Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Heliyon ; 10(16): e36000, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39253202

RESUMO

In today's automotive, marine and petrochemical industries, the desire for lightweight materials has increased. Hence, necessitating the production of components with low density. In this work, lightweight Zn-Si3N4 coatings were developed by including Si3N4 in the zinc matrix. The optimal coatings were produced on steel samples at 45 °C and varied Si3N4 particles and voltages following ASTM A53/A53M standard. The deterioration (corrosion) property i.e. corrosion rate (CR) and current density (jocorr) of the uncoated (control) and coated samples were examined in 0.5 M of sulphuric acid using a potentiodynamic polarization technique following ASTM G3/G102 standard. The microstructure of the samples was studied via the SEM micrographs and XRD patterns, while the wear performance resistance (following ASTM G99 standard) and electrical conductivity of the samples were examined with a pin-on-disc tribometer and ammeter-voltmeter. The corrosion experiment indicated that the uncoated mild steel specimen possessed a CR of 12.345 mm year-1 and jocorr of 1060 µA/cm2, while the CR and jcorr of the coated samples ranged from 2.6793 to 4.7975 mm year-1 and 231-413 µA/cm2, respectively. The lower CR and jcorr values of the coated specimens, relative to the coated sample showed that the coatings possessed superior passivation ability in the test medium. The SEM micrographs of the samples showed refined morphology, while the XRD patterns revealed high peak intensity crystals such as Zn4SiN, ZnNSi, Zn4N and Zn2NSi, which could be beneficial to the mechanical properties and corrosion resistance of the steel. Moreover, the wear resistance study indicated that the COF of the uncoated sample ranged from 0.1 to 0.5, while those for coated specimens ranged from 0.05 to 0.35. Similarly, the uncoated steel exhibited a wear volume (WV) of 0.00508 mm3, while the WV of the coated specimens ranged from 0.00266 to 0.0028 mm3, indicating the existence of high strengthening mechanisms between the interface of the protecting device and the steel. Also, the electrical conductivity of the mild steel sample reduced from 12.97 Ω-1cm-1 to 0.64 Ω-1cm-1, indicating that the electrical resistivity of the steel was enhanced by the coatings.

2.
Sci Rep ; 14(1): 18194, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107335

RESUMO

Predicting the corrosion rate for soil-buried steel is significant for assessing the service-life performance of structures in soil environments. However, due to the large amount of variables involved, existing corrosion prediction models have limited accuracy for complex soil environment. The present study employs three machine learning (ML) algorithms, i.e., random forest, support vector regression, and multilayer perception, to predict the corrosion current density of soil-buried steel. Steel specimens were embedded in soil samples collected from different regions of the Wisconsin state. Variables including exposure time, moisture content, pH, electrical resistivity, chloride, sulfate content, and mean total organic carbon were measured through laboratory tests and were used as input variables for the model. The current density of steel was measured through polarization technique, and was employed as the output of the model. Of the various ML algorithms, the random forest (RF) model demonstrates the highest predictability (with an RMSE value of 0.01095 A/m2 and an R2 value of 0.987). In light of the feature selection method, the electrical resistivity is identified as the most significant feature. The combination of three features (resistivity, exposure time, and mean total organic carbon) is the optimal scenario for predicting the corrosion current density of soil-buried steel.

3.
Acta Biomater ; 185: 55-72, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38997078

RESUMO

Biodegradable Zn alloys have significant application potential for hard-tissue implantation devices owing to their suitable degradation behavior and favorable biocompatibility. Nonetheless, pure Zn and its alloys in the as-cast state are mechanically instable and low in strength, which restricts their clinical applicability. Here, we report the exceptional mechanical, corrosion, and biocompatibility properties of hot-extruded Zn-5RE (wt.%, RE = rare earth of Y; or Ho; or Er) alloys intended for use in biodegradable bone substitutes. The microstructural characteristics, mechanical behavior, corrosion resistance, cytocompatibility, osteogenic differentiation, and capacity of osteogenesis in vivo of the Zn-5RE alloys are comparatively investigated. The Zn-5Y alloy demonstrates the best tensile properties, encompassing a 138 MPa tensile yield strength, a 302 MPa ultimate tensile strength, and 63% elongation, while the Zn-5Ho alloy shows the highest compression yield strength of 260 MPa and Vickers hardness of 104 HV. The Zn-5Er alloy shows a 126 MPa tensile yield strength, a 279 MPa ultimate tensile strength, 52% elongation, a 196 MPa compression yield strength, and a 101 HV Vickers microhardness. Further, the Zn-5Er alloy has a 130 µm per year corrosion rate in electrochemical tests and a 26 µm per year degradation rate in immersion tests, which is the lowest among the tested alloys. It also has the best in vitro osteogenic differentiation ability and capacity for osteogenesis and osteointegration in vivo after implantation in rat femurs among the Zn-5RE alloys, indicating promising potential in load-bearing biodegradable internal bone-fixation applications. STATEMENT OF SIGNIFICANCE: This work reports the exceptional mechanical, corrosion, and biocompatibility properties of hot-extruded (HE) Zn-5 wt.%-rare earth (Zn-5RE) alloys using single yttrium (Y), holmium (Ho), and erbium (Er) alloying for biodegradable bone-implant applications. Our findings demonstrate that the HE Zn-5Er alloy showed σuts of 279 MPa, tensile yield strength of 126 MPa, elongation of 51.6%, compression yield strength of 196 MPa, and microhardness of 101.2 HV. Further, HE Zn-5Er showed the lowest electrochemical corrosion rate of 130 µm/y and lowest degradation rate of 26 µm/y, and the highest in vitro osteogenic differentiation ability, in vivo osteogenesis, and osteointegration ability after implantation in rat femurs among the Zn-5RE alloys, indicating promising potential in load-bearing biodegradable internal bone-fixation applications.


Assuntos
Implantes Absorvíveis , Ligas , Teste de Materiais , Osteogênese , Zinco , Animais , Ligas/química , Ligas/farmacologia , Corrosão , Zinco/química , Zinco/farmacologia , Osteogênese/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Resistência à Tração , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Masculino , Diferenciação Celular/efeitos dos fármacos , Camundongos
4.
Data Brief ; 55: 110595, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38966663

RESUMO

Machine learning (ML) has seen success in civil and structural engineering, but its application to forecasting corrosion of steel reinforcement in concrete structures is limited due to small datasets from isolated studies. Moreover, the existing corrosion dataset of reinforced concrete typically lacks sufficient and comprehensive material and environmental information that enables reliable corrosion prediction of reinforced concrete under complex corrosion scenarios. This work aims to bridge the gap by compiling and building a comprehensive corrosion dataset focusing on carbon steel in cementitious mortars. This dataset involves 46 distinct mortar mixtures with embedded steel bars. The samples first underwent accelerated corrosion testing (either by carbonation or chloride contamination), followed by investigating their corrosion behaviours under varying relative humidity (RH) conditions. Corrosion data were obtained during this period, in which all corrosion measurements were conducted in laboratory settings and the results are tabulated in spreadsheet format (.xlsx). The dataset encompasses mixture parameters, material properties, environmental parameters, and electrochemical parameters. This extensive dataset provides valuable corrosion data for training ML models to predict steel corrosion across various corrosion-related variables.

5.
Materials (Basel) ; 17(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38998299

RESUMO

The performance of corrosion-induced cracking of reinforced concrete members under transverse constraints was studied. Based on the theory of elastic-plastic mechanics and the hypothesis of uniform corrosion of a steel bar, a three-layer hollow cylinder model was established to predict the critical corrosion of the steel bar at the time of the cracking of the concrete cover. Taking the constraint of stirrups on surrounding concrete into consideration, it can be used to predict the corrosion rate of members with stirrups at the time of the cracking of the concrete cover, which further expands the application range of the corrosion-induced cracking models of concrete. On this basis, the critical corrosion rate of concrete under different stirrup ratios at the time of cracking was measured. The calculated results of the model are in accordance with experimental data. For corner steel bars, when the stirrup spacing is less than 100 mm, the existence of stirrups can effectively delay the occurrence of rust expansion cracks and enhance the durability of the structure. On the basis of this study, the problem of corrosion expansion and cracking of the concrete cover caused by non-uniform corrosion of steel bars along longitudinal and radial directions needs to be further studied in the future.

6.
Materials (Basel) ; 17(13)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38998427

RESUMO

This paper reports on the coating of heterostructured TiO2 nanopores/nanotubes on Ti substrates by anodizing at high voltages to design surfaces for biomedical implants. As the anodized voltage from 50 V to 350 V was applied, the microstructure of the coating shifted from regular TiO2 nanotubes to heterostructured TiO2 nanopores/nanotubes. In addition, the dimension of the heterostructured TiO2 nanopores/nanotubes was a function of voltage. The electrochemical characteristics of TiO2 nanotubes and heterostructured TiO2 nanopores/nanotubes were evaluated in simulated body fluid (SBF) solution. The creation of heterostructured TiO2 nanopores/nanotubes on Ti substrates resulted in a significant increase in BHK cell attachment compared to that of the Ti substrates and the TiO2 nanotubes.

7.
Materials (Basel) ; 17(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38998452

RESUMO

Naphthenic acid corrosion is a well-recognized factor contributing to corrosion in the construction of offshore industry pipelines. To mitigate the corrosive effects, minor quantities of alloying elements are introduced into the steel. This research specifically explores the corrosion effects arising from immersing low-carbon steel, specifically A333 Grade 6, in a naphthenic acid solution. Various weight percentages of niobium were incorporated, and the resulting properties were observed. It was noted that the addition of 2% niobium in low-carbon steel exhibited the least mass loss and a lower corrosion rate after a 12 h immersion in naphthenic acid. Microstructural analysis using scanning electron microscopy (SEM) revealed small white particles, indicating the presence of oil sediment residue, along with corrosion pits. Following the addition of 2% niobium, the occurrence of corrosion pits markedly decreased, and only minor voids were observed. Additionally, the chemical composition analysis using energy-dispersive X-Ray analysis (EDX) showed that the black spot exhibited the highest percentage of carbon, resembling high corrosion attack. Meanwhile, the whitish regions with low carbon content indicated the lowest corrosion attack. The results demonstrated that the addition of 2% niobium yielded optimal properties for justifying corrosion effects. Therefore, low-carbon steel with a 2% niobium addition can be regarded as a superior corrosion-resistant material for offshore platform pipeline applications.

8.
Materials (Basel) ; 17(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39063787

RESUMO

The development of bioabsorbable implants from Zn alloys is one of the main interests in the new generation of biomaterials. The main drawbacks of Zn-based materials are their insufficient mechanical properties. In the presented studies, a quaternary alloy composed of zinc with magnesium (0.2-1 wt. %), calcium (0.1-0.5 wt. %) and strontium (0.05-0.5 wt. %) was prepared by gravity casting followed by hot extrusion and then by hydrostatic extrusion. Microstructural characterization using scanning electron microscopy (SEM) and X-ray diffraction (XRD) phase analysis was performed. The mechanical properties were examined, using static tensile tests. Corrosion properties were analyzed using immersion tests. Samples were immersed in Hanks' solution (temperature = 37 °C, pH = 7.4) for 14 days. All alloys were subjected after corrosion to SEM observations on the surface and cross-section. The corrosion rate was also calculated. The microstructure of the investigated quaternary alloy consists of the α-Zn grains and intermetallic phases Mg2Zn11, CaZn13 and SrZn13 with different grain sizes and distribution, which impacted both mechanical and corrosion properties. Thanks to the alloying by the addition of Mg, Ca, and Sr and plastic deformation using hydrostatic extrusion, outstanding mechanical properties were obtained along with improvement in uniformity of corrosion rate.

9.
Sensors (Basel) ; 24(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38894355

RESUMO

This paper presents the results of a study on data preprocessing and modeling for predicting corrosion in water pipelines of a steel industrial plant. The use case is a cooling circuit consisting of both direct and indirect cooling. In the direct cooling circuit, water comes into direct contact with the product, whereas in the indirect one, it does not. In this study, advanced machine learning techniques, such as extreme gradient boosting and deep neural networks, have been employed for two distinct applications. Firstly, a virtual sensor was created to estimate the corrosion rate based on influencing process variables, such as pH and temperature. Secondly, a predictive tool was designed to foresee the future evolution of the corrosion rate, considering past values of both influencing variables and the corrosion rate. The results show that the most suitable algorithm for the virtual sensor approach is the dense neural network, with MAPE values of (25 ± 4)% and (11 ± 4)% for the direct and indirect circuits, respectively. In contrast, different results are obtained for the two circuits when following the predictive tool approach. For the primary circuit, the convolutional neural network yields the best results, with MAPE = 4% on the testing set, whereas for the secondary circuit, the LSTM recurrent network shows the highest prediction accuracy, with MAPE = 9%. In general, models employing temporal windows have emerged as more suitable for corrosion prediction, with model performance significantly improving with a larger dataset.

10.
Int J Mol Sci ; 25(10)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38791360

RESUMO

Overly fast corrosion degradation of biodegradable magnesium alloys has been a major problem over the last several years. The development of protective coatings by using biocompatible, biodegradable, and non-toxic material such as chitosan ensures a reduction in the rate of corrosion of Mg alloys in simulated body fluids. In this study, chitosan/TiO2 nanocomposite coating was used for the first time to hinder the corrosion rate of Mg19Zn1Ca alloy in Hank's solution. The main goal of this research is to investigate and explain the corrosion degradation mechanism of Mg19Zn1Ca alloy coated by nanocomposite chitosan-based coating. The chemical composition, structural analyses, and corrosion tests were used to evaluate the protective properties of the chitosan/TiO2 coating deposited on the Mg19Zn1Ca substrate. The chitosan/TiO2 coating slows down the corrosion rate of the magnesium alloy by more than threefold (3.6 times). The interaction of TiO2 (NPs) with the hydroxy and amine groups present in the chitosan molecule cause their uniform distribution in the chitosan matrix. The chitosan/TiO2 coating limits the contact of the substrate with Hank's solution.


Assuntos
Ligas , Quitosana , Materiais Revestidos Biocompatíveis , Magnésio , Titânio , Quitosana/química , Titânio/química , Ligas/química , Corrosão , Magnésio/química , Materiais Revestidos Biocompatíveis/química , Zinco/química , Teste de Materiais , Cálcio/química , Nanocompostos/química
11.
Heliyon ; 10(8): e29391, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38638972

RESUMO

In this study was examined the response of carbon steel to atmospheric corrosion after one-year exposure in Valle de Aburrá, a subregion located in northwestern Colombia. The study involved the assessment of material mass loss and corrosion rate, the characterization of atmospheric aggressiveness, and the analysis of the morphology and composition of corrosion products in five different sites. Climatological and meteorological factors were assessed by testing for chloride content, sulfur dioxide levels, and time of wetness (TOW). The analysis of corrosion products was conducted using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Raman spectroscopy. Based on corrosion rates, two sites exhibited a more aggressive environment, with a corrosivity category of C3, while the remaining sites were categorized as C2. The study confirmed the presence of lepidocrocite and goethite phases on the surface of carbon steel at all test sites. Data analysis revealed that both the TOW and the industrial activity significantly influence the corrosion of this metal.

12.
Biofouling ; 40(2): 193-208, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38456659

RESUMO

Updated understanding on the effect of biofouling on corrosion rate is needed to protect marine structures as climate change is altering seawater physiochemistry and biofouling organism distribution. Multi-disciplinary techniques can improve understanding of biofouling development and associated corrosion rates on metals immersed in natural seawater (NSW). In this study, the development of biofouling and corrosion on welded Nickel Aluminium Bronze (NAB) was investigated through long-term immersion tests in NSW, simulated seawater (SSW) and air. Biofouling was affected by geographic location within the marina and influenced corrosion extent. The corrosion rate of NAB was accelerated in the initial months of exposure in NSW (1.27 mm.yr-1) and then settled to 0.11 mm.yr-1 (annual average). This was significantly higher than the 0.06 mm.yr-1 corrosion rate measured in SSW, which matched published rates. The results suggest that corrosion rates for cast NAB should be revised to take account of biofouling and updated seawater physiochemistry.


Assuntos
Incrustação Biológica , Biofilmes , Alumínio/química , Níquel , Corrosão , Água do Mar/química
13.
J Funct Biomater ; 15(2)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38391881

RESUMO

Osteosynthesis in fracture treatment typically uses hardware that remains in the patient's body, which brings a permanent risk of negative side effects such as foreign body reactions or chronic inflammation. Bioabsorbable materials, however, can degrade and slowly be replaced by autologous bone tissue. A suitable material is requested to offer great biocompatibility alongside excellent mechanical properties and a reasonable corrosion rate. Zinc-silver alloys provide these characteristics, which makes them a promising candidate for research. This study investigated the aptitude as a bioabsorbable implant of a novel zinc-silver alloy containing 3.3 wt% silver (ZnAg3). Here, the tensile strength as well as the corrosion rate in PBS solution (phosphate buffered solution) of ZnAg3 were assessed. Furthermore, shear tests, including fatigue and quasi-static testing, were conducted with ZnAg3 and magnesium pins (MAGNEZIX®, Syntellix AG, Hannover, Germany), which are already in clinical use. The detected corrosion rate of 0.10 mm/year for ZnAg3 was within the proposed range for bioabsorbable implants. With a tensile strength of 237.5 ± 2.12 MPa and a shear strength of 144.8 ± 13.2 N, ZnAg3 satisfied the mechanical requirements for bioabsorbable implants. The fatigue testing did not show any significant difference between ZnAg3 and magnesium pins, whereas both materials withstood the cyclic loading. Thus, the results support the assumption that ZnAg3 is qualified for further investigation.

14.
Heliyon ; 9(11): e22050, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027769

RESUMO

This work investigated the relationships between amine corrosion rates and their chemical structural properties for application in the development of a Gaussian Process Regression (GPR) model for chemical structure-based prediction of corrosion rate of any amine. The GPR model accounted for experimental errors, which widened its scope to accurately predict the true corrosion rates, being restricted only to error associated with the trained model. The Average Absolute Deviation (AAD) between experimental corrosion rates and model predicted rates was 4.26 % for the test data, and 5.32 % for two test data unknown to the model. This showed that the model is generalizable and its predictions are accurate. This work also developed a user-friendly Graphical-User Interface, which allows a user to define any amine's structure to provide needed information to calculate its surface tension and steric effects for use as input variables to the model in predicting the corrosion rate of the amine.

15.
Materials (Basel) ; 16(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37959507

RESUMO

The goal of this paper is to investigate the impact of nano-materials on the mechanical and electrochemical properties of self-cleaning concrete. Nano-titanium dioxide and nano-zinc oxide were used as additives for this purpose. Additionally, a comparative study on the effect of using these materials on the self-cleaning concrete's characteristics was conducted. The dosages of nano-titanium dioxide (nps-TiO2) and nano-zinc oxide (nps-ZnO) used were 0, 0.5, 1, 1.5, 2, and 2.5% and 0, 1, 2, and 3% of the weight of the cement, respectively. The results showed that the optimum compressive strength and the lowest corrosion rate were fulfilled at 2.5% of nps-TiO2 and 1% of nps-ZnO, and using 2.5% of nps-TiO2 achieved the highest improvement in the corrosion rate. However, 1% for nps-TiO2 mixtures and 1% for nps-ZnO mixtures were the best ratios for flexural strength. On the other hand, for the corrosion rate, the samples were tested at 2 and 6 months. When nps-TiO2 and nps-ZnO samples were compared to the control sample, 2.5% and 1% of nps-TiO2 and nps-ZnO, respectively, showed the largest improvement in resistance to corrosion. Also, the self-cleaning property of the samples containing nano-materials (nps-TiO2 and nps-ZnO) was tested. As the results illustrated, the self-cleaning property of the samples was increased over time due to photocatalytic degradation. Furthermore, the results of the photocatalytic tests showed that nps-TiO2 samples outperformed nps-ZnO samples overall.

16.
Materials (Basel) ; 16(14)2023 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-37512177

RESUMO

The growing demand for Magnesium in the automotive and aviation industries has enticed the need to improve its corrosive properties. In this study, the WE43 magnesium alloys were friction stir welded (FSW) by varying the traverse speed. FSW eliminates defects such as liquefication cracking, expulsion, and voids in joints encountered frequently in fusion welding of magnesium alloys. The microstructural properties were scrutinized using light microscopy (LM) and scanning electron microscopy (SEM). Additionally, the elemental makeup of precipitates was studied using electron dispersive X-ray spectroscopy (EDS). The electrochemical behavior of specimens was evaluated by employing potentiodynamic polarization tests and was correlated with the microstructural properties. A defect-free weldment was obtained at a traverse and rotational speed of 100 mm/min and 710 rpm, respectively. All weldments significantly improved corrosion resistance compared to the base alloy. Moreover, a highly refined microstructure with redistribution/dissolution of precipitates was obtained. The grain size was reduced from 256 µm to around 13 µm. The corrosion resistance of the welded sample was enhanced by 22 times as compared to the base alloy. Hence, the reduction in grain size and the dissolution/distribution of secondary-phase particles within the Mg matrix are the primary factors for the enhancement of anti-corrosion properties.

17.
Materials (Basel) ; 16(10)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37241515

RESUMO

This study presents a comparison of the protective properties of three concretes of similar composition on the effect of chloride ions. To determine these properties, the values of the diffusion and migration coefficients of chloride ions in concrete were determined using both standard methods and the thermodynamic ion migration model. We tested a comprehensive method for checking the protective properties of concrete against chlorides. This method can not only be used in various concretes, even those with only small differences in composition, but also in concretes with various types of admixtures and additives, such as PVA fibers. The research was carried out to address the needs of a manufacturer of prefabricated concrete foundations. The aim was to find a cheap and effective method of sealing the concrete produced by the manufacturer in order to carry out projects in coastal areas. Earlier diffusion studies showed good performance when replacing ordinary CEM I cement with metallurgical cement. The corrosion rates of the reinforcing steel in these concretes were also compared using the following electrochemical methods: linear polarization and impedance spectroscopy. The porosities of these concretes, determined using X-ray computed tomography for pore-related characterization, were also compared. Changes in the phase composition of corrosion products occurring in the steel-concrete contact zone were compared using scanning electron microscopy with a micro-area chemical analysis capability, in addition to X-ray microdiffraction, to study the microstructure changes. Concrete with CEM III cement was the most resistant to chloride ingress and therefore provided the longest period of protection against chloride-initiated corrosion. The least resistant was concrete with CEM I, for which, after two 7-day cycles of chloride migration in the electric field, steel corrosion started. The additional use of a sealing admixture can cause a local increase in the volume of pores in the concrete, and at the same time, a local weakening of the concrete structure. Concrete with CEM I was characterized as having the highest porosity at 140.537 pores, whereas concrete with CEM III (characterized by lower porosity) had 123.015 pores. Concrete with sealing admixture, with the same open porosity, had the highest number of pores, at 174.880. According to the findings of this study, and using a computed tomography method, concrete with CEM III showed the most uniform distribution of pores of different volumes, and had the lowest total number of pores.

18.
J Funct Biomater ; 14(2)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36826880

RESUMO

(i) Objective: The present study aimed to compare the electrochemical corrosion resistance of six different types of fixed lingual retainer wires used as fixed retention appliances in an in vitro study. (ii) Methods: In the study, two different Ringer solutions, with pH 7 and pH 3.5, were used. Six groups were formed with five retainer wires in each group. In addition, 3-braided stainless steel, 6-braided stainless steel, Titanium Grade 1, Titanium Grade 5, Gold, and Dead Soft retainer wires were used. The corrosion current density (icorr), corrosion rate (CR), and polarization resistance (Rp) were determined from the Tafel polarization curves. (iii) Results: The corrosion current density of the Gold retainer group was statistically higher than the other retainer groups in both solutions (p < 0.05). The corrosion rate of the Dead Soft retainer group was statistically higher than the other retainer groups in both solutions (p < 0.05). The polarization resistance of the Titanium Grade 5 retainer group was statistically higher than the other retainer groups in both solutions (p < 0.05). As a result of Scanning Electron Microscope (SEM) images, pitting corrosion was not observed in the Titanium Grade 1, Titanium Grade 5 and Gold retainer groups, while pitting corrosion was observed in the other groups. (iv) Conclusion: From a corrosion perspective, although the study needs to be evaluated in vivo, the Titanium Grade 5 retainer group included is in this in vitro study may be more suitable for clinical use due to its high electrochemical corrosion resistance and the lack of pitting corrosion observed in the SEM images.

19.
Materials (Basel) ; 16(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36769906

RESUMO

In this paper, the effect of deep cryogenic treatment on the corrosion resistance of 42CrMo low alloy steel is investigated and compared with conventional heat-treated counterparts. The low-temperature treatments of the cryogenic process are -120 °C, -160 °C, and -190 °C, respectively. Electrochemical corrosion tests show that the self-corrosion current density of -120 °C, -160 °C and -190 deep-cooled specimens is reduced by 38%, 20% and 30% respectively compared to the usual heat-treated specimens. Scanning electron microscope analysis shows that the precipitation of fine carbides on the surface of the samples treated at -120 °C has improved their corrosion resistance. Electrochemical impedance spectroscopy also shows that the samples treated with -120 °C cryogenic treatment have the smallest corrosion tendency. At a -160 °C deep-cooling process, the precipitated carbide aggregation limits the corrosion resistance of the material. The corrosion resistance of the samples in the -190 °C process group is between the two. The simulation results also express a similar trend to the electrochemical corrosion results.

20.
Environ Sci Pollut Res Int ; 30(15): 45428-45444, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36708479

RESUMO

This study is focused on the modelling of the composite effect of corrosion factors using Design Expert 13 software on the corrosion rate in the water distribution network of Patna (Bihar), India. A total of nine variables, including pH, temperature, total dissolved solid (TDS), alkalinity, calcium hardness, chloride, sulphate, dissolved oxygen (DO) and time, were considered for modelling. The physicochemical parameters were determined through regular monitoring of water samples. The corrosion rate was determined by the direct monitoring of water distribution pipes using adjustments of seven GI coupons for 45, 90, 135, 180, 225, 270 and 315 days. Modelling was performed for various corrosion factors using the low-level and high-level experimental ranges. Nine of the corrosion factors, i.e. pH, temperature, TDS, alkalinity, calcium hardness, chloride, sulphate, DO and time, were considered in this study. The data used for low-level and high-level range were 7.28, 23, 430, 115, 24, 18, 10.94, 3.5 and 0 and 7.86, 28, 704, 284, 180, 98, 38.7, 6.8 and 315, respectively. Using the Box-Behnken design (BBD), 160 runs were conducted, including ten replicates at the central point of each block. The results of ANOVA indicate that the values of R2, adjusted R2 and predicted R2 are 0.9714, 0.9507 and 0.8941, respectively. The value of R2 (0.9714) was close to 1, which indicates a good fit. The adequate precision was found to be 30.8442, indicating a good signal. The coefficient of variance discusses reproducibility, and in this case, it was 9.90%. On the basis of the ANOVA result, the quadratic model is well-fitted and can be accepted as a suitable model. A total of seven parameters, such as chloride, sulphate, hardness, alkalinity, pH, calcium and hardness, were used for the design of the experimental corrosion rate (CR). Corrosion rate as observed by direct monitoring of the water distribution system was 1.37, 3.08, 1.90, 1.38, 1.09, 2.05 and 1.45 MPY for 45, 90, 135, 180, 225, 270 and 315 days, respectively. These individual CR versus synthetic aqueous solutions were used to validate the interaction of the response surface. It was observed that the trend of individual corrosion rates in synthetic aqueous solutions and the interaction of composite variables with corrosion rates in a quadratic model of response surfaces were clearly correlated.


Assuntos
Água Potável , Água Potável/análise , Abastecimento de Água , Qualidade da Água , Cloretos/análise , Cálcio , Corrosão , Reprodutibilidade dos Testes , Sulfatos/análise , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA