Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
FEMS Microbiol Ecol ; 99(9)2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37586889

RESUMO

Seasonal environmental variation is a leading driver of microbial planktonic community assembly and interactions. However, departures from usual seasonal trends are often reported. To understand the role of local stressors in modifying seasonal succession, we sampled fortnightly, throughout three seasons, five nearby shallow soda lakes exposed to identical seasonal and meteorological changes. We characterised their microeukaryotic and bacterial communities by amplicon sequencing of the 16S and 18S rRNA gene, respectively. Biological interactions were inferred by analyses of synchronous and time-shifted interaction networks, and the keystone taxa of the communities were topologically identified. The lakes showed similar succession patterns during the study period with spring being characterised by the relevance of trophic interactions and a certain level of community stability followed by a more dynamic and variable summer-autumn period. Adaptation to general seasonal changes happened through shared core microbiome of the lakes. Stochastic events such as desiccation disrupted common network attributes and introduced shifts from the prevalent seasonal trajectory. Our results demonstrated that, despite being extreme and highly variable habitats, shallow soda lakes exhibit certain similarities in the seasonality of their planktonic communities, yet local stressors such as droughts instigate deviations from prevalent trends to a greater extent for microeukaryotic than for bacterial communities.


Assuntos
Aclimatação , Lagos , Estações do Ano , Clima , Secas , Plâncton/genética
2.
Microb Ecol ; 86(4): 2574-2582, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37415044

RESUMO

Ecological communities are structured by a range of processes that operate over a range of spatial scales. While our understanding of such biodiversity patterns in macro-communities is well studied, our understanding at the microbial level is still lacking. Bacteria can be free living or associated with host eukaryotes, forming part of a wider "microbiome," which is fundamental for host performance and health. For habitat forming foundation-species, host-bacteria relationships likely play disproportionate roles in mediating processes for the wider ecosystem. Here, we describe host-bacteria communities across multiple spatial scales (i.e., from 10s of m to 100s of km) in the understudied kelp, Eisenia cokeri, in Peru. We found that E. cokeri supports a distinct bacterial community compared to the surrounding seawater, but the structure of these communities varied markedly at the regional (~480 km), site (1-10 km), and individual (10s of m) scale. The marked regional-scale differences we observed may be driven by a range of processes, including temperature, upwelling intensity, or regional connectivity patterns. However, despite this variability, we observed consistency in the form of a persistent core community at the genus level. Here, the genera Arenicella, Blastopirellula, Granulosicoccus, and Litorimonas were found in >80% of samples and comprised ~53% of total sample abundance. These genera have been documented within bacterial communities associated with kelps and other seaweed species from around the world and may be important for host function and wider ecosystem health in general.


Assuntos
Kelp , Microbiota , Kelp/microbiologia , Ecossistema , Peru , Bactérias/genética , Biodiversidade
3.
Sci Total Environ ; 896: 165187, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37391143

RESUMO

The phyllosphere provides a habitat for a large sum of microorganisms which are modulated by numerous biotic and abiotic factors. While it is logical that host lineage must have some effect on the phyllosphere habitat, it is unclear if phyllospheres harbor similar microbial core communities across multiple ecosystems at the continental-scale. Here we collected 287 phyllosphere bacterial communities from seven ecosystems (including paddy field, dryland, urban area, protected agricultural land, forest, wetland, and grassland) in east-China to identify the regional core community and to characterize the importance of such communities in maintaining phyllosphere bacterial community structure and function. Despite significantly different bacterial richness and structure, the seven studied ecosystems contained a similar regional core community of 29 OTUs that comprised 44.9 % of the total bacterial abundance. The regional core community was less affected by environmental variables and less connected in the co-occurrence network compared with other non-core OTUs (the whole minus regional core community). Furthermore, the regional core community also had a large proportion (>50 %) of a constrained set of nutrient metabolism related functional potentials and less functional redundancy. This study suggests there is a robust regional core phyllosphere community regardless of ecosystem or spatial and environmental heterogeneity, and supports the argument that core communities are pivotal in maintaining microbial community structure and function.


Assuntos
Florestas , Microbiota , Bactérias , Agricultura , China
4.
Food Res Int ; 168: 112686, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37120185

RESUMO

Medium-high temperature Daqu is a characteristic starter for Chinese strong-flavor Baijiu fermentation, and its final quality determines the character and type of Baijiu. Nonetheless, its formation is affected by the interaction of physical and chemical, environmental and microbial interaction, and the differences in seasonal fermentation performance emerge. Here, the differences in the two seasons' Daqu fermentation properties were revealed by the detection of the enzyme activity. The respective dominant enzyme in summer Daqu (SUD) was protease and amylase, while cellulase and glucoamylase in spring Daqu (SPD). The underlying causes of this phenomenon were then investigated through an evaluation of nonbiological variables and microbial community structure. A greater absolute number of microorganisms, particularly Thermoactinomyces, were created in the SPD as a result of the superior growth environment (higher water activity). Additionally, the correlation network and discriminant analysis hypothesized that the volatile organic compound (VOC) guaiacol, which had a different content between SUD and SPD, may be a contributing element to the microbial composition. In contrast to SUD, the enzyme system activity related to guaiacol production in SPD was significantly higher. To support this notion that the volatile flavor chemicals mediate microbial interactions in Daqu, the growth effect of guaiacol on several bacteria isolated from the Daqu was examined in both a contact and non-contact manner. This study emphasized that VOCs not only have the basic characteristics of flavor compounds but also have ecological significance. Because the strains' varied structures and enzyme activities affected how the microorganisms interacted, the VOCs produced in this way ultimately had a synergistic effect on the various effects of Daqu fermentation.


Assuntos
Bebidas Alcoólicas , Bactérias , Fermentação , Bebidas Alcoólicas/análise , Estações do Ano , Amilases
5.
Front Plant Sci ; 13: 984483, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36247635

RESUMO

Polygonum hydropiper, is a plant of the Persicaria genus, which is commonly used to treat various diseases, including gastrointestinal disorders, neurological disorders, inflammation, and diarrhea. However, because of different local standards of P. hydropiper, people often confuse it with Polygonum lapathifolium L. and other closely related plants. This poses a serious threat to the safety and efficacy of the clinical use of P. hydropiper. This study aims to determine the six active ingredients of P. hydropiper and P. lapathifolium. Then the endophytic fungi and rhizosphere soil of the two species were sequenced by Illumina Miseq PE300. The results show significant differences between the community composition of the leaves, stems, and roots of the P. hydropiper and the P. lapathifolium in the same soil environment. Of the six secondary metabolites detected, five had significant differences between P. hydropiper and P. lapathifolium. Then, we evaluated the composition of the significantly different communities between P. hydropiper and P. lapathifolium. In the P. hydropiper, the relative abundance of differential communities in the leaves was highest, of which Cercospora dominated the differential communities in the leaves and stem; in the P. lapathifolium, the relative abundance of differential community in the stem was highest, and Cladosporium dominated the differential communities in the three compartments. By constructing the interaction network of P. hydropiper and P. lapathifolium and analyzing the network nodes, we found that the core community in P. hydropiper accounted for 87.59% of the total community, dominated by Cercospora; the core community of P. lapathifolium accounted for 19.81% of the total community, dominated by Sarocladium. Of these core communities, 23 were significantly associated with active ingredient content. Therefore, we believe that the community from Cercospora significantly interferes with recruiting fungal communities in P. hydropiper and affects the accumulation of secondary metabolites in the host plant. These results provide an essential foundation for the large-scale production of P. hydropiper. They indicate that by colonizing specific fungal communities, secondary metabolic characteristics of host plants can be helped to be shaped, which is an essential means for developing new medicinal plants.

6.
Front Microbiol ; 13: 935378, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36187988

RESUMO

Due to global warming, shorter ice cover duration might drastically affect the ecology of lakes currently undergoing seasonal surface freezing. High-mountain lakes show snow-rich ice covers that determine contrasting conditions between ice-off and ice-on periods. We characterized the bacterioplankton seasonality in a deep high-mountain lake ice-covered for half a year. The lake shows a rich core bacterioplankton community consisting of three components: (i) an assemblage stable throughout the year, dominated by Actinobacteria, resistant to all environmental conditions; (ii) an ice-on-resilient assemblage dominating during the ice-covered period, which is more diverse than the other components and includes a high abundance of Verrucomicrobia; the deep hypolimnion constitutes a refuge for many of the typical under-ice taxa, many of which recover quickly during autumn mixing; and (iii) an ice-off-resilient assemblage, which members peak in summer in epilimnetic waters when the rest decline, characterized by a dominance of Flavobacterium, and Limnohabitans. The rich core community and low random elements compared to other relatively small cold lakes can be attributed to its simple hydrological network in a poorly-vegetated catchment, the long water-residence time (ca. 4 years), and the long ice-cover duration; features common to many headwater deep high-mountain lakes.

7.
Sci Total Environ ; 841: 156486, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35667424

RESUMO

Paddy soil is a heterogenous ecosystem that harbours diverse microbial communities critical for maintaining ecosystem sustainability and crop yield. Considering the importance of soil in crop production and recent reports on its contamination with arsenic (As) across the South East Asia, its microbial community composition and biogeochemical functions remained inadequately studied. We have characterized the microbial communities of rice soil from eleven paddy fields of As-contaminated sites from West Bengal (India), through metagenomics and amplicon sequencing. 16S rRNA gene sequencing showed considerable bacterial diversity [over 0.2 million Operational Taxonomic Units (OTUs)] and abundance (upto 1.6 × 107 gene copies/g soil). Existence of a core-microbiome (261 OTUs conserved out of a total 141,172 OTUs) across the samples was noted. Most of the core-microbiome members were also found to represent the abundant taxa of the soil. Statistical analyses suggested that the microbial communities were highly constrained by As, Fe K, N, PO43-, SO42- and organic carbon (OC). Members of Proteobacteria, Actinobacteria, Acidobacteria, Chloroflexi, Planctomycetes and Thaumarchaeota constituted the core-microbiome. Co-occurrence network analysis displayed significant interaction among diverse anaerobic, SO42- and NO3- reducing, cellulose and other organic matter or C1 compound utilizing, fermentative and aerobic/facultative anaerobic bacteria and archaea. Correlation analysis suggested that taxa which were positively linked with soil parameters that maintain soil health and productivity (e.g., N, K, PO43- and Fe) were adversely impacted by increasing As concentration. Shotgun metagenomics highlighted major metabolic pathways controlling the C (3-hydroxypropionate bicycle), N (Denitrification, dissimilatory NO3- reduction to ammonium), and S (assimilatory SO42- reduction and sulfide oxidation) cycling, As homeostasis (methylation and reduction) and plant growth promotion (polyphosphate hydrolysis and auxin biosynthesis). All these major biogeochemical processes were found to be catalyzed by the members of most abundant/core-community.


Assuntos
Arsênio , Microbiota , Oryza , Archaea , Arsênio/análise , Bactérias/metabolismo , Oryza/genética , RNA Ribossômico 16S/genética , Solo/química , Microbiologia do Solo
8.
Front Microbiol ; 13: 827863, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35444618

RESUMO

The sponge microbiome, especially in Low Microbial Abundance (LMA) species, is expected to be influenced by the local environment; however, contrasting results exist with evidence showing that host specificity is also important, hence suggesting that the microbiome is influenced by host-specific and environmental factors. Despite sponges being important members of Southern Ocean benthic communities, their relationships with the microbial communities they host remain poorly studied. Here, we studied the spatial and temporal patterns of the microbiota associated with the ecologically important LMA sponge M. acerata at sites along ∼400 km of the Western Antarctic Peninsula (WAP) to assess patterns in the core and variable microbial components of the symbiont communities of this sponge species. The analyses of 31 samples revealed that the microbiome of M. acerata is composed of 35 prokaryotic phyla (3 Archaea, 31 Bacteria, and one unaffiliated), being mainly dominated by Proteobacteria with Gammaproteobacteria as the most dominant class. The core community was composed of six prokaryotic OTUs, with gammaproteobacterial OTU (EC94 Family), showing a mean abundance over 65% of the total abundance. Despite some differences in rare OTUs, the core community did not show clear patterns in diversity and abundance associated with specific sites/environmental conditions, confirming a low variability in community structure of this species along the WAP. The analysis at small scale (Doumer Island, Palmer Archipelago) showed no differences in space and time in the microbiome M. acerata collected at sites around the island, sampled in three consecutive years (2016-2018). Our results highlight the existence of a low spatial and temporal variability in the microbiome of M. acerata, supporting previous suggestions based on limited studies on this and other Antarctic sponges.

9.
Appl Microbiol Biotechnol ; 106(4): 1759-1776, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35147744

RESUMO

In biodesulfurization (BD) at haloalkaline and dO2-limited conditions, sulfide-oxidizing bacteria (SOB) effectively convert sulfide into elemental sulfur that can be used in agriculture as a fertilizer and fungicide. Here we show which bacteria are present in this biotechnological process. 16S rRNA gene amplicon sequencing of biomass from ten reactors sampled in 2018 indicated the presence of 444 bacterial Amplicon Sequence Variants (ASVs). A core microbiome represented by 30 ASVs was found in all ten reactors, with Thioalkalivibrio sulfidiphilus as the most dominant species. The majority of these ASVs are phylogenetically related to bacteria previously identified in haloalkaline BD processes and in natural haloalkaline ecosystems. The source and composition of the feed gas had a great impact on the microbial community composition followed by alkalinity, sulfate, and thiosulfate concentrations. The halophilic SOB of the genus Guyparkeria (formerly known as Halothiobacillus) and heterotrophic SOB of the genus Halomonas were identified as potential indicator organisms of sulfate and thiosulfate accumulation in the BD process. KEY POINTS: • Biodesulfurization (BD) reactors share a core microbiome • The source and composition of the feed gas affects the microbial composition in the BD reactors • Guyparkeria and Halomonas indicate high concentrations of sulfate and thiosulfate in the BD process.


Assuntos
Reatores Biológicos , Microbiota , Reatores Biológicos/microbiologia , Oxirredução , RNA Ribossômico 16S/genética , Sulfatos , Sulfetos
10.
Front Microbiol ; 12: 696398, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34354692

RESUMO

In the recent past many studies investigated the microbiome of plants including several medicinal plants (MP). Microbial communities of the associated soil, rhizosphere and the above-ground organs were included, but there is still limited information on their seasonal development, and in particular simultaneous investigations of different plant organs are lacking. Many studies predominantly addressed either the prokaryotic or fungal microbiome. A distinction of epi- and endophytic communities of above-ground plant organs has rarely been made. Therefore, we conducted a comprehensive investigation of the bacterial and fungal microbiome of the MP Achillea millefolium and studied the epi- and endophytic microbial communities of leaves, flower buds and flowers between spring and summer together with the microbiome of the associated soil at one location. Further, we assessed the core microbiome of Achillea from four different locations at distances up to 250 km in southern Germany and Switzerland. In addition, the bacterial and fungal epi- and endophytic leaf microbiome of the arborescent shrub Hamamelis virginiana and the associated soil was investigated at one location. The results show a generally decreasing diversity of both microbial communities from soil to flower of Achillea. The diversity of the bacterial and fungal endophytic leaf communities of Achillea increased from April to July, whereas that of the epiphytic leaf communities decreased. In contrast, the diversity of the fungal communities of both leaf compartments and that of epiphytic bacteria of Hamamelis increased over time indicating plant-specific differences in the temporal development of microbial communities. Both MPs exhibited distinct microbial communities with plant-specific but also common taxa. The core taxa of Achillea constituted a lower fraction of the total number of taxa than of the total abundance of taxa. The results of our study provide a basis to link interactions of the microbiome with their host plant in relation to the production of bioactive compounds.

11.
J Environ Sci (China) ; 102: 244-255, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33637250

RESUMO

Microbial immigrants arriving with influent wastewater may influence activated sludge (AS) ecosystems. However, the extent to which immigration impacts AS communities is still debated. To explore the intensity of immigration impact, we used sequencing technology to track the raw wastewater and AS communities from a membrane bioreactor plant over a 12-month period. We first distinguished core populations from peripheral ones in both raw wastewater and AS based on their occurrence frequency and abundance. The results showed that core OTUs (≥ 80% occurrence frequency) made up a large fraction (> 90%) of total sequences, while peripheral OTUs composed the majority of all detected OTUs but merely occupied a few sequences. A significant difference in core communities between the influent and AS was found, as well as between the compositions of core and peripheral populations. Additionally, the persistent functional bacteria of AS, although not numerically dominant, accounted for 96.24% of the total sequences related to nutrient turnover, suggesting the presence of a small number of longstanding and core functional bacteria in the AS ecosystem. Importantly, 64% of the 5188 OTUs in AS, which accounted for 91.51% of the sequences, exhibited positive growth rates, which suggested that their apparent abundances were due to growth within the plant, not from immigration. Taken together, these results demonstrated that the impact of influent populations on core AS communities was limited. Overall, this work provides quantitative insights into the impact of immigration, which is expected to advance our understanding of the AS community assembly.


Assuntos
Ecossistema , Esgotos , Reatores Biológicos , Emigração e Imigração , Águas Residuárias
12.
Front Microbiol ; 11: 568853, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013799

RESUMO

Bark beetles are destructive forest pests considering their remarkable contribution to forest depletion. Their association with fungi is useful against the challenges of survival on the noxious and nutritionally limited substrate, i.e., conifer tissues. Fungal symbionts help the beetles in nutrient acquisition and detoxification of toxic tree secondary metabolites. Although gut is the prime location for food digestion and detoxification, limited information is available on gut-mycobiome of bark beetles. The present study screened the gut-mycobiont from six bark beetles (five Ips and one non-Ips) from Scolytinae subfamily using high-throughput sequencing and explored their putative role in symbiosis with the host insect. Results revealed the predominance of four fungal classes- Sordariomycetes, Saccharomycetes, Eurothiomycetes, and Dothidomycetes in all bark beetles. Apart from these, Agaricomycetes, Leothiomycetes, Incertae sedis Basidiomycota, Tremellomycetes, Lecanoromycetes, and Microbotryomycetes were also documented in different beetles. Five Ips bark beetles share a consortium of core fungal communities in their gut tissues consisting of 47 operational taxonomic units (OTUs) belonging to 19 fungal genera. The majority of these core fungal genera belong to the phylum Ascomycota. LEfSe analysis revealed a set of species-specific fungal biomarkers in bark beetles. The present study identified the gut mycobiont assemblage in bark beetles and their putative ecological relevance. An enriched understanding of bark beetle-fungal symbiosis is not only filling the existing knowledge gap in the field but may also unleash an unforeseen potential for future bark beetle management.

13.
FEMS Microbiol Ecol ; 97(1)2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33068395

RESUMO

Hypolithic microbial communities (hypolithons) are complex assemblages of phototrophic and heterotrophic organisms associated with the ventral surfaces of translucent minerals embedded in soil surfaces. Past studies on the assembly, structure and function of hypolithic communities have tended to use composite samples (i.e. bulked hypolithic biomass) with the underlying assumption that samples collected from within a 'homogeneous' locality are phylogenetically homogeneous. In this study, we question this assumption by analysing the prokaryote phylogenetic diversity of multiple individual hypolithons: i.e. asking the seemingly simple question of 'Are all hypolithons the same'? Using 16S rRNA gene-based phylogenetic analysis of hypolithons recovered for a localized moraine region in the Taylor Valley, McMurdo Dry Valleys, Antarctica, we demonstrate that these communities are heterogeneous at very small spatial scales (<5 m). Using null models of phylogenetic turnover, we showed that this heterogeneity between hypolithons is probably due to stochastic effects such as dispersal limitations, which is entirely consistent with the physically isolated nature of the hypolithic communities ('islands in the sand') and the almost complete absence of a liquid continuum as a mode of microbial transport between communities.


Assuntos
Microbiota , Microbiologia do Solo , Regiões Antárticas , Ilhas , Filogenia , RNA Ribossômico 16S/genética , Areia
14.
Appl Environ Microbiol ; 86(11)2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32220837

RESUMO

Most of the microbial degradation in oil reservoirs is believed to take place at the oil-water transition zone (OWTZ). However, a recent study indicates that there is microbial life enclosed in microliter-sized water droplets dispersed in heavy oil of Pitch Lake in Trinidad and Tobago. This life in oil suggests that microbial degradation of oil also takes place in water pockets in the oil-bearing rock of an oil leg independent of the OWTZ. However, it is unknown whether microbial life in water droplets dispersed in oil is a generic property of oil reservoirs rather than an exotic exception. Hence, we took samples from three heavy-oil seeps, Pitch Lake (Trinidad and Tobago), the La Brea Tar Pits (California, USA), and an oil seep on the McKittrick oil field (California, USA). All three tested oil seeps contained dispersed water droplets. Larger droplets between 1 and 10 µl revealed high cell densities of up to 109 cells ml-1 Testing for ATP content and LIVE/DEAD staining showed that these populations consist of active and viable microbial cells with an average of 60% membrane-intact cells and ATP concentrations comparable to those of other subsurface ecosystems. Microbial community analyses based on 16S rRNA gene amplicon sequencing revealed the presence of known anaerobic oil-degrading microorganisms. Surprisingly, the community analyses showed similarities between all three oil seeps, revealing common OTUs, although the sampling sites were thousands of kilometers apart. Our results indicate that small water inclusions are densely populated microhabitats in heavy oil and possibly a generic trait of degraded-oil reservoirs.IMPORTANCE Our results confirmed that small water droplets in oil are densely populated microhabitats containing active microbial communities. Since these microhabitats occurred in three tested oil seeps which are located thousands of kilometers away from each other, such populated water droplets might be a generic trait of biodegraded oil reservoirs and might be involved in the overall oil degradation process. Microbial degradation might thus also take place in water pockets in the oil-bearing oil legs of the reservoir rock rather than only at the oil-water transition zone.


Assuntos
Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Microbiota , Campos de Petróleo e Gás/microbiologia , Microbiologia da Água , Archaea/classificação , Bactérias/classificação , California , Lagos , Los Angeles , RNA Arqueal/análise , RNA Bacteriano/análise , RNA Ribossômico 16S/análise , Trinidad e Tobago , Água/química
15.
Microb Ecol ; 80(2): 296-308, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32076744

RESUMO

The microbial ecosystems of the sludge were characterized in terms of the core community structure, functional pathways, and functional redundancy through Illumina MiSeq sequencing and PICRUSt analysis on the activated sludge (AS) samples from an extended activated aeration process. Based on the identified OTU distribution, we identified 125 core community genera, including 3 abundant core genera and 21 intermittent abundant core genera. Putative genera Nitrosomonas, Nitrotoga, Zoogloea, Novosphingobium, Thermomonas, Amaricoccus, Tetrasphaera, Candidatus Microthrix, and Haliscomenobacter, which are associated with functions of nitrifying, denitrifying, phosphorus accumulating, and bulking and foaming, were found to present as the core community organisms in the AS sampled from the conventional extended aeration AS processes. The high-abundant nitrogen metabolic pathways were associated with nitrate reduction to ammonium (DNRA and ANRA), denitrification, and nitrogen fixation, while the ammonia oxidation-related genes (amo) were rarely annotated in the AS samples. Strict functional redundancy was not found with the AS ecosystem as it showed a high correlation between the community composition similarity and function similarity. In addition, the classified dominant core genera community was found to be sufficient to characterize the functionality of AS, which could invigorate applications of 16S rDNA MiSeq sequencing and PICRUSt for the prediction of functions of AS ecosystems.


Assuntos
Fenômenos Fisiológicos Bacterianos , Microbiota/fisiologia , Esgotos/microbiologia , Ontário , Estações do Ano
16.
mSystems ; 4(5)2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31575666

RESUMO

It is a central ecological goal to explore the effects of global change factors on soil microbial communities. The vast functional gene repertoire of soil microbial communities is composed of both core and accessory genes, which may be governed by distinct drivers. This intuitive hypothesis, however, remains largely unexplored. We conducted a 5-year nitrogen and water addition experiment in the Eurasian steppe and quantified microbial gene diversity via shotgun metagenomics. Nitrogen addition led to an 11-fold increase in the abundance (based on quantitative PCR [qPCR]) of ammonia-oxidizing bacteria, which have mainly core community genes and few accessory community genes. Thus, nitrogen addition substantially increased the relative abundance of many core genes at the whole-community level. Water addition stimulated both plant diversity and microbial respiration; however, increased carbon/energy resources from plants did not counteract increased respiration, so soil carbon/energy resources became more limited. Thus, water addition selected for microorganisms with genes responsible for degrading recalcitrant soil organic matter. Accordingly, many other microorganisms without these genes (but likely with other accessory community genes due to relatively stable average microbial genome size) were selected against, leading to the decrease in the diversity of accessory community genes. In summary, nitrogen addition primarily affected core community genes through nitrogen-cycling processes, and water addition primarily regulated accessory community genes through carbon-cycling processes. Although both gene components may significantly respond as the intensity of nitrogen/water addition increases, our results demonstrated how these common global change factors distinctly impact each component.IMPORTANCE Our results demonstrated increased ecosystem nitrogen and water content as the primary drivers of the core and accessory components of soil microbial community functional diversity, respectively. Our findings suggested that more attention should be paid to certain components of community functional diversity under specific global change conditions. Our findings also indicated that microbial communities have adapted to nitrogen addition by strengthening the function of ammonia oxidization to deplete the excess nitrogen, thus maintaining ecosystem homeostasis. Because community gene richness is primarily determined by the presence/absence of accessory community genes, our findings further implied that strategies such as maintaining the amount of soil organic matter could be adopted to effectively improve the functional gene diversity of soil microbial communities subject to global change factors.

17.
Sci Total Environ ; 651(Pt 2): 2148-2157, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30326447

RESUMO

Due to complexity and variety of pharmaceutical wastewater composition, little is known as for functionally important microflora of pharmaceutical wastewater treatment plants (pWWTPs). We compared bacterial composition and diversity of pWWTPs (27 sludge samples collected from 12 full-scale pWWTPs) with those of other industrial (iWWTPs) (27 samples) and municipal wastewater treatment plants (mWWTPs) (27 samples) through meta-analysis based on 16S rRNA gene amplicon sequencing, and identified putatively important organisms and their ecological correlations. Non-metric multidimensional scaling indicated that the pWWTPs, iWWTPs and mWWTPs showed distinctive differences in bacterial community composition (P < 1e-04), and the pWWTPs had significantly lower bacterial diversity than the mWWTPs (P < 1e-06). Thermotogae and Synergistetes phyla only strictly dominated in the pWWTPs, and 26, 30 and 6 specific genera were identified in the pWWTPs, mWWTPs and iWWTPs, respectively. Totally, 15 and 1300 OTUs were identified as core and occasional groups, representing 23.2% and 66.2% of the total read abundance of the pWWTPs, respectively. Permutational multivariate analysis of variance revealed that the bacterial components were clearly clustered corresponding to the types of pharmaceutical wastewater, and a total of 129 local specific OTUs were identified in the pWWTPs, among which anticancer antibiotics pWWTPs had the highest number of specific OTUs (40 ones). Co-occurrence network revealed that the species dominating in the same type of pWWTPs tended to co-occur much more frequently than theoretical random expectation. The results may extend our knowledge regarding the ecological status and correlation of the key microflora in pWWTPs.


Assuntos
Bactérias/isolamento & purificação , Eliminação de Resíduos Líquidos , Águas Residuárias/microbiologia , Bactérias/classificação , Bactérias/genética , China , Indústria Farmacêutica , RNA Bacteriano/análise , RNA Ribossômico 16S/análise
18.
Water Res ; 141: 366-376, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29807319

RESUMO

The impact of the starting inoculum on long-term anaerobic digestion performance, process functionality and microbial community composition remains unclear. To understand the impact of starting inoculum, active microbial communities from four different full-scale anaerobic digesters were each used to inoculate four continuous lab-scale anaerobic digesters, which were operated identically for 295 days. Digesters were operated at 15 days solid retention time, an organic loading rate of 1 g COD Lr-1 d-1 (75:25 - cellulose:casein) and 37 °C. Results showed that long-term process performance, metabolic rates (hydrolytic, acetogenic, and methanogenic) and microbial community are independent of the inoculum source. Digesters process performance converged after 80 days, while metabolic rates and microbial communities converged after 120-145 days. The convergence of the different microbial communities towards a core-community proves that the deterministic factors (process operational conditions) were a stronger driver than the initial microbial community composition. Indeed, the core-community represented 72% of the relative abundance among the four digesters. Moreover, a number of positive correlations were observed between higher metabolic rates and the relative abundance of specific microbial groups. These correlations showed that both substrate consumers and suppliers trigger higher metabolic rates, expanding the knowledge of the nexus between microorganisms and functionality. Overall, these results support that deterministic factors control microbial communities in bioreactors independently of the inoculum source. Hence, it seems plausible that a desired microbial composition and functionality can be achieved by tuning process operational conditions.


Assuntos
Reatores Biológicos/microbiologia , Microbiota , Acetatos/metabolismo , Anaerobiose , Hidrólise , Metano/metabolismo
19.
Front Microbiol ; 7: 1637, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27790213

RESUMO

Traditionally, microbial surveys investigating the effect of chronic anthropogenic pressure such as polyaromatic hydrocarbons (PAHs) contaminations consider just the alpha and beta diversity and ignore the interactions among the different taxa forming the microbial community. Here, we investigated the ecological relationships between the three domains of life (i.e., Bacteria, Archaea, and Eukarya) using 454 pyrosequencing on the 16S rRNA and 18S rRNA genes from chronically impacted and pristine sediments, along the coasts of the Mediterranean Sea (Gulf of Lion, Vermillion coast, Corsica, Bizerte lagoon and Lebanon) and the French Atlantic Ocean (Bay of Biscay and English Channel). Our approach provided a robust ecological framework for the partition of the taxa abundance distribution into 859 core Operational taxonomic units (OTUs) and 6629 satellite OTUs. OTUs forming the core microbial community showed the highest sensitivity to changes in environmental and contaminant variations, with salinity, latitude, temperature, particle size distribution, total organic carbon (TOC) and PAH concentrations as main drivers of community assembly. The core communities were dominated by Gammaproteobacteria and Deltaproteobacteria for Bacteria, by Thaumarchaeota, Bathyarchaeota and Thermoplasmata for Archaea and Metazoa and Dinoflagellata for Eukarya. In order to find associations among microorganisms, we generated a co-occurrence network in which PAHs were found to impact significantly the potential predator - prey relationship in one microbial consortium composed of ciliates and Actinobacteria. Comparison of network topological properties between contaminated and non-contaminated samples showed substantial differences in the network structure and indicated a higher vulnerability to environmental perturbations in the contaminated sediments.

20.
New Phytol ; 209(3): 1196-207, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26443332

RESUMO

The effect of plant species composition on soil microbial communities was studied at the multiregional level. We compared the soil microbial communities of alpine natural grasslands dominated by Carex curvula and anthropogenic subalpine pastures dominated by Nardus stricta. We conducted paired sampling across the Carpathians and the Alps and used Illumina sequencing to reveal the molecular diversity of soil microbes. We found that bacterial and fungal communities exhibited contrasting regional distributions and that the distribution in each grassland is well discriminated. Beta diversity of microbial communities was much higher in C. curvula grasslands due to a marked regional effect. The composition of grassland-type core microbiomes suggest that C. curvula, and N. stricta to a lesser extent, tend to select a cohort of microbes related to antibiosis/exclusion, pathogenesis and endophytism. We discuss these findings in light of the postglacial history of the studied grasslands, the habitat connectivity and the disturbance regimes. Human-induced disturbance in the subalpine belt of European mountains has led to homogeneous soil microbial communities at large biogeographical scales. Our results confirm the overarching role of the dominant grassland plant species in the distribution of microbial communities and highlight the relevance of biogeographical history.


Assuntos
Bactérias/metabolismo , Fungos/fisiologia , Pradaria , Atividades Humanas , Filogeografia , Humanos , Modelos Lineares , Análise Multivariada , Plantas/microbiologia , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA