the 1980-2016 period, while we find a moderate C source (13.6 ± 3.5 Tg C/year) when using YLmap. This divergence implies that previous C budget analyses based on the global LUH2 dataset have underestimated C emission in the United States owing to the delineation of suitable cropland and aggregated land conversion signals at coarse resolution which YLmap overcomes. Thus, to obtain more accurate quantification of LULCC-induced C emission and better serve global C budget accounting, it is urgently needed to develop fine-scale country-specific LULCC data to characterize the details of land conversion.


Assuntos
Carbono , Ecossistema , Agricultura , Florestas , Estados Unidos
6.
Environ Monit Assess ; 191(Suppl 1): 344, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31222487

RESUMO

Nonnative plants are widely recognized as stressors to wetlands and other ecosystems. They may compete with native plant species or communities and alter ecosystem properties, which can affect ecological condition, posing challenges to resource managers. As part of the United States Environmental Protection Agency's National Wetland Condition Assessment (NWCA), we characterized the status of nonnative plants in wetlands across the conterminous United States (US). Our primary goals were to (1) document the composition of nonnative taxa at 1138 NWCA sites sampled in 2011 and (2) estimate the areal extent of wetland under stress from nonnative plants within the NWCA 2011 sampled population of ~ 25 million ha of wetland (represented by 967 sampled probability sites and the NWCA survey design). A total of 443 unique nonnative taxa were observed, encompassing a species pool adapted to diverse ecological conditions. For individual sites, the number of nonnative taxa ranged from 0 to 29, and total absolute cover of nonnatives ranged from 0 to 160%. We devised the nonnative plant indicator (NNPI) as a categorical indicator of stress (low to very high) from the collective set of nonnative plant taxa occurring at a particular location, based on a decision matrix of exceedance values for nonnative richness, relative frequency, and relative cover. Wetland area of the sampled population occurring in each NNPI category was estimated at the scale of the conterminous US and within five large ecoregions and four broad wetland types. Potential stress from nonnative plants, as indicated by the NNPI category, was low for approximately 61% (~ 15.3 million ha), moderate for about 20% (~ 5.2 million ha), high for about 10% (~ 2.48 million ha), and very high for about 9% (~ 2.2 million ha) of the wetland area in the entire sampled population. Percent of wetland area with high and very high NNPI varied by ecoregional subpopulations: greater within interior and western ecoregions (~ 29 to 87%) than within ecoregions in the eastern half of the nation (~ 11%). Among wetland type subpopulations, greater percent of wetland area with high and very high NNPI was observed for herbaceous vs. woody types and for inland vs. estuarine types. Estimates of wetland area by NNPI categories are expected to be useful to policy makers or resource managers for prioritizing management actions by identifying situations where stress from nonnative plants is most extensive. We also considered four exploratory analyses aimed at providing ecological information useful in interpreting NNPI extent results. We conducted three population-scale analyses examining ecoregional and wetland type population means for (1) the three NNPI metrics, (2) absolute cover of growth-habit groups of nonnative plants, and (3) metrics describing human-mediated disturbance. Finally, we examined ecological relationships with site-level NNPI status using a random forest (RF) analysis with NNPI as the response variable and predictor variables including ecoregion, wetland type, and a variety of characteristics describing natural vegetation structure, environment, and human-mediated disturbance.


Assuntos
Conservação dos Recursos Naturais , Monitoramento Ambiental/estatística & dados numéricos , Plantas/classificação , Áreas Alagadas , Humanos , Espécies Introduzidas/estatística & dados numéricos , Desenvolvimento Vegetal , Medição de Risco , Estados Unidos , United States Environmental Protection Agency
7.
Ecol Appl ; 27(8): 2397-2415, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28871655

RESUMO

Understanding and mapping the spatial variation in stream biological condition could provide an important tool for conservation, assessment, and restoration of stream ecosystems. The USEPA's 2008-2009 National Rivers and Streams Assessment (NRSA) summarizes the percentage of stream lengths within the conterminous United States that are in good, fair, or poor biological condition based on a multimetric index of benthic invertebrate assemblages. However, condition is usually summarized at regional or national scales, and these assessments do not provide substantial insight into the spatial distribution of conditions at unsampled locations. We used random forests to model and predict the probable condition of several million kilometers of streams across the conterminous United States based on nearby and upstream landscape features, including human-related alterations to watersheds. To do so, we linked NRSA sample sites to the USEPA's StreamCat Dataset; a database of several hundred landscape metrics for all 1:100,000-scale streams and their associated watersheds within the conterminous United States. The StreamCat data provided geospatial indicators of nearby and upstream land use, land cover, climate, and other landscape features for modeling. Nationally, the model correctly predicted the biological condition class of 75% of NRSA sites. Although model evaluations suggested good discrimination among condition classes, we present maps as predicted probabilities of good condition, given upstream and nearby landscape settings. Inversely, the maps can be interpreted as the probability of a stream being in poor condition, given human-related watershed alterations. These predictions are available for download from the USEPA's StreamCat website. Finally, we illustrate how these predictions could be used to prioritize streams for conservation or restoration.


Assuntos
Conservação dos Recursos Naturais/métodos , Invertebrados , Rios , Animais , Ecossistema , Geografia , Modelos Biológicos , Estados Unidos
8.
J Hazard Mater ; 264: 560-9, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24239259

RESUMO

An important aspect of railroad environmental risk management involves tank car transportation of hazardous materials. This paper describes a quantitative, environmental risk analysis of rail transportation of a group of light, non-aqueous-phase liquid (LNAPL) chemicals commonly transported by rail in North America. The Hazardous Materials Transportation Environmental Consequence Model (HMTECM) was used in conjunction with a geographic information system (GIS) analysis of environmental characteristics to develop probabilistic estimates of exposure to different spill scenarios along the North American rail network. The risk analysis incorporated the estimated clean-up cost developed using the HMTECM, route-specific probability distributions of soil type and depth to groundwater, annual traffic volume, railcar accident rate, and tank car safety features, to estimate the nationwide annual risk of transporting each product. The annual risk per car-mile (car-km) and per ton-mile (ton-km) was also calculated to enable comparison between chemicals and to provide information on the risk cost associated with shipments of these products. The analysis and the methodology provide a quantitative approach that will enable more effective management of the environmental risk of transporting hazardous materials.


Assuntos
Poluição Ambiental/economia , Substâncias Perigosas/economia , Modelos Econômicos , Ferrovias/economia , Humanos , Densidade Demográfica , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA