Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Clin Lung Cancer ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39153867

RESUMO

PURPOSE: MET amplification is a common resistance mechanism to EGFR inhibition in EGFR-mutant non-small cell lung cancer (NSCLC). Several trials showed encouraging results with combined EGFR and MET inhibition (EGFRi/METi). However, MET amplification has been inconsistently defined and frequently included both polysomy and true amplification. METHODS: This is a multicenter, real-world analysis in patients with disease progression on EGFR inhibition and MET copy number gain (CNG), defined as either true amplification (MET to centromere of chromosome 7 ratio [MET-CEP7] ≥ 2) or polysomy (gene copy number ≥ 5, MET-CEP7 < 2). RESULTS: A total of 43 patients with MET CNG were included, 42 of whom were detected by FISH. Twenty-three, 7, and 14 received EGFRi/METi, METi, and SoC, respectively. Patients in the EGFRi/METi cohort exhibited a superior real-world clinical benefit rate, defined as stable disease or better, of 82% (95% confidence interval [CI], 60-95) compared to METi (29%, 4-71) and SoC (50%, 23-77). Median real-world progression-free survival was longer with EGFRi/METi with 9.8 vs. 4.3 months with METi (hazard ratio [HR], 0.19, 95% CI, 0.06-0.57) and 3.7 months with SoC (0.41, 0.18-0.91), respectively. Overall survival was numerically improved. Interaction analysis with treatment and type of CNG (amplification vs. polysomy) suggests that differences were exclusively driven by MET-amplified patients receiving EGFRi/METi (HR for OS, 0.09, 0.01-0.54). CONCLUSION: In this real-world study, EGFRi/METi showed clinical benefit over METi and SoC. Future studies should focus on the differential impact of the type of MET CNG with a focus on true MET amplification as predictor of response.

2.
Lung Cancer ; 195: 107927, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39173231

RESUMO

OBJECTIVES: Accurately predicting which patients diagnosed with non-small cell lung cancer (NSCLC) will respond to immunotherapy remains a clinical challenge. This study aims to determine the associations between MYC immunoreactivity, MYC copy number gain (CNG), driver mutations and survival following immunotherapy treatment, to provide insight into whether clinical MYC assessment may have predictive value. MATERIALS AND METHODS: MYC copy number status was determined in 82 patients with NSCLC treated with immunotherapy, and MYC immunohistochemistry (IHC) was performed on 80 of these cases. MYC staining in ≥ 40 % of tumor cells was considered positive. Driver gene alterations, PD-L1 status and survival outcomes were assessed through retrospective chart review. Overall survival (OS) and progression free survival (PFS) were calculated from the date of immunotherapy initiation. RESULTS: Nine (11 %) of 82 cases had MYC CNG and 56 (70 %) of the 80 immunostained cases were positive for MYC. MYC CNG was significantly associated with STK11 mutation (P=0.023), whereas positive MYC IHC was significantly associated with KRAS mutation (P=0.0076) and current/former smoking (P=0.0007). MYC CNG and positive MYC IHC were not significantly associated with each other (P=0.42), or with PD-L1 ≥ 1 % (MYC CNG: P=0.10; MYC IHC: P=0.09). Positive MYC IHC and PD-L1 ≥ 1 % were both significant predictors of OS (MYC: HR 2.7, 95 % CI 1.1-6.4, P=0.026; PD-L1: HR 0.33, 95 % CI 0.15-0.72, P=0.0055). MYC IHC positive/PD-L1 < 1 % cases had the shortest OS (median 230 versus 918 days, P=0.00069) and PFS (median 84 versus 254 days, P=0.0087). MYC CNG was not associated with OS or PFS. CONCLUSION: We find that positive MYC IHC is an independent predictor of shorter OS after immunotherapy treatment, with MYC positive/PD-L1 < 1 % status predictive of particularly poor immunotherapy response. We identify positive MYC IHC as a feature of possible relevance to NSCLC treatment selection and of interest for future therapy development.

3.
Neuro Oncol ; 26(6): 1027-1041, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38285005

RESUMO

BACKGROUND: Glioblastoma (GBM) is characterized by chromosome 7 copy number gains, notably 7q34, potentially contributing to therapeutic resistance, yet the underlying oncogenes have not been fully characterized. Pertinently, the significance of long noncoding RNAs (lncRNAs) in this context has gained attention, necessitating further exploration. METHODS: FAM131B-AS2 was quantified in GBM samples and cells using qPCR. Overexpression and knockdown of FAM131B-AS2 in GBM cells were used to study its functions in vivo and in vitro. The mechanisms of FAM131B-AS2 were studied using RNA-seq, qPCR, Western blotting, RNA pull-down, coimmunoprecipitation assays, and mass spectrometry analysis. The phenotypic changes that resulted from FAM131B-AS2 variation were evaluated through CCK8 assay, EdU assay, comet assay, and immunofluorescence. RESULTS: Our analysis of 149 primary GBM patients identified FAM131B-AS2, a lncRNA located in the 7q34 region, whose upregulation predicts poor survival. Mechanistically, FAM131B-AS2 is a crucial regulator of the replication stress response, stabilizing replication protein A1 through recruitment of ubiquitin-specific peptidase 7 and activating the ataxia telangiectasia and rad3-related protein kinase pathway to protect single-stranded DNA from breakage. Furthermore, FAM131B-AS2 overexpression inhibited CD8+ T-cell infiltration, while FAM131B-AS2 inhibition activated the cGAS-STING pathway, increasing lymphocyte infiltration and improving the response to immune checkpoint inhibitors. CONCLUSIONS: FAM131B-AS2 emerges as a promising indicator for adjuvant therapy response and could also be a viable candidate for combined immunotherapies against GBMs.


Assuntos
Neoplasias Encefálicas , Glioblastoma , RNA Longo não Codificante , Humanos , Glioblastoma/genética , Glioblastoma/patologia , Glioblastoma/metabolismo , RNA Longo não Codificante/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Camundongos , Animais , Regulação Neoplásica da Expressão Gênica , Proliferação de Células , Variações do Número de Cópias de DNA , Peptidase 7 Específica de Ubiquitina/genética , Peptidase 7 Específica de Ubiquitina/metabolismo , Prognóstico , Progressão da Doença , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Células Tumorais Cultivadas , Replicação do DNA , Ensaios Antitumorais Modelo de Xenoenxerto , Apoptose , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Taxa de Sobrevida , Camundongos Nus , Linhagem Celular Tumoral , Masculino , Feminino
4.
Genes (Basel) ; 14(12)2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-38136979

RESUMO

Chromosomal submicroscopic imbalances represent well-known causes of neurodevelopmental disorders. In some cases, these can cause specific autosomal dominant syndromes, with high-to-complete penetrance and de novo occurrence of the variant. In other cases, they result in non-syndromic neurodevelopmental disorders, often acting as moderate-penetrance risk factors, possibly inherited from unaffected parents. We describe a three-generation family with non-syndromic neuropsychiatric features segregating with a novel 19q13.32q13.33 microduplication. The propositus was a 28-month-old male ascertained for psychomotor delay, with no dysmorphic features or malformations. His mother had Attention-Deficit/Hyperactivity Disorder and a learning disability. The maternal uncle had an intellectual disability. Chromosomal microarray analysis identified a 969 kb 19q13.32q13.33 microduplication in the proband. The variant segregated in the mother, the uncle, and the maternal grandmother of the proband, who also presented neuropsychiatric disorders. Fragile-X Syndrome testing was negative. Exome Sequencing did not identify Pathogenic/Likely Pathogenic variants. Imbalances involving 19q13.32 and 19q13.33 are associated with neurodevelopmental delay. A review of the reported microduplications allowed to propose BICRA (MIM *605690) and KPTN (MIM *615620) as candidates for the neurodevelopmental delay susceptibility in 19q13.32q13.33 copy number gains. The peculiarities of this case are the small extension of the duplication, the three-generation segregation, and the full penetrance of the phenotype.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Masculino , Humanos , Pré-Escolar , Fenótipo , Fatores de Transcrição/genética , Transtornos do Neurodesenvolvimento/genética , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Família , Proteínas dos Microfilamentos/genética
5.
Eur J Cancer ; 188: 81-89, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37201385

RESUMO

BACKGROUND: Non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) mutation generally respond well to epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs). However, genomic characterisation of de novo EGFR copy number gain (CNG) and its impact on the efficacy of first-line EGFR-TKIs remains unclear. METHODS: This multicenter, retrospective and real-world study included two cohorts that enroled EGFR mutant NSCLC patients. EGFR CNG was tested by next-generation sequencing of untreated tissue specimens. Cohort 1 detected the impact of EGFR CNG on first-line EGFR-TKIs treatment, and cohort 2 explored the genomic characterisation. RESULTS: Cohort 1 enroled 355 patients from four cancer centres between January 2013 and March 2022. The patients were divided into three groups, included the EGFR non-CNG, EGFR CNG, and EGFR uncertain-CNG. No significant difference in progression-free survival (PFS) was found between the three groups (10.0 months vs. 10.8 months vs. 9.9 months, respectively, p = 0.384). Furthermore, the overall response rate was not statistically significant in the EGFR CNG group compared to the EGFR non-CNG or uncertain arm (70.3% vs. 63.2% vs. 54.5%, respectively, p = 0.154). Cohort 2 included 7876 NSCLC patients with 16.4% showing EGFR CNG. Gene mutations such as TP53, IKZF1, RAC1, MYC, MET, CDKN2A/B and alterations of the metabolic-related and ERK signalling pathway were significantly associated with patients with EGFR CNG compared to those without. CONCLUSIONS: De novo EGFR CNG had no effect on the efficacy of first-line EGFR-TKI treatment in EGFR mutant NSCLC patients, and tumours with EGFR CNG had more complex genomic profiles than those without.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Variações do Número de Cópias de DNA , Estudos Retrospectivos , Antineoplásicos/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Receptores ErbB/genética , Mutação , Genômica
6.
Cancer Sci ; 114(3): 1045-1055, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36382532

RESUMO

Treatment efficacy of epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) is diverse even in non-small cell lung cancer (NSCLC) patients with EGFR activating mutations. Extraordinary long-term responses sustained over 3 years among NSCLC patients treated with afatinib, an EGFR-TKI, have been reported, but how to predict such long survivors has not been clarified. A multi-institutional prospective observational study, based on comprehensive genomic examination performed with next-generation sequencing of circulating tumor DNA (ctDNA), was conducted to identify potential predictive markers of long-term response to afatinib. Twenty-nine patients with advanced stage NSCLC and EGFR driver mutations detected by standard techniques were enrolled in the study. ctDNA from plasma collected before afatinib treatment was analyzed by Guardant360. ctDNA was detected in 25 of the 29 samples. Median progression-free survival was shorter in patients whose tumors had EGFR copy number gain (7.0 vs 23.0 months, p = 0.022). The impact of EGFR copy number on cell proliferation and the antitumor effect of afatinib were evaluated using genome-editing lung cancer cell lines. HCC827 with EGFR amplification was relatively resistant to afatinib at concentrations below 0.5 nM, but genome-edited derivatives of HCC827 with decreased EGFR copy number demonstrated growth inhibition with 0.1 nM afatinib. The absence of EGFR copy number gain detected in ctDNA may be a predictive marker of long-term response to afatinib. Comprehensive genomic analysis could lead to a more accurate prediction of EGFR-TKI efficacy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Afatinib , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/patologia , Variações do Número de Cópias de DNA , Inibidores de Proteínas Quinases/farmacologia , Receptores ErbB/genética , Mutação
7.
Oncotarget ; 13: 273-280, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35126865

RESUMO

BACKGROUND: The correlation of ERBB2 copy number gain (CNG) from tissue or circulating tumor DNA (ctDNA) by next-generation sequencing (NGS) with standard HER2 tissue evaluation is not well understood. MATERIALS AND METHODS: We retrospectively identified patients with ERBB2 CNG on commercial NGS. We described their clinical-pathologic features and calculated the positive predictive value (PPV) of ERBB2 CNG by NGS for HER2-positivity by IHC and FISH testing. RESULTS: 176 patients had NGS revealing an ERBB2 CNG (112 by tumor tissue and 91 by ctDNA). The cancer subtypes with the most cases with ERBB2 CNG by NGS were breast (n = 67), non-small cell lung (n = 25), colorectal (n = 18), gastroesophageal (n = 17), pancreatic (n = 11), and uterine (n = 11). The PPV of ERBB2 CNG in determining HER2 positivity by standard IHC/FISH definitions was 88% for tissue NGS (n = 57) and 80% for ctDNA (n = 47). The PPV among breast cancer patients for tissue NGS was 97% (n = 35) and ctDNA was 93% (n = 39). However, for non-breast cancer cases, the PPV of ERBB2 amplification by tissue NGS dropped to 76% (n = 22) and by ctDNA to 44% (n = 7). CONCLUSIONS: ERBB2 CNG by NGS is detected in numerous malignancies for which HER2 testing is not standard. Detection of ERBB2 CNG by tissue NGS and ctDNA has a high PPV for true HER2-positivity by standard IHC and/or FISH testing in breast cancer.


Assuntos
DNA Tumoral Circulante , Neoplasias , Biomarcadores Tumorais/genética , DNA Tumoral Circulante/genética , Variações do Número de Cópias de DNA , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Valor Preditivo dos Testes , Receptor ErbB-2/genética , Estudos Retrospectivos
8.
Ann Transl Med ; 9(1): 79, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33553372

RESUMO

We report a case of atypical hemolytic uremic syndrome (HUS) that occurred after childbirth. A 33-year-old female was admitted to the emergency room, complaining of abdominal pain six days after giving birth to twins. The patient was diagnosed with hemoperitoneum due to hepatic hemangioma rupture and a left lateral hepatectomy was performed. Angioembolization was performed for the accompanying uterine artery bleeding. After that, her kidney function worsened after the 12th day postpartum. Microangiopathic anemia, thrombocytopenia and renal dysfunction were observed. Shiga toxin-producing Escherichia coli was negative in the stool. Plasma ADMATS 13 activity was normal. After transfer to the nephrology department with suspected atypical HUS, the patient underwent fresh frozen plasma (FFP) transfusion with three hemodialysis sessions. The patient improved without additional dialysis, but a renal biopsy was performed because of persistent proteinuria. Renal pathologic findings were compatible with thrombotic microangiopathy. A genetic test for atypical HUS revealed variants of uncertain significance in the complement factor H related (CFHR) 4 gene and the presence of CFHR3-CFHR1 copy number gain. The CFHR3-CFHR1 copy number gain found in this case is a rare causative mutation of atypical HUS. This case suggests that genetic testing of atypical HUS should include analysis of CFH-CFHR rearrangements as well as general screening for complement-associated genes.

9.
Mol Cytogenet ; 14(1): 8, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33541390

RESUMO

BACKGROUND: Mantle cell lymphoma (MCL) is derived from naïve CD5+ B-cells with the cytogenetic hallmark translocation 11;14. The presence of additional abnormalities is associated with blastoid variants in MCL (BMCL) and confers a poor prognosis. Many of these tumors also show deletion or loss of heterozygosity (LOH) of the ATM gene and biallelic ATM inactivation show significantly higher chromosomal imbalances. CASE PRESENTATION: Here we report a 52 year-old male who presented to the clinic with worsening dyspnea, fever, chills, diffuse lymphadenopathy, splenomegaly and leukocytosis with blastoid cells circulating in blood. The bone marrow aspirate showed about 40% abnormal blast-looking cells and biopsy revealed a remarkable lymphoid infiltrate. The patient was diagnosed with blastoid variant mantle cell lymphoma (BMCL). Chromosome analysis on bone marrow showed a complex karyotype. FISH analysis from B-cell lymphoma panel showed bi-allelic amplification of ATM gene. Other abnormalities were present including CCND1/IGH fusion, confirming the MCL diagnosis, in addition to RB1 and p53 deletion. High resolution SNP-microarray studies showed complex copy number changes, especially on chromosomes 7 and 11, consistent with chromoanagenesis. Microarray studies also showed LOH at the ATM locus indicating the amplification seen on FISH is not biallelic. CONCLUSION: To the best of our knowledge, ATM gene amplification is not previously reported in BMCL and our case suggests a novel mechanism of ATM inactivation caused by chromoanagenesis resulting in mutant allele specific imbalance with copy number gain.

10.
Ann Transl Med ; 8(11): 685, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32617305

RESUMO

BACKGROUND: In clinical oncology, targeted next-generation sequencing (NGS) has become an integral part of the routine molecular diagnostics repertoire. However, a consensus is yet to be agreed on the optimal mesenchymal-epithelial transition factor (MET) copy number (CN) cut-off value based on NGS data that could predict the MET-amplified non-small cell lung cancer (NSCLC) patients who could benefit from MET tyrosine kinase inhibitor (TKI) therapy. In this study, we aimed to identify the criteria to define MET amplification derived from NGS data. METHODS: Sequencing data from matched plasma and tissue samples from 40 MET-amplified NSCLC patients were used to derive a normalization method, referred to as adjusted copy number (adCN). Clinical outcomes from an additional 18 MET TKI-treated NSCLC patients with solely MET-amplified cancers were analyzed to validate the adCN cut-offs. RESULTS: AdCN, calculated as the absolute CN generated from NGS relative to the maximum mutant allele fraction (maxMAF) per sample, was demonstrated to have a high correlation with MET CN in tissue and plasma samples (R2=0.73). Using a cut-off value of 5.5 and 13, tertile stratification of adCN was able to distinguish patients with high-level MET amplification. The MET TKI-treated patients with adCN >13, categorized as high-level amplification, had significantly longer progression-free survival (PFS) than those with adCN <13 (P=0.009), suggesting that adCN positively correlated with the response to MET TKI. CONCLUSIONS: We derived a normalization method that could reflect the relative CN and distinguish MET-amplified NSCLC patients with high-level gene amplification who were sensitive to crizotinib, suggesting adCN could potentially serve as a predictive biomarker for MET TKI response.

11.
Int J Mol Sci ; 21(14)2020 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-32664698

RESUMO

Background: The Anaplastic Lymphoma Kinase (ALK) gene is known to be affected by several genetic alterations, such as rearrangement, amplification and point mutation. The main goal of this study was to comprehensively analyze ALK amplification (ALK-A) and ALK gene copy number gain (ALK-CNG) in a large cohort of non-small-cell lung cancer (NSCLC) patients in order to evaluate the effects on mRNA and protein expression. Methods: ALK locus number status was evaluated in 578 NSCLC cases by fluorescence in situ hybridization (FISH). In addition, ALK immunohistochemistry and ALK mRNA in situ hybridization were performed. Results: Out of 578 cases, 17 cases showed ALK-A. In addition, 14 cases presented ALK-CNG and 72 cases presented chromosome 2 polyploidy. None of those carrying ALK-A and -CNG showed either ALK immunohistochemical expression or ALK mRNA expression through in situ hybridization. We observed a high frequency of extra copies of the ALK gene. Conclusions: Our findings demonstrated that ALK-A is not involved in mRNA production and consequently is not involved in protein production; these findings support the hypothesis that ALK-A might not play a role in the pathogenesis of NSCLC, underlining the absence of a specific clinical application.


Assuntos
Quinase do Linfoma Anaplásico/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Amplificação de Genes , Dosagem de Genes , Neoplasias Pulmonares/genética , Proteínas de Neoplasias/genética , Idoso , Cromossomos Humanos Par 2/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Hibridização In Situ , Hibridização in Situ Fluorescente , Masculino , Pessoa de Meia-Idade , Poliploidia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Neoplásico/biossíntese , RNA Neoplásico/genética
12.
Cell Rep ; 30(3): 771-782.e6, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31968252

RESUMO

Lung squamous cell carcinoma (LSCC) is a prevalent form of lung cancer exhibiting distinctive histological and genetic characteristics. Chromosome 3q26 copy number gain (CNG) is a genetic hallmark of LSCC present in >90% of tumors. We report that 3q26 CNGs occur early in LSCC tumorigenesis, persist during tumor progression, and drive coordinate overexpression of PRKCI, SOX2, and ECT2. Overexpression of PRKCI, SOX2, and ECT2 in the context of Trp53 loss is sufficient to transform mouse lung basal stem cells into tumors with histological and genomic features of LSCC. Functionally, PRKCI and SOX2 collaborate to activate an extensive transcriptional program that enforces a lineage-restricted LSCC phenotype, whereas PRKCI and ECT2 collaborate to promote oncogenic growth. Gene signatures indicative of PKCι-SOX2 and PKCι-ECT2 signaling activity are enriched in the classical subtype of human LSCC and predict distinct therapeutic vulnerabilities. Thus, the PRKCI, SOX2, and ECT2 oncogenes represent a multigenic driver of LSCC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma de Células Escamosas/genética , Cromossomos Humanos Par 3/genética , Isoenzimas/genética , Neoplasias Pulmonares/genética , Oncogenes , Proteína Quinase C/genética , Proteínas Proto-Oncogênicas/genética , Fatores de Transcrição SOXB1/genética , Carcinogênese/genética , Carcinogênese/patologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Transformação Celular Neoplásica , Dosagem de Genes , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Neoplasias Pulmonares/patologia , Masculino , Transdução de Sinais , Transcrição Gênica
13.
J Pathol Transl Med ; 54(1): 34-44, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31693827

RESUMO

Human epidermal growth factor receptor 2 (HER2) protein overexpression and/or HER2 gene amplification is found in about 20% of invasive breast cancers. It is a sole predictive marker for treatment benefits from HER2 targeted therapy and thus, HER2 testing is a routine practice for newly diagnosed breast cancer in pathology. Currently, HER2 immunohistochemistry (IHC) is used for a screening test, and in situ hybridization is used as a confirmation test for HER2 IHC equivocal cases. Since the American Society of Clinical Oncology (ASCO)/College of American Pathologists (CAP) guidelines on HER2 testing was first released in 2007, it has been updated to provide clear instructions for HER2 testing and accurate determination of HER2 status in breast cancer. During HER2 interpretation, some pitfalls such as intratumoral HER2 heterogeneity and increase in chromosome enumeration probe 17 signals may lead to inaccurate assessment of HER2 status. Moreover, HER2 status can be altered after neoadjuvant chemotherapy or during metastatic progression, due to biologic or methodologic issues. This review addresses recent updates of ASCO/CAP guidelines and factors complicating in the interpretation of HER2 status in breast cancers.

14.
Oncoimmunology ; 8(12): e1665978, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31741768

RESUMO

Background: We have identified, in melanomas, a set of genes encoding proteins that mediate mechanical barrier function in normal skin (barrier molecule genes, BMGs) and whose overexpression is associated with decreased immune signatures and shorter patient survival. The most overexpressed of these, filaggrin (FLG), is expressed on chromosome 1q21.3, which also encodes genes of the epidermal differentiation complex (EDC). EDC genes may be regulated by the transcription factors (TFs) AHR and ARNT. We hypothesized that ARNT-related genes would be expressed concordantly with BMG and EDC genes, inversely associated with immune signatures, and enhanced by 1q21.3 copy gain. Methods: Gene expression data from human melanomas in the Cancer Genome Atlas (TCGA), and a validation GEO dataset were evaluated, with copy number profiles from TCGA. Expression of Th1 immune genes and BMG/EDCs at 1q21.3 was visualized using clustered copy number and mRNA profiles. Associations of clusters and 1q21.3 copy number with patient survival and mRNA expression were assessed using Kaplan Meier curves, log-rank tests, and Wilcoxon rank sum tests. Results: BMGs are concordantly expressed with EDC genes. Clustering divided tumors into 4 categories: (1) ImmuneHI, (2) BMG/EDCHI, (3) ARNTHI, (4) Mixed. Both ARNTHI and BMG/EDCHI tumors had low immune signatures and significantly shortened survival. KLF4 and FOXF2 are putative TFs that may regulate these genes. Conclusions: ARNTHI tumors may represent another subset of tumors, in addition to BMG/EDCHI tumors, with barriers to immune infiltrates, likely with different mechanisms. These genes have prognostic significance and may be relevant targets for future therapy.

15.
Hum Mutat ; 40(11): 1993-2000, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31230393

RESUMO

Human retrocopies, that is messenger RNA transcripts benefitting from the long interspersed element 1 machinery for retrotransposition, may have specific consequences for genomic testing. Next genetration sequencing (NGS) techniques allow the detection of such mobile elements but they may be misinterpreted as genomic duplications or be totally overlooked. We report eight observations of retrocopies detected during diagnostic NGS analyses of targeted gene panels, exome, or genome sequencing. For seven cases, while an exons-only copy number gain was called, read alignment inspection revealed a depth of coverage shift at every exon-intron junction where indels were also systematically called. Moreover, aberrant chimeric read pairs spanned entire introns or were paired with another locus for terminal exons. The 8th retrocopy was present in the reference genome and thus showed a normal NGS profile. We emphasize the existence of retrocopies and strategies to accurately detect them at a glance during genetic testing and discuss pitfalls for genetic testing.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Testes Genéticos , Retroelementos , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Testes Diagnósticos de Rotina , Feminino , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Adulto Jovem
16.
Gastric Cancer ; 22(6): 1183-1192, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30989433

RESUMO

OBJECTIVES: Hepatoid adenocarcinoma of the stomach (HAS) is characterized by histological resemblance to hepatocellular carcinoma and a poor prognosis. The aim of this study is to elucidate the clinicopathological and molecular characteristics of HAS. METHODS: Forty-two patients with HAS who received gastrectomy were enrolled in this study. Based on a panel of 483 cancer-related genes, targeted sequencing of 24 HAS and 22 clinical parameter-matched common gastric cancer (CGC) samples was performed. Prognostic factors for overall survival (OS) and disease-free survival (DFS) were analysed with the Kaplan-Meier method. RESULTS: The most frequently mutated gene in both HAS and CGC was TP53, with a mutation rate of 30%. Additionally, CEBPA, RPTOR, WISP3, MARK1, and CD3EAP were identified as genes with high-frequency mutations in HAS (10-20%). Copy number gains (CNGs) at 20q11.21-13.12 occurred frequently in HAS, nearly 50% of HAS tumours harboured at least one gene with a CNG at 20q11.21-13.12. This CNG tended to be related to more adverse biobehaviour, including poorer differentiation, greater vascular and nerve invasion, and greater liver metastasis. Pathway enrichment analysis revealed that the HIF-1 signalling pathway and signalling pathways regulating stem cell pluripotency were specifically enriched in HAS. The survival analysis showed that a preoperative serum AFP level ≥ 500 ng/ml was significantly associated with poorer OS (p = 0.007) and tended to be associated with poorer DFS (p = 0.05). CONCLUSION: CNGs at 20q11.21-13.12 happened frequently in HAS and tended to be related to more adverse biobehaviour. The preoperative serum AFP level was a sensitive prognostic biomarker for DFS and OS.


Assuntos
Adenocarcinoma/patologia , Gastrectomia/métodos , Neoplasias Hepáticas/epidemiologia , Neoplasias Gástricas/patologia , Adenocarcinoma/genética , Adenocarcinoma/cirurgia , Adulto , Idoso , Biomarcadores Tumorais/sangue , Variações do Número de Cópias de DNA , Intervalo Livre de Doença , Feminino , Humanos , Neoplasias Hepáticas/secundário , Masculino , Pessoa de Meia-Idade , Mutação , Prognóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/cirurgia , Taxa de Sobrevida , alfa-Fetoproteínas/metabolismo
17.
Virchows Arch ; 474(6): 673-680, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30888490

RESUMO

Next-generation sequencing (NGS) panel analysis on DNA from formalin-fixed paraffin-embedded (FFPE) tissue is increasingly used to also identify actionable copy number gains (gene amplifications) in addition to sequence variants. While guidelines for the reporting of sequence variants are available, guidance with respect to reporting copy number gains from gene-panel NGS data is limited. Here, we report on Dutch consensus recommendations obtained in the context of the national Predictive Analysis for THerapy (PATH) project, which aims to optimize and harmonize routine diagnostics in molecular pathology. We briefly discuss two common approaches to detect gene copy number gains from NGS data, i.e., the relative coverage and B-allele frequencies. In addition, we provide recommendations for reporting gene copy gains for clinical purposes. In addition to general QC metrics associated with NGS in routine diagnostics, it is recommended to include clinically relevant quantitative parameters of copy number gains in the clinical report, such as (i) relative coverage and estimated copy numbers in neoplastic cells, (ii) statistical scores to show significance (e.g., z-scores), and (iii) the sensitivity of the assay and restrictions of NGS-based detection of copy number gains. Collectively, this information can guide clinical and analytical decisions such as the reliable detection of high-level gene amplifications and the requirement for additional in situ assays in case of borderline results or limited sensitivity.


Assuntos
Variações do Número de Cópias de DNA/fisiologia , Dosagem de Genes/genética , Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Mutação/genética , Patologia Molecular/métodos , Análise de Sequência de DNA/métodos
18.
J Med Biochem ; 38(1): 63-70, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30820185

RESUMO

BACKGROUND: Triple negative breast cancer (TNBC) is characterized by aggressive clinical course and is unresponsive to anti-HER2 and endocrine therapy. TNBC is difficult to treat and is often lethal. Given the need to find new targets for therapy we explored clinicopathological significance of copy number gain of FGFR1 and c-MYC. Our aim was to determine the impact of FGFR1 and c-MYC copy number gain on clinical course and outcome of TNBC. METHODS: FGFR1 and c-MYC gene copy number alterations were evaluated in 78 archive TNBC samples using TaqMan based quantitative real time PCR assays. RESULTS: 50% of samples had increased c-MYC copy number. c-MYC copy number gain was associated with TNBC in contrast to ER positive cancers. Our results showed significant correlation between c-MYC copy number gain and high grade of TNBCs. This suggests that c-MYC copy number could be an useful prognostic marker for TNBC patients. c-MYC copy number gain was associated with high pTNM stage as well as lobular and medullary tumor subtypes. 43% of samples had increased FGFR1 copy number. No correlations between FGFR1 copy number gain and clinicopathological variables were observed. CONCLUSIONS: We identified c-MYC copy number gain as a prognostic marker for TNBC. Our results indicate that c- MYC may contribute to TNBC progression. We observed no significant association between c-MYC and/or FGFR1 copy number status and patient survival.

19.
Life Sci ; 211: 206-214, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30243646

RESUMO

AIM: There has been limited research on CNVs in oncogenes and we conducted a systematic pan-cancer analysis of CNVs and their gene expression changes. The aim of the present study was to provide an insight into the relationships between gene expression and oncogenesis. MAIN METHODS: We collected all the oncogenes from ONGene database and overlapped with CNVs TCGA tumour samples from Catalogue of Somatic Mutations in Cancer database. We further conducted an integrative analysis of CNV with gene expression using the data from the matched TCGA tumour samples. KEY FINDINGS: From our analysis, we found 637 oncogenes associated with CNVs in 5900 tumour samples. There were 204 oncogenes with frequent copy number of gain (CNG). These 204 oncogenes were enriched in cancer-related pathways including the MAPK cascade and Ras GTPases signalling pathways. By using corresponding tumour samples data to perform integrative analyses of CNVs and gene expression changes, we identified 95 oncogenes with consistent CNG occurrence and up-regulation in the tumour samples, which may represent the recurrent driving force for oncogenesis. Surprisingly, eight oncogenes shown concordant CNG and gene up-regulation in at least 250 tumour samples: INTS8 (355), ECT2 (326), LSM1 (310), DDHD2 (298), COPS5 (286), EIF3E (281), TPD52 (258) and ERBB2 (254). SIGNIFICANCE: As the first report about abundant CNGs on oncogene and concordant change of gene expression, our results may be valuable for the design of CNV-based cancer diagnostic strategy.


Assuntos
Variações do Número de Cópias de DNA , Regulação Neoplásica da Expressão Gênica , Genômica/métodos , Mutação , Proteínas de Neoplasias/genética , Neoplasias/genética , Oncogenes , Bases de Dados Genéticas , Humanos , Neoplasias/patologia , Transdução de Sinais
20.
Endocr Relat Cancer ; 25(7): 723-733, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29692346

RESUMO

Telomerase reverse transcriptase (TERT) promoter mutations have been linked to adverse clinical parameters in thyroid cancer, but TERT-expressing tumours are not always mutated. Little is known regarding other TERT-related genetic aberrations. To delineate the role of TERT gene aberrancies in follicular thyroid tumours, 95 follicular carcinomas (FTCs), 43 follicular adenomas (FTAs) and 33 follicular tumours of uncertain malignant potential (FT-UMPs) were collected. The tumours were assayed for TERT expression, TERT promoter mutations, TERT promoter hypermethylation and TERT gene copy number (CN) alterations and the results were compared to clinical parameters. Cases with mutation, detectable mRNA expression, CN gain or hypermethylation were classified as TERT aberrant, and these aberrancies were regularly found in FTC and FT-UMP but uncommonly found in FTA. In total, 59% FTCs and 63% FT-UMPs exhibited one or more of these TERT gene aberrancies. Moreover, 24 out of 28 FTCs (86%) with TERT expression displayed an evident TERT gene aberration, and statistics showed an increased risk for relapse in FTCs with TERT expression, CN gain or hypermethylation. We conclude that TERT expression in follicular thyroid tumours is coupled to promoter mutations, CN gain and increased promoter methylation. The molecular similarities regarding TERT aberrations between the FTC and FT-UMP groups indicate that a significant subset of FT-UMP cases may display future recurrences. TERT aberrancies are thus promising as future additional markers for determining malignant potential of follicular thyroid tumours.


Assuntos
Adenoma/diagnóstico , Neoplasias da Glândula Tireoide/diagnóstico , Adenoma/patologia , Adulto , Idoso , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias da Glândula Tireoide/patologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA