Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microbiol Mol Biol Rev ; 87(4): e0004123, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38047637

RESUMO

SUMMARYRecBCD enzyme is a multi-functional protein that initiates the major pathway of homologous genetic recombination and DNA double-strand break repair in Escherichia coli. It is also required for high cell viability and aids proper DNA replication. This 330-kDa, three-subunit enzyme is one of the fastest, most processive helicases known and contains a potent nuclease controlled by Chi sites, hotspots of recombination, in DNA. RecBCD undergoes major changes in activity and conformation when, during DNA unwinding, it encounters Chi (5'-GCTGGTGG-3') and nicks DNA nearby. Here, we discuss the multitude of mutations in each subunit that affect one or another activity of RecBCD and its control by Chi. These mutants have given deep insights into how the multiple activities of this complex enzyme are coordinated and how it acts in living cells. Similar studies could help reveal how other complex enzymes are controlled by inter-subunit interactions and conformational changes.


Assuntos
Proteínas de Escherichia coli , Recombinação Genética , Exodesoxirribonuclease V/genética , Exodesoxirribonuclease V/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Reparo do DNA , Escherichia coli , DNA/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
2.
Biology (Basel) ; 13(1)2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38248444

RESUMO

Understanding human DNA replication through the study of yeast has been an extremely fruitful journey. The minichromosome maintenance (MCM) 2-7 genes that encode the catalytic core of the eukaryotic replisome were initially identified through forward yeast genetics. The origin recognition complexes (ORC) that load the MCM hexamers at replication origins were purified from yeast extracts. We have reached an age where high-resolution cryoEM structures of yeast and human replication complexes can be compared side-by-side. Their similarities and differences are converging as alternative strategies that may deviate in detail but are shared by both species.

3.
Adv Sci (Weinh) ; 9(4): e2103669, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34761556

RESUMO

Transcription activator RamA is linked to multidrug resistance of Klebsiella pneumoniae through controlling genes that encode efflux pumps (acrA) and porin-regulating antisense RNA (micF). In bacteria, σ70 , together with activators, controls the majority of genes by recruiting RNA polymerase (RNAP) to the promoter regions. RNAP and σ70 form a holoenzyme that recognizes -35 and -10 promoter DNA consensus sites. Many activators bind upstream from the holoenzyme and can be broadly divided into two classes. RamA acts as a class I activator on acrA and class II activator on micF, respectively. The authors present biochemical and structural data on RamA in complex with RNAP-σ70 at the two promoters and the data reveal the molecular basis for how RamA assembles and interacts with core RNAP and activates transcription that contributes to antibiotic resistance. Further, comparing with CAP/TAP complexes reveals common and activator-specific features in activator binding and uncovers distinct roles of the two C-terminal domains of RNAP α subunit.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Antibacterianos/metabolismo , Proteínas de Bactérias/efeitos dos fármacos , Klebsiella pneumoniae/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/efeitos dos fármacos , Fatores de Transcrição/metabolismo
4.
Cell Host Microbe ; 29(3): 448-462.e5, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33539764

RESUMO

Enterovirus uncoating receptors bind at the surface depression ("canyon") that encircles each capsid vertex causing the release of a host-derived lipid called "pocket factor" that is buried in a hydrophobic pocket formed by the major viral capsid protein, VP1. Coxsackievirus and adenovirus receptor (CAR) is a universal uncoating receptor of group B coxsackieviruses (CVB). Here, we present five high-resolution cryoEM structures of CVB representing different stages of virus infection. Structural comparisons show that the CAR penetrates deeper into the canyon than other uncoating receptors, leading to a cascade of events: collapse of the VP1 hydrophobic pocket, high-efficiency release of the pocket factor and viral uncoating and genome release under neutral pH, as compared with low pH. Furthermore, we identified a potent therapeutic antibody that can neutralize viral infection by interfering with virion-CAR interactions, destabilizing the capsid and inducing virion disruption. Together, these results define the structural basis of CVB cell entry and antibody neutralization.


Assuntos
Microscopia Crioeletrônica , Enterovirus/metabolismo , Enterovirus/ultraestrutura , Animais , Anticorpos Neutralizantes , Capsídeo/metabolismo , Proteínas do Capsídeo/ultraestrutura , Enterovirus Humano B/metabolismo , Infecções por Enterovirus/imunologia , Infecções por Enterovirus/metabolismo , Infecções por Enterovirus/virologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Domínios e Motivos de Interação entre Proteínas , Receptores Virais , Vírion/metabolismo , Vírion/ultraestrutura , Desenvelopamento do Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA