Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Evol Appl ; 17(9): e70014, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39328186

RESUMO

Current pest management relies extensively on pesticide application worldwide, despite the frequent rise of pesticide resistance in crop pests. This is particularly worrisome because resistance is often not costly enough to be lost in populations after pesticide application, resulting in increased dependency on pesticide application. As climate warming increases, effort should be put into understanding how heat tolerance will affect the persistence of pesticide resistance in populations. To address this, we measured heat tolerance in two populations of the spider mite crop pest Tetranychus urticae that differ in the presence or absence of a target-site mutation conferring resistance to etoxazole pesticide. We found that developmental time and fertility, but not survival, were negatively affected by increasing temperatures in the susceptible population. Furthermore, we found no difference between resistant and susceptible populations in all life-history traits when both sexes developed at control temperature, nor when females developed at high temperature. Resistant heat-stressed males, in contrast, showed lower fertility than susceptible ones, indicating a sex-specific trade-off between heat tolerance and pesticide resistance. This suggests that global warming could lead to reduced pesticide resistance in natural populations. However, resistant females, being as affected by high temperature as susceptible individuals, may buffer the toll in resistant male fertility, and the shorter developmental time at high temperatures may accelerate adaptation to temperature, the pesticide or the cost thereof. Ultimately, the complex dynamic between these two factors will determine whether resistant populations can persist under climate warming.

2.
J Anim Ecol ; 93(7): 943-957, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38801060

RESUMO

The temporal dynamics of insect populations in agroecosystems are influenced by numerous biotic and abiotic interactions, including trophic interactions in complex food webs. Predicting the regulation of herbivorous insect pests by arthropod predators and parasitoids would allow for rendering crop production less dependent on chemical pesticides. Curtsdotter et al. (2019) developed a food-web model simulating the influences of naturally occurring arthropod predators on aphid population dynamics in cereal crop fields. The use of an allometric hypothesis based on the relative body masses of the prey and various predator guilds reduced the number of estimated parameters to just five, albeit field-specific. Here, we extend this model and test its applicability and predictive capacity. We first parameterized the original model with a dataset with the dynamic arthropod community compositions in 54 fields in six regions in France. We then integrated three additional biological functions to the model: parasitism, aphid carrying capacity and suboptimal high temperatures that reduce aphid growth rates. We developed a multi-field calibration approach to estimate a single set of generic allometric parameters for a given group of fields, which would increase model generality needed for predictions. The original and revised models, when using field-specific parameterization, achieved quantitatively good fits to observed aphid population dynamics for 59% and 53% of the fields, respectively, with pseudo-R2 up to 0.99. But the multi-field calibration showed that increased model generality came at the cost of reduced model reliability (goodness-of-fit). Our study highlights the need to further improve our understanding of how body size and other traits affect trophic interactions in food webs. It also points up the need to acquire high-resolution data to use this type of modelling approach. We propose that a hypothesis-driven strategy of model improvement based on the integration of additional biological functions and additional functional traits beyond body size (e.g., predator space search or prey defences) into the food-web matrix can improve model reliability.


Assuntos
Afídeos , Cadeia Alimentar , Modelos Biológicos , Dinâmica Populacional , Comportamento Predatório , Animais , Afídeos/fisiologia , França , Grão Comestível , Artrópodes/fisiologia
3.
Zookeys ; 1200: 75-144, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38751965

RESUMO

The Elateridae, or click beetles are abundant and diverse in most terrestrial ecosystems in North America, acting as plant pests and filling many other ecological roles. The 112 genera of Elateridae Leach, 1815, or click beetles, known from Canada and USA are included in a first comprehensive digital interactive key to adults. A link to an online peer-reviewed LUCID key to elaterid genera and downloadable LUCID files are provided. Diagnostic morphological summaries using information from the 61 characters and 158 character states of the matrix key are presented for all genera. A table summarizes current understanding of habitat use by all elaterid genera in Canada and USA from literature, collections, citizen science, and our own observations. Diversity of elaterid genera was high throughout warm and cool temperate regions, especially in mountainous areas and mesic woodlands. Larvae of most genera were associated with soil, litter and decaying wood.

4.
Proc Natl Acad Sci U S A ; 121(18): e2317646121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38648486

RESUMO

Long-distance migrations of insects contribute to ecosystem functioning but also have important economic impacts when the migrants are pests or provide ecosystem services. We combined radar monitoring, aerial sampling, and searchlight trapping, to quantify the annual pattern of nocturnal insect migration above the densely populated agricultural lands of East China. A total of ~9.3 trillion nocturnal insect migrants (15,000 t of biomass), predominantly Lepidoptera, Hemiptera, and Diptera, including many crop pests and disease vectors, fly at heights up to 1 km above this 600 km-wide region every year. Larger migrants (>10 mg) exhibited seasonal reversal of movement directions, comprising northward expansion during spring and summer, followed by southward movements during fall. This north-south transfer was not balanced, however, with southward movement in fall 0.66× that of northward movement in spring and summer. Spring and summer migrations were strongest when the wind had a northward component, while in fall, stronger movements occurred on winds that allowed movement with a southward component; heading directions of larger insects were generally close to the track direction. These findings indicate adaptations leading to movement in seasonally favorable directions. We compare our results from China with similar studies in Europe and North America and conclude that ecological patterns and behavioral adaptations are similar across the Northern Hemisphere. The predominance of pests among these nocturnal migrants has severe implications for food security and grower prosperity throughout this heavily populated region, and knowledge of their migrations is potentially valuable for forecasting pest impacts and planning timely management actions.


Assuntos
Altitude , Migração Animal , Estações do Ano , Animais , China , Migração Animal/fisiologia , Agricultura/métodos , Ecossistema , Insetos/fisiologia , Vento , Voo Animal/fisiologia
5.
Pest Manag Sci ; 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37801469

RESUMO

BACKGROUND: The Eurasian magpie Pica pica is a resident bird species able to colonize farmlands and anthropized environments. This corvid shows a wide trophic spectrum by including fruits, invertebrates, small vertebrates and carcasses in its diet. A camera-trap experiment was carried out to test the effect of different ozone (O3 ) concentrations on potted Vitis vinifera plants, which resulted in different grape consumption rates by suburban birds. The test was performed at an Ozone-Free Air Controlled Exposure (FACE) facility, consisting of nine plots with three ozone (O3 ) levels: AA (ambient O3 concentration); and two elevated O3 levels, 1.5× AA (ambient air with a 50% increase in O3 concentration) and 2.0× AA (ambient air with a 100% increase in O3 concentration). Camera-traps were located in front of each treatment area and kept active for 24 h day-1 and for 5 days at a time over a period of 3 months to monitor grape consumption by birds. RESULTS: We collected a total of 38 videos. Eurasian magpies were the only grape consumers, with a total of 6.7 ± 3.3 passages per hour (mean ± SD) and no differences across the different O3 treatments. Grapes in the AA treatment were consumed significantly more quickly than those in the 1.5× AA treatment, which in turn, were consumed faster than those in the 2.0× AA treatment. At 3 days from the start of treatment, 94%, 53% and 22% berries from the AA, 1.5× AA and 2.0× AA treatments had been eaten, respectively. When the O3 was turned off, berries were consumed at the same rate among treatments. CONCLUSION: Increasing O3 concentrations limited grape consumption by magpies probably because O3 acted as a deterrent for magpies, although the lower sugar content recorded in the 2.0× AA berries did not affect the consumption when O3 was turned off. Our results provided valuable insights to mitigate human-wildlife conflicts in suburban environments. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

6.
Insects ; 14(7)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37504669

RESUMO

Pest control is a main concern in agriculture. Indiscriminate application of synthetic pesticides has caused negative impacts leading to the rapid development of resistance in arthropod pests. Plant secondary metabolites have been proposed as a safer alternative to conventional pesticides. Monoterpenoids have reported bioactivities against important pests; however, due to their high volatility, low water solubility and chemical instability, the application of these compounds has been limited. Nanosystems represent a potential vehicle for the broad application of monoterpenoids. In this study, an 1,8-cineole nanoemulsion was prepared by the low energy method of phase inversion, characterization of droplet size distribution and polydispersity index (PDI) was carried out by dynamic light scattering and stability was evaluated by centrifugation and Turbiscan analysis. Fumigant bioactivity was evaluated against Tetranychus urticae, Rhopalosiphum maidis and Bemisia tabaci. A nanoemulsion with oil:surfactant:water ratio of 0.5:1:8.5 had a droplet size of 14.7 nm and PDI of 0.178. Formulation was stable after centrifugation and the Turbiscan analysis showed no particle migration and a delta backscattering of ±1%. Nanoemulsion exhibited around 50% more bioactivity as a fumigant on arthropods when compared to free monoterpenoid. These results suggest that nanoformulations can provide volatile compounds of protection against volatilization, improving their bioactivity.

7.
Mol Phylogenet Evol ; 184: 107802, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37221926

RESUMO

Accurate taxonomy and delimitation are of great importance for pest control strategies and management programs. Here, we focus on Cletus (Insecta: Hemiptera: Coreidae), which includes many crop pests. The species boundaries still conflict and only cytochrome c oxidase subunit I (COI) barcoding has been previously used for molecular studies. We generated new mitochondrial genome and nuclear genome-wide SNPs to explore the species boundaries of 46 Cletus samples from China using multiple species delimitation approaches. All results recovered a monophyly with high support, except for two closely related species in clade I - C. punctiger and C. graminis. Mitochondrial data demonstrated admixture in clade I, while genome-wide SNPs unambiguously identified two separate species, which were confirmed by morphological classification. Inconsistent nuclear and mitochondrial data indicated mito-nuclear discordance. Mitochondrial introgression is the most likely explanation, and more extensive sampling and more comprehensive data are needed to ascertain a pattern. Accurate species delimitation will shed light on species status; thus, an accurate taxonomy is of particular concern, as there is a pressing need to implement precise control of agricultural pests and to perform further research on diversification.


Assuntos
Genoma Mitocondrial , Heterópteros , Animais , Filogenia , China , Mitocôndrias , Mitomicina
8.
Biology (Basel) ; 11(9)2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36138759

RESUMO

The South American tomato pinworm, Tuta absoluta, causes up to 100% tomato crop losses. As Tuta absoluta is non-native to African agroecologies and lacks efficient resident natural enemies, the microgastrine koinobiont solitary oligophagous larval endoparasitoid, Dolichogenidea gelechiidivoris (Marsh) (Syn.: Apanteles gelechiidivoris Marsh) (Hymenoptera: Braconidae) was released for classical biological control. This study elucidates the current and future spatio-temporal performance of D. gelechiidivoris against T. absoluta in tomato cropping systems using a fuzzy logic modelling approach. Specifically, the study considers the presence of the host and the host crop, as well as the parasitoid reproductive capacity, as key variables. Results show that the fuzzy algorithm predicted the performance of the parasitoid (in terms of net reproductive rate (R0)), with a low root mean square error (RMSE) value (<0.90) and a considerably high R2 coefficient (=0.98), accurately predicting the parasitoid performance over time and space. Under the current climatic scenario, the parasitoid is predicted to perform well in all regions throughout the year, except for the coastal region. Under the future climatic scenario, the performance of the parasitoid is projected to improve in all regions throughout the year. Overall, the model sheds light on the varying performance of the parasitoid across different regions of Kenya, and in different seasons, under both current and future climatic scenarios.

9.
Malar J ; 21(1): 277, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36180865

RESUMO

BACKGROUND: Insecticide resistance is a key barrier to long-term malaria control, and it may be exacerbated by poor agricultural pesticide use. Current practices, however, do not link public health and agricultural pesticide use. This study investigated the perspectives of farmers and other stakeholders regarding the integration of agricultural and public health measures to address resistance. Additionally, the feasibility of participatory workshops to increase the farmers' understanding and participation in pesticide stewardship was assessed. METHODS: Four themes were investigated: pesticide awareness, practices, and opinions of; insecticide resistance in malaria vectors; the effectiveness of current malaria prevention tools; and the links between agricultural and public health pesticide usage. Participatory workshops and field training were held with entomologists, farmers, and agricultural specialists, focusing on agro-ecosystem practices related to pest control; and local farmers were involved in live-testing for insecticides resistance of local Anopheles mosquitoes. RESULTS: Most farmers (94%) considered pesticides effective, and nearly half of them (n = 198, 46.4%) could identify and name crop pests and diseases, mostly using local names. Three quarters were unaware of mosquito larvae in their fields, and only 7% considered their fields as potential sources of mosquitoes. Two thirds were uninformed of any effects that agricultural pesticides may have on mosquitoes, and three quarters had never heard of resistance in malaria mosquitoes. Experts from various sectors acknowledged that agricultural pesticides might impact malaria control through increasing resistance. They did, however, emphasize the importance of crop protection and advocated for the use of pesticides sparingly and non-chemical approaches. Farmers learnt how to discriminate between malaria vectors and non-vectors, identify agricultural pests and diseases, choose and use pesticides effectively, and conduct resistance tests during the participatory workshops. CONCLUSION: This study emphasizes the significance of enhancing subsistence farmers' awareness of mosquito ecology as well as merging public health and agricultural pest management measures. Participatory techniques have the potential to raise stakeholder awareness and engagement, resulting in more effective resistance management.


Assuntos
Anopheles , Inseticidas , Malária , Praguicidas , Agricultura/métodos , Animais , Ecossistema , Fazendeiros , Humanos , Resistência a Inseticidas , Inseticidas/farmacologia , Malária/prevenção & controle , Mosquitos Vetores , Praguicidas/farmacologia , Tanzânia
11.
BMC Genomics ; 23(1): 198, 2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35279098

RESUMO

BACKGROUND: Sphaerophoria rueppellii, a European species of hoverfly, is a highly effective beneficial predator of hemipteran crop pests including aphids, thrips and coleopteran/lepidopteran larvae in integrated pest management (IPM) programmes. It is also a key pollinator of a wide variety of important agricultural crops. No genomic information is currently available for S. rueppellii. Without genomic information for such beneficial predator species, we are unable to perform comparative analyses of insecticide target-sites and genes encoding metabolic enzymes potentially responsible for insecticide resistance, between crop pests and their predators. These metabolic mechanisms include several gene families - cytochrome P450 monooxygenases (P450s), ATP binding cassette transporters (ABCs), glutathione-S-transferases (GSTs), UDP-glycosyltransferases (UGTs) and carboxyl/choline esterases (CCEs). METHODS AND FINDINGS: In this study, a high-quality near-chromosome level de novo genome assembly (as well as a mitochondrial genome assembly) for S. rueppellii has been generated using a hybrid approach with PacBio long-read and Illumina short-read data, followed by super scaffolding using Hi-C data. The final assembly achieved a scaffold N50 of 87Mb, a total genome size of 537.6Mb and a level of completeness of 96% using a set of 1,658 core insect genes present as full-length genes. The assembly was annotated with 14,249 protein-coding genes. Comparative analysis revealed gene expansions of CYP6Zx P450s, epsilon-class GSTs, dietary CCEs and multiple UGT families (UGT37/302/308/430/431). Conversely, ABCs, delta-class GSTs and non-CYP6Zx P450s showed limited expansion. Differences were seen in the distributions of resistance-associated gene families across subfamilies between S. rueppellii and some hemipteran crop pests. Additionally, S. rueppellii had larger numbers of detoxification genes than other pollinator species. CONCLUSION AND SIGNIFICANCE: This assembly is the first published genome for a predatory member of the Syrphidae family and will serve as a useful resource for further research into selectivity and potential tolerance of insecticides by beneficial predators. Furthermore, the expansion of some gene families often linked to insecticide resistance and selectivity may be an indicator of the capacity of this predator to detoxify IPM selective insecticides. These findings could be exploited by targeted insecticide screens and functional studies to increase effectiveness of IPM strategies, which aim to increase crop yields by sustainably and effectively controlling pests without impacting beneficial predator populations.


Assuntos
Dípteros , Inseticidas , Animais , Cromossomos , Dípteros/genética , Tamanho do Genoma , Humanos , Resistência a Inseticidas/genética , Inseticidas/farmacologia
12.
BMC Genomics ; 23(1): 45, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35012450

RESUMO

BACKGROUND: Orius laevigatus, a minute pirate bug, is a highly effective beneficial predator of crop pests including aphids, spider mites and thrips in integrated pest management (IPM) programmes. No genomic information is currently available for O. laevigatus, as is the case for the majority of beneficial predators which feed on crop pests. In contrast, genomic information for crop pests is far more readily available. The lack of publicly available genomes for beneficial predators to date has limited our ability to perform comparative analyses of genes encoding potential insecticide resistance mechanisms between crop pests and their predators. These mechanisms include several gene/protein families including cytochrome P450s (P450s), ATP binding cassette transporters (ABCs), glutathione S-transferases (GSTs), UDP-glucosyltransferases (UGTs) and carboxyl/cholinesterases (CCEs). METHODS AND FINDINGS: In this study, a high-quality scaffold level de novo genome assembly for O. laevigatus has been generated using a hybrid approach with PacBio long-read and Illumina short-read data. The final assembly achieved a scaffold N50 of 125,649 bp and a total genome size of 150.98 Mb. The genome assembly achieved a level of completeness of 93.6% using a set of 1658 core insect genes present as full-length genes. Genome annotation identified 15,102 protein-coding genes - 87% of which were assigned a putative function. Comparative analyses revealed gene expansions of sigma class GSTs and CYP3 P450s. Conversely the UGT gene family showed limited expansion. Differences were seen in the distributions of resistance-associated gene families at the subfamily level between O. laevigatus and some of its targeted crop pests. A target site mutation in ryanodine receptors (I4790M, PxRyR) which has strong links to diamide resistance in crop pests and had previously only been identified in lepidopteran species was found to also be present in hemipteran species, including O. laevigatus. CONCLUSION AND SIGNIFICANCE: This assembly is the first published genome for the Anthocoridae family and will serve as a useful resource for further research into target-site selectivity issues and potential resistance mechanisms in beneficial predators. Furthermore, the expansion of gene families often linked to insecticide resistance may be an indicator of the capacity of this predator to detoxify selective insecticides. These findings could be exploited by targeted pesticide screens and functional studies to increase effectiveness of IPM strategies, which aim to increase crop yields by sustainably, environmentally-friendly and effectively control pests without impacting beneficial predator populations.


Assuntos
Heterópteros , Inseticidas , Tisanópteros , Animais , Genoma , Humanos , Resistência a Inseticidas
13.
Ecol Appl ; 32(2): e2456, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34520082

RESUMO

Conservation biological control (CBC) has been an active research topic for the last two decades and is now one of the key ways being explored to develop agroecological production systems. Using broad concepts and indicators, recent reviews and meta-analyses have highlighted major inconsistencies in the responses of CBC to landscape structure, revealing their context-dependent nature. To decipher these relations, we reviewed the scientific literature (50 articles) using (1) an original ontology allowing us to navigate across the different terms and concepts used in this literature and (2) a network-based methodology to describe the scattering, completeness, and generalizability of scientific knowledge on CBC. An interactive version of this network is available online. Our results highlight the strong information scattering caused by the variety of indicators used to describe both landscape structure and CBC. We observe trade-offs between the use of coarse concepts classically used in meta-analysis (e.g., landscape complexity) and the non-convergence of results (ambiguity). The network analysis points out consistently less information ambiguity when considering sub-networks focused on trophic chains than in the full information network, without losing connectance. We suggest that effects of landscape structure may be different between trophic chains because of specific selection pressures associated with cropping systems. Our novel review procedure offers a relatively simple but powerful complementary approach to classical meta-analysis to explore ecological patterns. It highlights that crop trophic chain probably represents the adequate ecological unit to investigate the landscape-CBC relationship. Designing pest suppressive landscapes while favoring farmland biodiversity will imply considering multiple crop trophic chains responding differently to landscape structure. Therefore, we recommend assessing the level of CBC at both crop field and landscape scales to inform decisions on the best individual or collective strategy to adopt.


Assuntos
Ecossistema , Controle Biológico de Vetores , Biodiversidade , Controle Biológico de Vetores/métodos
14.
Acta Parasitol ; 66(1): 236-252, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32970280

RESUMO

INTRODUCTION: Entomopathogenic nematodes (EPNs) are important biocontrol agents of insect pests. To increase the availability of locally adapted entomopathogenic nematode isolates for biocontrol programs, a survey of several agricultural soils in Western Uttar Pradesh, India was conducted. MATERIALS AND METHODS: Eight hundred and sixty soil samples from the districts Meerut, Bulandshahr, Baghpat, and Bijnor were collected and examined for the presence of entomopathogenic nematodos using the "Galleria baiting method". Steinernema and Heterorhabditis nematodes were recovered. The isolated Heterorhabditis nematodes were molecularly, and morphologically characterized, and their biocontrol potential was evaluated against Spodoptera litura. Finally, the geographical distribution of entomopathogenic nematodes was studied based on the analysis of ITS GenBank records. RESULTS: A small proportion of the collected soil samples were positive for Heterorhabditis and Steinernema nematodes. Twelve soil samples were positive for the presence of Heterorhabditis nematodes, and 29 samples were positive for Steinernema. The Heterorhabditis nematodes were identified as Heterorhabditis indica based on morphological, morphometrical and molecular analyses. No other species of Heterorhabditis were isolated from the soil samples analyzed, suggesting that this species is dominant in the western part of Uttar Pradesh, India. The morphology of the nematode isolates was somewhat similar to the morphology of the H. indica isolate used for the original description of this species, with a notable exception mucrons were present in the hermaphrodite and female specimens we collected, but this structure was not observed in the specimens used for the original description of the species. Principal component analyses (PCA) show small inter- and intraspecific morphological variability between the nematodes species of the "Indica" clade. The insecticide properties of one isolate, CH7, were evaluated against Spodoptera litura, and the results show that this isolate effectively killed this pest under laboratory conditions, demonstrating its potential as a biocontrol agent. CONCLUSION: This study sets the basis for establishing new biocontrol agents to be used in future pest management programs in India.


Assuntos
Mariposas , Nematoides , Rabditídios , Agricultura , Animais , Feminino , Insetos , Controle Biológico de Vetores , Solo
15.
Zootaxa ; 4847(1): zootaxa.4847.1.1, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-33056750

RESUMO

Forty-seven species in 25 genera of gall midges (Diptera: Cecidomyiidae: Cecidomyiinae) known from Indonesia are reviewed. Available historic types were examined, and taxa are revised. Leefmansiella Kolesik Gagné gen. nov. is erected for Trishormomyia pandani Felt. Actilasioptera falcaria (Felt) is found to be a senior synonym of Actilasioptera tumidifolium Gagné. Apoasphondylia orientalis Felt is transferred to Bruggmanniella Tavares, new combination; Asphondylia bursaria Felt is changed to Bruggmanniella, new combination; Contarinia eragrostidis Felt to Stenodiplosis Reuter, new combination; the Australian Contarinia brevipalpis Harris to Stenodiplosis, new combination; Dasyneura tetrastigma Felt to Gephyraulus Rübsaamen, new combination; and the Philippine Itonida paederiae Felt to Eucalyptodiplosis Kolesik, new combination. For each species, type data, a description, the basic biology and the known geographical distribution are given. A key to Cecidomyiidae genera based on adults, with references to described species, is provided. Species of economic importance, as pests of cultivated plants or biological control agents of weeds and pest arthropods, are listed.


Assuntos
Dípteros , Animais , Austrália , Indonésia , Nematóceros , Plantas Daninhas
16.
Insects ; 11(3)2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32244905

RESUMO

Invertebrates perform many vital functions in agricultural production, but many taxa are in decline, including pest natural enemies. Action is needed to increase their abundance if more sustainable agricultural systems are to be achieved. Conservation biological control (CBC) is a key component of integrated pest management yet has failed to be widely adopted in mainstream agriculture. Approaches to improving conservation biological control have been largely ad hoc. Two approaches are described to improve this process, one based upon pest natural enemy ecology and resource provision while the other focusses on the ecosystem service delivery using the QuESSA (Quantification of Ecological Services for Sustainable Agriculture) project as an example. In this project, a predictive scoring system was developed to show the potential of five seminatural habitat categories to provide biological control, from which predictive maps were generated for Europe. Actual biological control was measured in a series of case studies using sentinel systems (insect or seed prey), trade-offs between ecosystem services were explored, and heatmaps of biological control were generated. The overall conclusion from the QuESSA project was that results were context specific, indicating that more targeted approaches to CBC are needed. This may include designing new habitats or modifying existing habitats to support the types of natural enemies required for specific crops or pests.

17.
Molecules ; 25(5)2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32143475

RESUMO

Essential oils (EOs) are some of the outstanding compounds found in Thymus that can exert antifungal, phytotoxic, and insecticidal activities, which encourage their exploration and potential use for agricultural and food purposes. The essential oils (EO) obtained from Thymus kotschyanus collected in the East Azerbaijan Province (Iran) were characterized using a gas chromatography-mass spectrometry (GC-MS) analysis. Thymol was the most important compound (60.48%), although 35 other active compounds were identified in the EO. Significant amounts of carvacrol (3.08%), p-cymene (5.56%), and γ-terpinene (6.67%) were found in the EO. The T. kotschyanus EO was tested against important phytopathogenic fungi (Botrytis cinerea, Aspergillus niger, and Penicillium expansum). The antifungal assay showed that the use of ≥500 ppm of EO resulted in a fungicidal effect against all funguses tested. In a similar way, the use of ≥500 ppm of EO inhibited the germination of all crop weed seeds (Amaranthus retroflexus L. and Panicum miliaceum L.) and their subsequent growth, which demonstrated its herbicidal effect. Finally, the insecticidal capacity of T. kotschyanus EO was also observed against selected insects (Oryzaephilus surinamensis and Sitophilus oryzae). O. surinamensis was more susceptible to the effect of EO (LC50 = 4.78 µL/L air) than S. oryzae (LC50 = 13.20 µL/L air). The obtained results of the present study can provide new safe resources to the development of new products for the food, agriculture, and pharmaceutical industries.


Assuntos
Antifúngicos/química , Inseticidas/química , Óleos Voláteis/química , Óleos de Plantas/química , Thymus (Planta)/química , Animais , Monoterpenos Cicloexânicos/química , Cromatografia Gasosa-Espectrometria de Massas , Monoterpenos/química
18.
Pest Manag Sci ; 76(4): 1492-1499, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31659844

RESUMO

BACKGROUND: Genetically engineered (GE) crops that express insecticidal traits have improved the sustainability of insect pest management worldwide, but many important pest orders are not controlled by commercially available toxins. Development of the first transgenic thysanopteran- and hemipteran-active Bacillus thuringiensis (Bt) Cry51Aa2.834_16 toxin expressed in MON 88702 cotton will significantly expand the diversity of pests controlled in the crop. Here, we examined MON 88702 cotton activity against two thrips species within the same genera, Frankliniella fusca and Frankliniella occidentalis. We used a multi-component cotton tissue assay approach to understand effects on adult longevity, fecundity, and larval development. RESULTS: We found that in no-choice assays, cotton plants expressing MON 88702 suppress oviposition, when compared to a non-Bt cotton. MON 88702 did not kill a large proportion of F. fusca larvae or adults but killed most F. occidentalis larvae. Time series experiments with F. occidentalis larvae documented significant developmental lags for MON 88702 exposed individuals. We also found that female thrips preferred to oviposit on non-Bt cotton when provided a choice. CONCLUSION: Together these results describe the activity of MON 88702 against thrips. They document clear differences in toxin performance between different thrips species and throughout the insects' life cycle. Most importantly, we show that MON 88702 was associated with reduced oviposition via behavioral avoidance to the toxin. This is a novel mechanism of action for pest control for a Bt crop plant. Together, these results provide a basis to describe the mechanism of population control for MON 88702 cotton. © 2019 Society of Chemical Industry.


Assuntos
Bacillus thuringiensis , Endotoxinas/genética , Tisanópteros , Animais , Bacillus thuringiensis/genética , Proteínas de Bactérias , Feminino , Gossypium , Proteínas Hemolisinas , Inseticidas , Plantas Geneticamente Modificadas
19.
Chem Biodivers ; 16(5): e1800468, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30803133

RESUMO

In this work, we evaluated the ovicidal activity and the deleterious effects of cashew (Anacardium occidentale) nut shell oil and its fractions on the development of Musca domestica and Chrysomya megacephala, important vectors of several diseases. The insecticidal effects of this plant were also measured on the first and second instar larvae of Anticarsia gemmatalis and Spodoptera frugiperda, soy and maize pests, respectively. The fly eggs and the crop pest insect larvae were exposed to the cashew (Anacardium occidentale) nut shell liquid (CNSL) and its fractions: technical CNSL, anacardic acid, cardanol and cardol. The results show that the cardol fraction, for both species of flies, presented the lowest lethal concentration with LC50 of 80.4 mg/L for M. domestica and 90.2 mg/L for C. megacephala. For the mortality of the larvae of A. gemmatalis and S. frugiperda, the most effective fraction was anacardic acid with LC50 of 295.1 mg/L and 318.4 mg/L, respectively. In all species, the mortality rate of the commercial compounds (cypermethrin 600 mg/L and temephos 2 mg/L) was higher than that of the evaluated compounds. Despite this, the results obtained suggest their potential in field trials, once the fractions of A. occidentale presented high mortality at low lethal concentrations in laboratory conditions, with the possibility of integrated use in the control of disease vectors and agricultural pests, employing ecofriendly compounds.


Assuntos
Anacardium/química , Inseticidas/química , Óleos de Plantas/química , Ácidos Anacárdicos/química , Ácidos Anacárdicos/isolamento & purificação , Ácidos Anacárdicos/toxicidade , Anacardium/metabolismo , Animais , Dípteros/efeitos dos fármacos , Dípteros/crescimento & desenvolvimento , Moscas Domésticas/efeitos dos fármacos , Inseticidas/isolamento & purificação , Inseticidas/toxicidade , Larva/efeitos dos fármacos , Dose Letal Mediana , Nozes/química , Nozes/metabolismo , Óvulo/efeitos dos fármacos , Fenóis/química , Fenóis/isolamento & purificação , Fenóis/toxicidade , Óleos de Plantas/metabolismo , Spodoptera/efeitos dos fármacos , Spodoptera/crescimento & desenvolvimento
20.
Pest Manag Sci ; 74(12): 2724-2737, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29707884

RESUMO

BACKGROUND: Surveillance strategies are often standardized and completed on grid patterns to detect pest incursions quickly; however, it may be possible to improve surveillance through more targeted observation that accounts for landscape heterogeneity, dispersal and the habitat requirements of the invading organism. We simulated pest spread at a local scale, using grape phylloxera (Daktulosphaira vitifoliae (Fitch)) as a case study, and assessed the influence of incorporating spatial heterogeneity into surveillance compared with current, standard surveillance strategies. RESULTS: Time to detection and spread within and beyond the vineyard were reduced by conducting surveys that target sampling effort in soil that is highly suitable for the invading pest in comparison with standard surveillance strategies. However, these outcomes were dependent on the virulence level of phylloxera because phylloxera is a complex pest with multiple genotypes that influence spread and detectability. CONCLUSION: Targeting surveillance strategies based on local-scale spatial heterogeneity can decrease the time to detection without increasing the survey cost, and surveillance that targets highly suitable soil is the most efficient strategy for detecting new incursions. In addition, combining targeted surveillance strategies with buffer zones and hygiene procedures, and updating surveillance strategies as additional species information becomes available, will further decrease the risk of pest spread. © 2018 Society of Chemical Industry.


Assuntos
Distribuição Animal , Monitoramento Ambiental , Hemípteros/fisiologia , Animais , Análise Espacial , Vitis/crescimento & desenvolvimento , Vento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA