Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 34(48)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37625397

RESUMO

Using molecular beam epitaxy, we demonstrate the growth of (In,Ga)N shells emitting in the green spectral range around very thin (35 nm diameter) GaN core nanowires. These GaN nanowires are obtained by self-assembled growth on TiN. We present a qualitative shell growth model accounting for both the three-dimensional nature of the nanostructures as well as the directionality of the atomic fluxes. This model allows us, on the one hand, to optimise the conditions for high and homogeneous In incorporation and, on the other hand, to explain the influence of changes in the growth conditions on the sample morphology and In content. Specifically, the impact of the V/III and In/Ga flux ratios, the rotation speed and the rotation direction are investigated. Notably, with In acting as surfactant, the ternary (In,Ga)N shells are much more homogeneous in thickness along the nanowire length than their binary GaN counterparts.

2.
Small ; 19(44): e2304132, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37381650

RESUMO

Herein, a patterned rod-like CoP@NiCoP core-shell heterostructure is designed to consist of CoP nanowires cross-linked with NiCoP nanosheets in tight strings. The interfacial interaction within the heterojunction between the two components generates a built-in electric field that adjusts the interfacial charge state and create more active sites, accelerating the charge transfer and improving supercapacitor and electrocatalytic performance. The unique core-shell structure suppresses the volume expansion during charging and discharging, achieving excellent stability. As a result, CoP@NiCoP exhibits a high specific capacitance of 2.9 F cm-2 at a current density of 3 mA cm-2 and a high ion diffusion rate (Dion is 2.95 × 10-14  cm2  s-1 ) during charging/discharging. The assembled asymmetric supercapacitor CoP@NiCoP//AC exhibits a high energy density of 42.2 Wh kg-1 at a power density of 126.5 W kg-1 and excellent stability with a capacitance retention rate of 83.8% after 10 000 cycles. Furthermore, the modulated effect induced by the interfacial interaction also endows the self-supported electrode with excellent electrocatalytic HER performance with an overpotential of 71 mV at 10 mA cm-2 . This research may provide a new perspective on the generation of built-in electric field through the rational design of heterogeneous structures for improving the electrochemical and electrocatalytical performance.

3.
J Colloid Interface Sci ; 630(Pt B): 523-533, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36334488

RESUMO

Radial heterostructures with titanium dioxide (TiO2) nanowire as core and NTU-9 as shell are synthesized via a surfactant-free approach based on the favorable bonding of linkers with TiO2 nanowire. Relative to the traditional growth strategy of surface modification, the thin NTU-9 shell with ordered arrangement of two-dimensional networks is uniformly formed on the sidewalls of TiO2 nanowire through the orientational growth process. Using the core-shell nanowire arrays as photoanodes, wide-range light absorption and high charge carrier separation efficiency are achieved due to the conjugation of NTU-9, leading to enhanced water oxidation performance in photoelectrochemical (PEC) water splitting. Under appropriately low applied potentials, the photogenerated holes are preferable to accumulate at TiO2/NTU-9/electrolyte three-phase interface and thus the long-range ordered NTU-9 shell can also serve as a size-exclusion filter to improve selectivity toward molecules of different sizes. Consequently, the TiO2/NTU-9 core-shell nanowire array exhibits an augmented and selective PEC response for small size molecules (e.g.,H2O2) at a very low potential (-0.25 V vs Ag/AgCl), outperforming the pure TiO2 nanowire array and the counterpart with a grain-boundary-rich NTU-9 shell that is prepared by pretreatment of the TiO2 nanowires with PVP functionalization.

4.
Small ; 18(21): e2200656, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35466571

RESUMO

The insufficient contact between two phases in the heterostructure weakens the coupling interaction effect, which makes it difficult to effectively improve the electrochemical performance. Herein, a Co-carbonate hydroxide@ Ni-metal organic frameworks (Co-CH@Ni-MOFs) composite with super uniform core-shell heterostructure is fabricated by adopting 1D Co-CH nanowires as structuredirecting agents to induce the coating of Ni-MOFs. Both experimental and theoretical calculation results demonstrate that the heterostructure plays a vital role in the high performance of the as-prepared materials. On the one hand, the construction of super uniform core-shell heterostructure can create a large number of interfacial active sites and take advantages of the electrochemical characteristics of each component. On the other hand, the heterostructure can increase the adsorption energy of OH- ions and promote the electrochemical activity for improving the reversible redox reaction kinetics. Based on the aforementioned advantages, the as-fabricated Co-CH@Ni-MOFs electrode exhibits a high specific capacity of 173.1 mAh g-1 (1246 F g-1 ) at 1 A g-1 , an ultrahigh rate capability of 70.3% at 150 A g-1 and excellent cycling stability with 90.1% capacity retention after 10 000 cycles at 10 A g-1 . This study may offer a versatile design for fabricating a MOFs-based heterostructure as energy storage electrodes.

5.
Small Methods ; 6(3): e2101195, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35312226

RESUMO

Energy crises, environmental pollution, and freshwater deficiency are critical issues on the planet. Electrolytic hydrogen generation from saline water, particularly from salt-contained hazardous wastewater, is significant to both environment and energy concerns but still challenging due to the high energy cost, severe corrosion, and the absence of competent electrocatalysts. Herein, a novel strategy is proposed for energy-efficient hydrogen production coupled with electro-oxidation removal of ethanolamine pollutant in saline water. To achieve this, an active and durable heterostructured electrocatalyst is developed by in situ growing Ni@Ni3 S2 core@shell nanoparticles in cross-linked 3D carbon nanotubes' (CNTs) network, achieving high dispersibility and metallic property, low packing density, and enriched exposed active sites to facilitate fast electron/mass diffusion. The unique Ni@Ni3 S2 /CNTs nano-heterostructures are competent for long-term stably electro-oxidizing environmental-unfriendly ethanolamine at a high current density of 100 mA cm-2 in saline water, which not only suppresses oxygen and chloride evolution reactions but also decreases the energy consumption to boost hydrogen production. Associated with experimental results, density functional theory studies indicate that the collaborative adsorption of electrolyte ions and ethanolamine molecules can synergistically modulate the adsorption/desorption properties of catalytic active centers on Ni@Ni3 S2 /CNTs surface, leading to long-term stabilized electrocatalysis for efficient ethanolamine oxidation removal and less-energy hydrogen simultaneous production in saline water.


Assuntos
Poluentes Ambientais , Nanotubos de Carbono , Etanolamina , Etanolaminas , Hidrogênio , Águas Salinas
6.
Nanomaterials (Basel) ; 12(2)2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35055217

RESUMO

Extremely thin absorber (ETA) solar cells made of ZnO/TiO2/Sb2S3 core-shell nanowire heterostructures, using P3HT as the hole-transporting material (HTM), are of high interest to surpass solar cell efficiencies of their planar counterpart at lower material cost. However, no dimensional optimization has been addressed in detail, as it raises material and technological critical issues. In this study, the thickness of the Sb2S3 shell grown by chemical spray pyrolysis is tuned from a couple of nanometers to several tens of nanometers, while switching from a partially to a fully crystallized shell. The Sb2S3 shell is highly pure, and the unwanted Sb2O3 phase was not formed. The low end of the thickness is limited by challenges in the crystallization of the Sb2S3 shell, as it is amorphous at nanoscale dimensions, resulting in the low optical absorption of visible photons. In contrast, the high end of the thickness is limited by the increased density of defects in the bulk of the Sb2S3 shell, degrading charge carrier dynamics, and by the incomplete immersion of the P3HT in the structure, resulting in the poor hole collection. The best ETA solar cell with a short-circuit current density of 12.1 mA/cm2, an open-circuit voltage of 502 mV, and a photovoltaic conversion efficiency of 2.83% is obtained for an intermediate thickness of the Sb2S3 shell. These findings highlight that the incorporation of both the absorber shell and HTM in the core-shell heterostructures relies on the spacing between individual nanowires. They further elaborate the intricate nature of the dimensional optimization of an ETA cell, as it requires a fine-balanced holistic approach to correlate all the dimensions of all the components in the heterostructures.

7.
Nanotechnology ; 32(50)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34479223

RESUMO

The rational design of cathode materials with core-shell heterostructures is significant to develop a Ni//Zn battery with both high gravimetric and areal energy density under high mass loading. In this work, the NiCo-OH nanothorns with a mass loading of 11.6 mg cm-2were coated on CuO nanowire arrays via a chemical bath deposition method. Thanks to the construction of 3D core-shell nanowire arrays and appropriate cobalt doping, as-fabricated Ni//Zn battery based on the NiCo-OH as cathode achieved the maximum specific capacity of 383 mAh g-1at 5 mA cm-2with high energy density of 649 Wh kg-1at 0.73 kW kg-1, indicating good energy storage performance in Ni//Zn battery.

8.
ACS Nano ; 15(7): 12171-12179, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34269058

RESUMO

Spatially controlled preparation of heterostructures composed of layered materials is important in achieving interesting properties. Although vapor-phased deposition methods can prepare vertical and lateral heterostructures, liquid-phased methods, which can enable scalable production and further solution processes, have shown limited controllability. Herein, we demonstrate by using wet chemical methods that metallic Sn0.5Mo0.5S2 nanosheets can be deposited epitaxially on the edges of semiconducting SnS2 nanoplates to form SnS2/Sn0.5Mo0.5S2 lateral heterostructures or coated on both the edges and basal surfaces of SnS2 to give SnS2@Sn0.5Mo0.5S2 core@shell heterostructures. They also showed good light-to-heat conversion ability due to the metallic property of Sn0.5Mo0.5S2. In particular, the core@shell heterostructure showed a higher photothermal conversion efficiency than the lateral counterpart, largely due to its randomly oriented and polycrystalline Sn0.5Mo0.5S2 layers with larger interfacing area for multiple internal light scattering.

9.
Mikrochim Acta ; 187(11): 589, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-33033940

RESUMO

A novel hybrid with three-dimensional (3D) hierarchical CuS@Pd core-shell cauliflowers decorated on nitrogen-doped reduced graphene oxide (CuS@Pd/N-RGO) has been prepared by a facile wet-chemical route without utilizing any template molecules and surfactants. The characterization results reveal that the 3D flower-like structure of CuS "core" is composed of interconnecting nanoplates, which is conductive to the loading of Pd nanoparticles' "shell" and results in the robust interaction between the core and shell for the formation of CuS@Pd cauliflowers. Anchoring such appealing CuS@Pd cauliflowers on the two-dimensional N-RGO can efficaciously inhibit the aggregation of CuS@Pd cauliflowers and accelerate the kinetics of xanthine oxidation. Benefiting from the multi-functional properties and unique morphology, the sensor constructed by CuS@Pd/N-RGO exhibits excellent performance for non-enzymatic detection of xanthine including a wide detection range of 0.7-200.0 µM (0.94 V vs. SCE), a low detection limit of 28 nM (S/N = 3), high reproducibility (relative standard deviation (RSD) = 4.1%), and commendable stability (retained 90% of the initial electrochemical responses after storage for 30 days), which is amongst the best of various electrochemical sensors reported for xanthine assays till date. Reliable and satisfying recoveries (95-105%, RSD ≤ 4.1%) are achieved for xanthine detection in real samples. The inspiring results make the uniquely structural CuS@Pd/N-RGO greatly promising in non-enzymatic electrochemical sensing applications. Graphical abstract A high-performance non-enzymatic xanthine sensor has been constructed by the three-dimensional hierarchical CuS@Pd core-shell cauliflowers decorated on nitrogen-doped reduced graphene oxide.


Assuntos
Grafite/química , Nanopartículas Metálicas/química , Xantina/análise , Animais , Catálise , Galinhas , Cobre/química , Técnicas Eletroquímicas , Humanos , Cinética , Limite de Detecção , Nitrogênio/química , Oxirredução , Paládio/química , Reprodutibilidade dos Testes , Xantina/sangue , Xantina/química , Xantina/urina
10.
Small ; 16(32): e2001974, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32613708

RESUMO

Transition metal hydro/oxides (TMH/Os) are treated as the most promising alternative supercapacitor electrodes thanks to their high theoretical capacitance due to the various oxidation states and abundant cheap resources of TMH/Os. However, the poor conductivity and logy reaction kinetics of TMH/Os severely restrict their practical application. Herein, hierarchical core-shell P-Ni(OH)2 @Co(OH)2 micro/nanostructures are in situ grown on conductive Ni foam (P-Ni(OH)2 @Co(OH)2 /NF) through a facile stepwise hydrothermal process. The unique heterostructure composed of P-Ni(OH)2 rods and Co(OH)2 nanoflakes boost the charge transportation and provide abundant active sites when used as the intergrated cathode for supercapacitors. It delivers an ultrahigh areal specific capacitance of 4.4 C cm-2 at 1 mA cm-2 and the capacitance can maintain 91% after 10 000 cycles, showing an ultralong cycle life. Additionally, a hybrid supercapacitor composed with P-Ni(OH)2 @Co(OH)2 /NF cathode and Fe2 O3 /CC anode shows a wider voltage window of 1.6 V, a remarkable energy density of 0.21 mWh cm-2 at the power density of 0.8 mW cm-2 , and outstanding cycling stability with about 81% capacitance retention after 5000 cycles. This innovative study not only supplies a newfashioned electronic apparatus with high-energy density and cycling stability but offers a fresh reference and enlightenment for synthesizing advanced integrated electrodes for high-performance hybrid supercapacitors.

11.
Adv Sci (Weinh) ; 7(2): 1902433, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31993296

RESUMO

Herein, a facile self-assembly strategy for coassembling oleic acid-coated iron oxide nanoparticles (OC-IONPs) with oleylamine-coated gold nanoparticles (OA-AuNPs) to form colloidal magnetic-plasmonic nanoassemblies (MPNAs) is reported. The resultant MPNAs exhibit a typical core-shell heterostructure comprising aggregated OA-AuNPs as a plasmonic core surrounded by an assembled magnetic shell of OC-IONPs. Owing to the high loading of OA-AuNPs and reasonable spatial distribution of OC-IONPs, the resultant MPNAs exhibit highly retained magnetic-plasmonic activities simultaneously. Using the intrinsic dual functionality of MPNAs as a magnetic separator and a plasmonic signal transducer, it is demonstrated that the assembled MPNAs can achieve the simultaneous magnetic manipulation and optical detection on the lateral flow immunoassay platform after surface functionalization with recognition molecules. In conclusion, the core-shell-heterostructured MPNAs can serve as a nanoanalytical platform for the separation and concentration of target compounds from complex biological samples using magnetic properties and simultaneous optical sensing using plasmonic properties.

12.
ACS Nano ; 13(12): 13899-13909, 2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31769648

RESUMO

Semiconductor nanoplatelets (NPLs) have emerged as a very promising class of colloidal nanocrystals for light-emitting devices owing to their quantum-well-like electronic and optical characteristics. However, their lower photoluminescence quantum yield (PLQY) and limited stability have hampered the realization of their outstanding luminescent properties in device applications. Here, to address these deficiencies, we present a two-step synthetic approach that enables the synthesis of core/shell NPLs with precisely controlled shell composition for engineering their excitonic properties. The proposed CdSe colloidal quantum wells possess a graded shell, which is composed of a CdS buffer layer and a CdxZn1-xS gradient layer, and exhibit bright emission (PLQY 75-89%) in the red spectral region (634-648 nm) with a narrow emission line width (21 nm). These enhanced optical properties allowed us to attain low thresholds for amplified spontaneous emission (down to ∼40 µJ/cm2) under nanosecond laser excitation. We also studied the electroluminescent performance of these NPLs by fabricating solution-processed light-emitting diodes (LEDs). In comparison to NPL-LEDs with CdSe/CdS core/shell NPLs, which exhibit an external quantum efficiency (EQE) value of only 1.80%, a significantly improved EQE value of 9.92% was obtained using graded-shell NPLs, the highest value for colloidal NPL-based-LEDs. In addition, the low efficiency roll-off characteristics of NPL-LEDs enabled a high brightness of up to ∼46 000 cd/m2 with an electroluminescence peak centered at 650 nm. These findings demonstrate the paramount role that heterostructure engineering occupies in enhancing the optoelectronic characteristics of semiconductor NPLs toward practically relevant levels.

13.
Nano Lett ; 19(12): 8846-8854, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31651177

RESUMO

Colloidal CdSe nanocrystals (NCs) overcoated with an ultrathick CdS shell, also known as dot-in-bulk (DiB) structures, can support two types of excitons, one of which is core-localized and the other, shell-localized. In the case of weak "sub-single-exciton" pumping, emission alternates between the core- and shell-related channels, which leads to two-color light. This property makes these structures uniquely suited for a variety of photonic applications as well as ideal model systems for realizing complex excitonic quasi-particles that do not occur in conventional core/shell NCs. Here, we show that the DiB design can enable an unusual regime in which the same long-lived resident electron can endow trionlike characteristics to either of the two excitons of the DiB NC (core- or shell-based). These two spectrally distinct trion states are apparent in the measured photoluminescence (PL) and spin dynamics of core and shell excitons conducted over a wide range of temperatures and applied magnetic fields. Low-temperature PL measurements indicate that core- and shell-based trions are characterized by a nearly ideal (∼100%) emission quantum yield, suggesting the strong suppression of Auger recombination for both types of excitations. Polarization-resolved PL experiments in magnetic fields of up to 60 T reveal that the core- and the shell-localized trions exhibit remarkably similar spin dynamics, which in both cases are controlled by spin-flip processes involving a heavy hole.

14.
Nanomaterials (Basel) ; 9(1)2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30634642

RESUMO

This review summaries the optical properties, recent progress in synthesis, and a range of applications of luminescent Cu-based ternary or quaternary quantum dots (QDs). We first present the unique optical properties of the Cu-based multicomponent QDs, regarding their emission mechanism, high photoluminescent quantum yields (PLQYs), size-dependent bandgap, composition-dependent bandgap, broad emission range, large Stokes' shift, and long photoluminescent (PL) lifetimes. Huge progress has taken place in this area over the past years, via detailed experimenting and modelling, giving a much more complete understanding of these nanomaterials and enabling the means to control and therefore take full advantage of their important properties. We then fully explore the techniques to prepare the various types of Cu-based ternary or quaternary QDs (including anisotropic nanocrystals (NCs), polytypic NCs, and spherical, nanorod and tetrapod core/shell heterostructures) are introduced in subsequent sections. To date, various strategies have been employed to understand and control the QDs distinct and new morphologies, with the recent development of Cu-based nanorod and tetrapod structure synthesis highlighted. Next, we summarize a series of applications of these luminescent Cu-based anisotropic and core/shell heterostructures, covering luminescent solar concentrators (LSCs), bioimaging and light emitting diodes (LEDs). Finally, we provide perspectives on the overall current status, challenges, and future directions in this field. The confluence of advances in the synthesis, properties, and applications of these Cu-based QDs presents an important opportunity to a wide-range of fields and this piece gives the reader the knowledge to grasp these exciting developments.

15.
Small ; 14(16): e1704517, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29575525

RESUMO

Combining the advantage of metal, metal sulfide, and carbon, mesoporous hollow core-shell Sb/ZnS@C hybrid heterostructures composed of Sb/ZnS inner core and carbon outer shell are rationally designed based on a robust template of ZnS nanosphere, as anodes for high-performance sodium-ion batteries (SIBs). A partial cation exchange reaction based on the solubility difference between Sb2 S3 and ZnS can transform mesoporous ZnS to Sb2 S3 /ZnS heterostructure. To get a stable structure, a thin contiguous resorcinol-formaldehyde (RF) layer is introduced on the surface of Sb2 S3 /ZnS heterostructure. The effectively protective carbon layer from RF can be designed as the reducing agent to convert Sb2 S3 to metallic Sb to obtain core-shell Sb/ZnS@C hybrid heterostructures. Simultaneously, the carbon outer shell is beneficial to the charge transfer kinetics, and can maintain the structure stability during the repeated sodiation/desodiation process. Owing to its unique stable architecture and synergistic effects between the components, the core-shell porous Sb/ZnS@C hybrid heterostructure SIB anode shows a high reversible capacity, good rate capability, and excellent cycling stability by turning the optimized voltage range. This novel strategy to prepare carbon-layer-protected metal/metal sulfide core-shell heterostructure can be further extended to design other novel nanostructured systems for high-performance energy storage devices.

16.
ACS Nano ; 10(7): 6877-87, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27276033

RESUMO

Two-color emitting colloidal semiconductor nanocrystals (NCs) are of interest for applications in multimodal imaging, sensing, lighting, and integrated photonics. Dual color emission from core- and shell-related optical transitions has been recently obtained using so-called dot-in-bulk (DiB) CdSe/CdS NCs comprising a quantum-confined CdSe core embedded into an ultrathick (∼7-9 nm) CdS shell. The physical mechanism underlying this behavior is still under debate. While a large shell volume appears to be a necessary condition for dual emission, comparison between various types of thick-shell CdSe/CdS NCs indicates a critical role of the interface "sharpness" and the presence of potential barriers. To elucidate the effect of the interface morphology on the dual emission, we perform side-by-side studies of CdSe/CdS DiB-NCs with nominally identical core and shell dimensions but different structural properties of the core/shell interface arising from the crystal structure of the starting CdSe cores (zincblende vs wurtzite). While both structures exhibit dual emission under comparable pump intensities, NCs with a zincblende core show a faster growth of shell luminescence with excitation fluence and a more readily realized regime of amplified spontaneous emission (ASE) even under "slow" nanosecond excitation. These distinctions can be linked to the structure of the core/shell interface: NCs grown from the zincblende cores contain a ∼3.5 nm thick zincblende CdS interlayer, which separates the core from the wurtzite CdS shell and creates a potential barrier for photoexcited shell holes inhibiting their relaxation into the core. This helps maintain a higher population of shell states and simplifies the realization of dual emission and ASE involving shell-based optical transitions.

17.
ACS Nano ; 10(4): 4754-62, 2016 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-27065247

RESUMO

Colloidal quantum dots (QDs) show great promise as LED phosphors due to their tunable narrow-band emission and ability to produce high-quality white light. Currently, the most suitable QDs for lighting applications are based on cadmium, which presents a toxicity problem for consumer applications. The most promising cadmium-free candidate QDs are based on InP, but their quality lags much behind that of cadmium based QDs. This is not only because the synthesis of InP QDs is more challenging than that of Cd-based QDs, but also because the large lattice parameter of InP makes it difficult to grow an epitaxial, defect-free shell on top of such material. Here, we propose a viable approach to overcome this problem by alloying InP nanocrystals with Zn(2+) ions, which enables the synthesis of InxZnyP alloy QDs having lattice constant that can be tuned from 5.93 Å (pure InP QDs) down to 5.39 Å by simply varying the concentration of the Zn precursor. This lattice engineering allows for subsequent strain-free, epitaxial growth of a ZnSezS1-z shell with lattice parameters matching that of the core. We demonstrate, for a wide range of core and shell compositions (i.e., varying x, y, and z), that the photoluminescence quantum yield is maximal (up to 60%) when lattice mismatch is minimal.

18.
J Phys Chem Lett ; 6(4): 706-11, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26262490

RESUMO

We investigate CdSe/ZnSe core/thick-shell nanocrystals (a.k.a. giant-nanocrystal quantum dots [g-NQDs]) that have an asymmetric electron/hole confinement potential opposite to nonblinking CdSe/CdS g-NQDs. We deconstruct the photon streams into five different photoluminescence (PL) intensity levels and analyze second-order photon correlation (g((2))) traces of each PL intensity level. This analysis allows us to decouple the contribution of exciton charging from the g((2)) experiment and determine the quantum yield of neutral biexciton states to be in the range of ∼20-50%, a value comparable to that of CdSe/CdS g-NQDs. We also show that the Auger recombination rate of positive trion states is suppressed compared to that of negative trions. This suppression, however, is shown not to be strong enough to yield complete suppression of PL fluctuations due to the heavy effective mass of holes. Strong intensity fluctuations also result from the fact that hole charging occurs more readily in CdSe/ZnSe g-NQDs than electron charging in CdSe/CdS g-NQDs.


Assuntos
Nanopartículas/química , Tamanho da Partícula
19.
ChemSusChem ; 7(8): 2325-34, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24828680

RESUMO

We demonstrate the facile and well-controlled design and fabrication of heterostructured and hierarchical 3D mesoporous NiSix /NiCo2 O4 core/shell nanowire arrays on nickel foam through a facile chemical vapor deposition (CVD) technique combined with a simple but powerful chemical bath deposition (CBD) technique. The smart hybridization of NiCo2 O4 and NiSix nanostructures results in an intriguing mesoporous hierarchical core/shell nanowire-array architecture. The nanowire arrays demonstrate enhanced electrochemical performance as binder- and conductive-agent-free electrodes for lithium ion batteries (LIBs) with excellent capacity retention and high rate capability on cycling. The electrodes can maintain a high reversible capacity of 1693 mA h g(-1) after 50 cycles at 20 mA g(-1) . Given the outstanding performance and simple, efficient, cost-effective fabrication, we believe that these 3D NiSix /NiCo2 O4 core/shell heterostructured arrays have great potential application in high-performance LIBs.


Assuntos
Cobalto/química , Fontes de Energia Elétrica , Lítio/química , Níquel/química , Óxidos/química , Dióxido de Silício/química , Eletrodos , Nanofios/química , Porosidade , Volatilização
20.
Small ; 10(1): 179-85, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23894092

RESUMO

Enhanced electron field emission (EFE) behavior of a core-shell heterostructure, where ZnO nanorods (ZNRs) form the core and ultrananocrystalline diamond needles (UNCDNs) form the shell, is reported. EFE properties of ZNR-UNCDN core-shell heterostructures show a high emission current density of 5.5 mA cm(-2) at an applied field of 4.25 V µm(-1) , and a low turn-on field of 2.08 V µm(-1) compared to the 1.67 mA cm(-2) emission current density (at an applied field of 28.7 V µm(-1) ) and 16.6 V µm(-1) turn-on field for bare ZNRs. Such an enhancement in the field emission originates from the unique materials combination, resulting in good electron transport from ZNRs to UNCDNs and efficient field emission of electrons from the UNCDNs. The potential application of these materials is demonstrated by the plasma illumination measurements that lowering the threshold voltage by 160 V confirms the role of ZNR-UNCDN core-shell heterostructures in the enhancement of electron emission.


Assuntos
Nanotubos/química , Óxido de Zinco/química , Cristalização , Teste de Materiais , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA