Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 105: 104391, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33113413

RESUMO

PTPN11 (coding the gene of SHP2), a classic non-receptor protein tyrosine phosphatase, is implicated in multiple cell signaling pathway. Abnormal activation of SHP2 has been shown to contribute to a variety of human diseases, including Juvenile myelomonocytic leukemia (JMML), Noonan syndrome and tumors. Thus, the SHP2 inhibitors have important therapeutic value. Here, based on the compound PubChem CID 8,478,960 (IC50 = 45.01 µM), a series of thiophene [2,3-d] pyrimidine derivatives (IC50 = 0.4-37.87 µM) were discovered as novel and efficient inhibitors of SHP2 through powerful "core hopping" and CDOCKER technology. Furthermore, the SHP2-PTP phosphatase activity assay indicated that Comp#5 (IC50 = 0.4 µM) was the most active SHP2 inhibitor. Subsequently, the effects of Comp#5 on the structure and function of SHP2 were investigated through molecular dynamics (MD) simulation and post-kinetic analysis. The result indicated that Comp#5 enhanced the interaction of residues THR357, ARG362, LYS366, PRO424, CYS459, SER460, ALA461, ILE463, ARG465, THR507 and GLN510 with the surrounding residues, improving the stability of the catalytic active region and the entrance of catalytic active region. In particular, the Comp#5 conjugated with residue ARG362, elevating the efficient and selectivity of SHP2 protein. The study here may pave the way for discovering the novel SHP2 inhibitors for suffering cancer patients.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Pirimidinas/farmacologia , Tiofenos/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estrutura Molecular , Análise de Componente Principal , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Pirimidinas/síntese química , Pirimidinas/química , Relação Estrutura-Atividade , Tiofenos/síntese química , Tiofenos/química
2.
Curr Drug Discov Technol ; 16(1): 82-90, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29493458

RESUMO

BACKGROUND: Design of novel PPAR-γ modulators with better binding efficiency and fewer side effects to treat type 2 diabetes is still a challenge for medicinal chemists. Cost and time efficient computational methods have presently become an integral part of research in nuclear receptors and their ligands, enabling hit to lead identification and lead optimization. This review will focus on cutting-edge technologies used in most recent studies on the design of PPAR- γ agonists and will discuss the chemistry of few molecules which emerged successful. METHODS: Literature review was carried out in google scholar using customized search from 2011- 2017. Computer-aided design methods presented in this article were used as search terms to retrieve corresponding literature. RESULTS: Virtual screening of natural product libraries is an effective strategy to harness nature as the source of ligands for PPARs. Rigid and induced fit docking and core hopping approach in docking are rapid screening methods to predict the PPAR- γ and PPAR-α/ γ dual agonistic activity. Onedimensional drug profile matching is one of the recent virtual screening methods by which an antiprotozoal drug, Nitazoxanide was identified as a PPAR- γ agonist. CONCLUSION: It is concluded that to achieve a convincing and reliable design of PPAR-γ agonist by virtual screening techniques, customized workflow comprising of appropriate models is essential in which methods may be applied either sequentially or simultaneously.


Assuntos
PPAR gama/agonistas , Desenho de Fármacos , Descoberta de Drogas
3.
Oncotarget ; 7(32): 50828-50834, 2016 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-27384997

RESUMO

Megakaryocyte protein tyrosine phosphatase 2 (PTP-MEG2) is a tyrosine phosphatase expressed in megakaryocytic cells, and causes insulin sensitization when down regulated. Therefore, specific inhibitors of PTP-MEG2 are potential candidates for novel Type 2 Diabetes (T2DM)therapy. In this study, we discovered PTP-MEG2 inhibitors using high throughput and virtual screening (HTS/VS) and structural optimization in silicon.Eight compound-candidates were identified from the interactions with PTP-MEG2, protein tyrosine phosphatase 1B (PTP1B) and T cell protein tyrosine phosphatase (TCPTP). Results from enzymatic assays show compounds 4a and 4b inhibited PTP-MEG2 activity with an IC50 of 3.2 µM and 4.3 µM, respectively. Further, they showed a 7.5 and 5.5 fold change against PTP1B and TCPTP, respectively. We propose compounds 4a and 4b are PTP-MEG2 inhibitors with potential therapeutic use in T2DM treatment.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores Enzimáticos/química , Megacariócitos/enzimologia , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/farmacologia , Humanos
4.
J Mol Graph Model ; 54: 10-8, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25241128

RESUMO

The catalytic activity of the histone deacetylase (HDAC) is directly relevant to the pathogenesis of cancer, and HDAC inhibitors represented a promising strategy for cancer therapy. SAHA (suberoanilide hydroxamic acid), an effective HDAC inhibitor, is an anti-cancer agent against T-cell lymphoma. However, SAHA has adverse effects such as poor pharmacokinetic properties and severe toxicities in clinical use. In order to identify better HDAC inhibitors, a compound database was established by core hopping of SAHA, which was then docked into HDAC-8 (PDB ID: 1T69) active site to select a number of candidates with higher docking score and better interaction with catalytic zinc ion. Further ADMET prediction was done to give ten compounds. Molecular dynamics simulation of the representative compound 101 was performed to study the stability of HDAC8-inhibitor system. This work provided an approach to design novel high-efficiency HDAC inhibitors with better ADMET properties.


Assuntos
Inibidores de Histona Desacetilases/química , Ácidos Hidroxâmicos/química , Humanos , Linfoma de Células T , Simulação de Dinâmica Molecular , Estrutura Secundária de Proteína , Relação Estrutura-Atividade , Temperatura
5.
Chem Biol Drug Des ; 82(5): 595-602, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23848232

RESUMO

Owing to its special role as a negative regulator in both insulin and leptin signaling, protein tyrosine phosphatase-1B (PTP1B) has drawn considerable attention as a target for treating type 2 diabetes and obesity. It, however, is a great challenge to discover inhibitors specific to each PTP due to the highly homologous. In this study, a series of compounds were discovered to inhibit PTP1B based on imidazolidine-2,4-dione by means of 'core hopping'. A selective PTP1B inhibitor (comp#h) was identified, and molecular dynamics simulation and binding free energy calculation were carried out to propose the most likely binding mode of comp#h with PTP1B. The findings reported here may provide a new strategy in discovering selective and effective inhibitors for treating diabetes.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Imidazolidinas/química , Imidazolidinas/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 2/antagonistas & inibidores , Sítios de Ligação , Diabetes Mellitus Tipo 2/tratamento farmacológico , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/uso terapêutico , Humanos , Imidazolidinas/metabolismo , Imidazolidinas/uso terapêutico , Simulação de Acoplamento Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Termodinâmica
6.
Drug Des Devel Ther ; 7: 279-88, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23630413

RESUMO

The high prevalence of type 2 diabetes mellitus in the world as well as the increasing reports about the adverse side effects of the existing diabetes treatment drugs have made developing new and effective drugs against the disease a very high priority. In this study, we report ten novel compounds found by targeting peroxisome proliferator-activated receptors (PPARs) using virtual screening and core hopping approaches. PPARs have drawn increasing attention for developing novel drugs to treat diabetes due to their unique functions in regulating glucose, lipid, and cholesterol metabolism. The reported compounds are featured with dual functions, and hence belong to the category of dual agonists. Compared with the single PPAR agonists, the dual PPAR agonists, formed by combining the lipid benefit of PPARα agonists (such as fibrates) and the glycemic advantages of the PPARγ agonists (such as thiazolidinediones), are much more powerful in treating diabetes because they can enhance metabolic effects while minimizing the side effects. This was observed in the studies on molecular dynamics simulations, as well as on absorption, distribution, metabolism, and excretion, that these novel dual agonists not only possessed the same function as ragaglitazar (an investigational drug developed by Novo Nordisk for treating type 2 diabetes) did in activating PPARα and PPARγ, but they also had more favorable conformation for binding to the two receptors. Moreover, the residues involved in forming the binding pockets of PPARα and PPARγ among the top ten compounds are explicitly presented, and this will be very useful for the in-depth conduction of mutagenesis experiments. It is anticipated that the ten compounds may become potential drug candidates, or at the very least, the findings reported here may stimulate new strategies or provide useful insights for designing new and more powerful dual-agonist drugs for treating type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , PPAR alfa/agonistas , PPAR gama/agonistas , Bases de Dados de Compostos Químicos , Humanos , Informática , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA