Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(16)2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39195377

RESUMO

Currently, there is an increasing need to find new ways to purify water by eliminating bacterial biofilms, textile dyes, and toxic water pollutants. These contaminants pose significant risks to both human health and the environment. To address this issue, in this study, we have developed an eco-friendly approach that involves synthesizing a cobalt-doped cerium iron oxide (CCIO) nanocomposite (NC) using an aqueous extract of Gossypium arboreum L. stalks. The resulting nanoparticles can be used to effectively purify water and tackle the challenges associated with these harmful pollutants. Nanoparticles excel in water pollutant removal by providing a high surface area for efficient adsorption, versatile design for the simultaneous removal of multiple contaminants, catalytic properties for organic pollutant degradation, and magnetic features for easy separation, offering cost-effective and sustainable water treatment solutions. A CCIO nanocomposite was synthesized via a green co-precipitation method utilizing biomolecules and co-enzymes extracted from the aqueous solution of Gossypium arboreum L. stalk. This single-step synthesis process was accomplished within a 5-h reaction period. Furthermore, the synthesis of nanocomposites was confirmed by various characterization techniques such as Fourier-transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), dynamic light scattering (DLS), and energy dispersive X-ray (EDX) technology. CCIO NCs were discovered to have a spherical shape and an average size of 40 nm. Based on DLS zeta potential analysis, CCIO NCs were found to be anionic. CCIO NCs also showed significant antimicrobial and antioxidant activity. Overall, considering their physical and chemical properties, the application of CCIO NCs for the adsorption of various dyes (~91%) and water pollutants (chromium = ~60%) has been considered here since they exhibit great adsorption capacity owing to their microporous structure, and represent a step forward in water purification.

2.
Bioresour Technol ; 402: 130756, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38688393

RESUMO

DBD low-temperature plasma (DLTP) is recognized as one of the most efficient technologies for treating cotton stalks. This study investigates the impact of various conditions on the gas production characteristics of cotton stalks (CS) and delves into the DLTP decomposition kinetics of CS and CSC in oxygen-enriched (30 % O2/Ar) and CO2 atmospheres. The decomposition rates of CS followed the order CO2 > N2 > Ar. The decomposition behavior of CSC in oxygen-enriched DLTP (30 % O2/Ar) aligned well with the chemical reaction model. The activation energies for CSC decomposition at 900 °C and 1000 °C were determined to be 23.8 kJ/mol and 33.8 kJ/mol, respectively. Moreover, the reaction rate decreased at higher carbonization temperatures, which proved to be detrimental to the decomposition of CSC. The DLTP decomposition of CSC in CO2 exhibited consistency with the fitting results of the unreacted shrinking core model, revealing an observed activation energy of 19.4 kJ/mol.


Assuntos
Gossypium , Gases em Plasma , Gossypium/química , Cinética , Gases em Plasma/química , Dióxido de Carbono/química , Temperatura , Temperatura Baixa , Oxigênio/química
3.
Sensors (Basel) ; 23(20)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37896576

RESUMO

The field harvesting process of harvesting machinery is often affected by high workload and environmental factors that can impede/delay manual rowing, thereby leading to lower efficiency and quality in the residual film collector. To address this challenge, an automatic rowing control system using the 4mz-220d self-propelled residual film collector as the experimental carrier was proposed in this study. Cotton stalks in the ridges were chosen as the research object, and a comprehensive application of key technologies, machinery, and electronic control was used, thereby incorporating a pure tracking model as the path-tracking control method. To achieve the automatic rowing function during the field traveling process, the fuzzy control principle was implemented to adjust the forward distance within the pure tracking model dynamically, and the expected steering angle of the steering wheel was determined based on the kinematic model of the recovery machine. The MATLAB/Simulink software was utilized to simulate and analyze the proposed model, thus achieving significant improvements in the automation level of the residual film collector. The field harvesting tests showed that the average deviation of the manual rowing was 0.144 m, while the average deviation of the automatic rowing was 0.066 m. Moreover, the average lateral deviation of the automatic rowing was reduced by 0.078 m with a probability of deviation within 0.1 m of 95.71%. The research study demonstrated that the designed automatic rowing system exhibited high stability and robustness, thereby meeting the requirements of the autonomous rowing operations of residual film collectors. The results of this study can serve as a reference for future research on autonomous navigation technology in agriculture.

4.
Bioresour Technol ; 376: 128933, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36940884

RESUMO

Zeolites, being acidic, act as the most promising catalytic materials for deoxygenating reactive oxygenated compounds produced during the pyrolysis of lignocellulosic biomass. Herein, two zeolites, HY and HZSM-5, with different Si/Al ratios, were employed to investigate the effect of zeolite structure on aromatic hydrocarbons (AHs) production during flash hydropyrolysis of cotton stalks (Temperature = 800 ˚C, H2 pressure = 10 bar). Both the zeolites enhanced AHs production. However, the pore structure and pore size of HZSM-5 marked a pronounced effect on the reduction of oxygenated compounds. With an increase in Si/Al ratio, AHs area% was found to decrease owing to the decrease in acidity. Ni/zeolite catalysts were also investigated to look into the effect of metal loading on the catalytic properties of zeolites. Ni/zeolite catalysts enhanced the aromatic and aliphatic hydrocarbon production by further conversion of phenolics and other oxygenated compounds due to the promotion of direct deoxygenation, decarbonylation and decarboxylation reactions.


Assuntos
Hidrocarbonetos Aromáticos , Zeolitas , Zeolitas/química , Temperatura Alta , Hidrocarbonetos , Temperatura , Catálise
5.
Insects ; 13(12)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36554993

RESUMO

Cotton stalks (CS) are a potential agricultural biomass resource. We investigated the use of CS as a feed for Proteatia brevitarsis Lewis larvae and the resulting frass (larvae dung-sand) as a fertilizer. Based on a three-factor experiment (decomposition inoculant, fermentation duration, and cattle manure ratio), the optimal parameters for the transformation of CS using P. brevitarsis larvae were determined as 40-50% of cattle manure, the use of VT inoculant and a fermentation duration of 25-30 days. Regarding the products of the transformation, the protein content of the larval body was as high as 52.49%, and the fat content was 11.7%, which is a suitable-quality insect protein source. The organic matter content of larvae dung-sand was 54.8%, and the content of total nitrogen, phosphorus, and potassium (TNPK) was 9.04%, which is twice more than that of the organic fertilizer standard (NY525-2021, Beijing, China, TNPK ≥ 4.0%), and larvae dung-sand has the potential of fertilizer application. Therefore, CS as a feed and fertilizer based on the transformation of P. brevitarsis larvae is feasible, and it is a highly efficient way to promote the utilization of both CS and cattle manure.

6.
Bioresour Technol ; 351: 127047, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35337994

RESUMO

Hydropyrolysis of underutilized cotton stalks with catalytic upgradation was examined at different temperatures (500 to 800 °C) in the presence of nickel impregnated HY-zeolite (Ni/HY) catalysts using pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS). The effects of different metal loading (10, 15, 20 and 25 wt%) and its size were investigated to understand their impact on product distribution, mainly aromatic and aliphatic hydrocarbons. Aromatic hydrocarbons increased with an increase in metal content and optimum metal loading was 20 wt%. The pyrolysis temperature and hydrogen pressure had significant effect on product distribution. Aromatic hydrocarbon area% increased from 1.5% to 48% with an increase in temperature from 500 to 800 °C in non-catalytic hydropyrolysis. Aromatic hydrocarbon area% reached 75.5% with 20 wt% Ni/HY at 10 bar H2 pressure at 800 °C.


Assuntos
Hidrocarbonetos Aromáticos , Zeolitas , Catálise , Temperatura Alta , Pirólise , Temperatura , Zeolitas/química
7.
Materials (Basel) ; 15(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35057138

RESUMO

High-quality cotton stalk fibers that are both fine and have a high breakage strength are extracted via limited alkali penetration in the glycerol solvent and simultaneous accelerated temperature rise by means of microwave-assisted heating. Alkali is widely used in the extraction of cotton stalk fibers. However, alkali molecules in the aqueous phase penetrate easily into the fiber bundles, resulting in a simultaneous degumming between the inner and outer layers of the fiber bundles. In previous reports, the fibers treated in the aqueous phase present a coarse fineness (51.0 dtex) under mild conditions or have a poor breakage strength (2.0 cN/dtex) at elevated temperatures. In this study, glycerol is chosen as a solvent to reduce the penetration of alkali. Simultaneously, the microwave-assisted heating form is adopted to increase the temperature to 170 °C within 22 s. The inhibited alkali penetration and accelerated temperature rise limited the delignification to the outer layer, resulting in fibers with both appropriate fineness (23.8 dtex) and high breakage strength (4.4 cN/dtex). Moreover, the fibers also exhibit a clean surface and large contact angle. In this paper, we detail a new strategy to extract high-quality lignocellulosic fibers that will be suitable for potential reinforcing applications.

8.
Waste Manag ; 135: 199-207, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34520992

RESUMO

The co-pyrolysis of sewage sludge and biomass is considered a promising technique for reducing the volume of sewage sludge, adding value, and decreasing the risk associated with this waste. In this study, sewage sludge and cotton stalks were pyrolyzed together with different amounts of K2CO3 to evaluate the potential of chemical activation using K2CO3 for improving the porosity of the biochar formed and immobilizing the heavy metals present in it. It was found that K2CO3 activation effectively improved the pore structure and increased the aromaticity of the biochar. Moreover, K2CO3 activation transformed the heavy metals (Cu, Zn, Pb, Ni, Cr, and Cd) into more stable forms (oxidizable and residual fractions). The activation effect became more pronounced with increasing amount of added K2CO3, eventually resulting in a significant reduction in the mobility and bioavailability of the heavy metals in the biochar. Further analysis revealed that, during the co-pyrolysis process, K2CO3 activation resulted in a reductive atmosphere, increased the alkalinity of the biochar, and led to the formation CaO, CaCO3, and aluminosilicates, which aided the immobilization of the heavy metals. K2CO3 activation also effectively reduced the leachability, and thus, the environmental risks of the heavy metals. Thus, K2CO3 activation can improve the porosity of the biochar derived from sewage sludge/cotton stalks and aid the immobilization of the heavy metals in it.


Assuntos
Metais Pesados , Pirólise , Carvão Vegetal , Porosidade , Esgotos
9.
Environ Geochem Health ; 42(8): 2519-2534, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31587158

RESUMO

The present study is the first attempt to evaluate the potential of acid and base activated biochar derived from cotton stalks (CSB) for the removal of As from contaminated water. The CSB was treated with 0.5 M KOH (BCSB) and H3PO4 (ACSB) separately to change its surface properties. The CSB, ACSB and BSCB were characterized using BET, FTIR, and SEM analysis to check the effectiveness and insight of the main mechanisms involved in the removal of As. A series of batch experiments was performed using As-contaminated synthetic water and groundwater samples. The effects of initial concentration of As, contact time, dose of the biochars, solution pH, type of the biochar and coexisting ions on the removal of As were investigated. Results revealed that BCSB efficiently removed As (90-99.5%) from contaminated water as compared with ACSB (84-98%) and CSB (81-98%) due to improved surface properties when As concentration was varied from 0.1 to 4.0 mg/L. The experimental data were best fitted with Freundlich adsorption isotherm as compared with Langmuir, Temkin and Dubinin-Radushkevich models. However, kinetic data were well explained with pseudo-second-order kinetic model rather than pseudo-first-order, intra-particle diffusion and Elovich models. The sorption energy indicated that physical adsorption was involved in the removal of As. The comparison of adsorption results with other biochars and their modified forms suggests that activation of CSB with base can be used effectively (4.48 mg/g) as a low-cost adsorbent for maximum removal of As from contaminated aqueous systems.


Assuntos
Arsênio/isolamento & purificação , Carvão Vegetal/química , Gossypium/química , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Difusão , Água Subterrânea/química , Concentração de Íons de Hidrogênio , Cinética , Microscopia Eletrônica de Varredura , Caules de Planta/química , Reprodutibilidade dos Testes , Espectroscopia de Infravermelho com Transformada de Fourier , Purificação da Água/métodos
10.
J Colloid Interface Sci ; 540: 285-294, 2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30660081

RESUMO

Highly porous (specific surface area, SBET, 1400 m2/g) and rich in surface groups activated carbons (ACs) were obtained from cotton stalks using either a direct or indirect activation. They were characterized by adsorption of nitrogen, thermal analysis combined with mass spectrometry, potentiometric titration, and X-ray photoelectron spectroscopy (XPS). XPS analysis indicated that the indirect activation led to more nitrogen on the surface incorporated as pyridinic and graphitic/quaternary species. These species were beneficial for a carbon application as oxygen reduction reaction (ORR) electrocatalysts and supercapacitors. The carbons were catalytically active in ORR with a number of electron transfer from 2.15 to 3.40 and onset potential of 0.810 V vs. reference hydrogen electrode (RHE). Their capacitance was around 180 F g-1 at 1 A g-1 when measured in an alkaline medium. The dependence of the performance on the porosity and nitrogen content was found, indicating suitability of cotton stalks obtained using the indirect activation as precursors of carbons of promising electrochemically active features.


Assuntos
Carvão Vegetal/química , Capacitância Elétrica , Gossypium/química , Nitrogênio/química , Adsorção , Catálise , Eletrodos , Hidrogênio/química , Oxirredução , Oxigênio/química , Porosidade
11.
Appl Biochem Biotechnol ; 181(4): 1465-1484, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27812899

RESUMO

Lignocellulolytic enzyme activities of selective fungi Daedalea flavida MTCC 145 (DF-2), Phlebia radiata MTCC 2791 (PR), and non-selective fungus Flavodon flavus MTCC 168 (FF) were studied for pretreatment of cotton stalks. Simultaneous productions of high LiP and laccase activities by DF-2 during early phase of growth were effective for lignin degradation 27.83 ± 1.25 % (w/w of lignin) in 20-day pretreatment. Production of high MnP activity without laccase in the early growth phase of PR was ineffective and delayed lignin degradation 24.93 ± 1.53 % in 25 days due to laccase production at later phase. With no LiP activity, low activities of MnP and laccase by FF yielded poor lignin degradation 15.09 ± 0.6 % in 20 days. Xylanase was predominant cellulolytic enzyme produced by DF-2, resulting hemicellulose as main carbon and energy source with 83 % of cellulose recovery after 40 days of pretreatment. The glucose yield improved more than two fold from 20-day DF-2 pretreated cotton stalks after enzymatic saccharification.


Assuntos
Biotecnologia/métodos , Celulose/metabolismo , Enzimas/metabolismo , Gossypium/química , Lignina/metabolismo , Polyporales/metabolismo , Biomassa , Polyporales/enzimologia , Polyporales/crescimento & desenvolvimento
12.
3 Biotech ; 6(2): 235, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28330307

RESUMO

A large amount of cotton stalk waste biomass with high cellulose content are incinerated by the farmers causing air pollution. The high cellulose content of cotton stalks can be converted to fermentable sugars by fungal delignification pretreatment of lignocellulosic biomass and enzymatic saccharification. The effect of particle size, moisture content, and media supplements was studied for delignification of cotton stalks by Daedalea flavida MTCC 145 (DF-2) in solid-state fermentation. The highest lignolytic enzyme activities, optimal lignin degradation 29.88 ± 0.97% (w/w) with cellulose loss 11.70 ± 1.30% (w/w), were observed in cotton stalks at particle size 5 mm with 75% moisture content after 20 days. Cellulolytic enzyme activity increased with decrease in particle size and increased moisture content. The addition of Cu2+, gallic acid, and veratryl alcohol enhanced the lignolytic enzyme production and the lignin degradation. In addition to increased laccase activity, Cu2+ inhibited the cellulolytic activity. Supplements Cu2+ at 0.5 mM/g gave the best results of lignin degradation 33.74 ± 1.17% (w/w) and highest selectivity value (SV) 3.15 after pretreatment. The glucose yield increased to 127.44 ± 4.56 mg/g from 20 day pretreated cotton stalks with Cu2+ supplements, ~threefolds higher than untreated cotton stalks. The study is important for the production of fermentable sugars from cotton stalks residues which can further be utilized in production of bioethanol and other applications.

13.
Bioresour Technol ; 198: 586-92, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26433156

RESUMO

An integrated process (pyrolysis, gas-solid simultaneous gasification and catalytic steam reforming) was utilized to produce hydrogen-rich gas from cotton stalks. The simultaneous conversion of the pyrolysis products (char and pyrolysis gases) was emphatically investigated using an entrained flow bed reactor. More carbon of char is converted into hydrogen-rich gas in the simultaneous conversion process and the carbon conversion is increased from 78.84% to 92.06% compared with the two stages process (pyrolysis and catalytic steam reforming). The distribution of tar components is also changed in this process. The polycyclic aromatic compounds (PACs) of tar are converted into low-ring compounds or even chain compounds due to the catalysis of char. In addition, the carbon deposition yield over NiO/MgO catalyst in the steam reforming process is approximately 4 times higher without the simultaneous process. The potential H2 yield increases from 47.71 to 78.19g/kg cotton stalks due to the simultaneous conversion process.


Assuntos
Biotecnologia/métodos , Gossypium/química , Hidrogênio/química , Biocombustíveis , Biotecnologia/instrumentação , Carbono/química , Catálise , Carvão Vegetal/química , Desenho de Equipamento , Gases , Brotos de Planta/química , Hidrocarbonetos Policíclicos Aromáticos/química , Vapor
14.
Carbohydr Polym ; 134: 581-9, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26428161

RESUMO

Recently, cellulose nanofibers (CNFs) have received wide attention in green nanomaterial technologies. Production of CNFs from agricultural residues has many economic and environmental advantages. In this study, four different CNFs were prepared from cotton stalks by different chemical treatments followed by ultrasonication. CNFs were prepared from untreated bleached pulp, sulfuric acid hydrolysis, and TEMPO [(2,2,6,6-tetramethylpiperidin-1-yl) oxy radical]-mediated oxidation process. Physical and chemical properties of the prepared CNFs such as morphological (FE-SEM, AFM), structural (FTIR), and thermal gravimetric analysis (TGA) were investigated. Characterization results clearly showed that the method of preparation results in a significant difference in the structure, thermal stability, shape and dimensions of the produced CNFs. TEMPO-mediated oxidation produced brighter and higher yields (>90%) of CNFs compared to other methods. FE-SEM and AFM analysis clearly indicated that, TEMPO-mediated oxidation produced uniform nano-sized fibers with a very small diameter (3-15 nm width) and very small length (10-100 nm). This was the first time uniform and very small nanofibers were produced.

15.
Bioresour Technol ; 181: 224-30, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25656866

RESUMO

In this study, steam explosion pretreatment was performed in cotton stalks, leading to 5-6 folds enhancements on biomass enzymatic saccharification distinctive in Gossypium barbadense and Gossypium hirsutum species. Sequential 1% H2SO4 pretreatment could further increase biomass digestibility of the steam-exploded stalks, and also cause the highest sugar-ethanol conversion rates probably by releasing less inhibitor to yeast fermentation. By comparison, extremely high concentration alkali (16% NaOH) pretreatment with raw stalks resulted in the highest hexoses yields, but it had the lowest sugar-ethanol conversion rates. Characterization of wall polymer features indicated that biomass saccharification was enhanced with steam explosion by largely reducing cellulose DP and extracting hemicelluloses. It also showed that cellulose crystallinity and arabinose substitution degree of xylans were the major factors on biomass digestibility in cotton stalks. Hence, this study has provided the insights into cell wall modification and biomass process technology in cotton stalks and beyond.


Assuntos
Biomassa , Biotecnologia/métodos , Metabolismo dos Carboidratos , Celulase/metabolismo , Celulose/metabolismo , Gossypium/química , Vapor , Metabolismo dos Carboidratos/efeitos dos fármacos , Parede Celular/química , Parede Celular/efeitos dos fármacos , Fermentação , Hexoses/análise , Lignina/análise , Polimerização , Hidróxido de Sódio/farmacologia , Ácidos Sulfúricos/farmacologia , Resíduos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA