Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Asian J ; : e202400743, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39212080

RESUMO

The field of electrogenerated chemiluminescence (ECL) biosensing has witnessed remarkable growth, emphasizing the need for precise detection of biomarkers. The synthesis approach of peptide-based signal probe with high recognition ability and high ECL efficiency is a significant issue in the ECL biosensing. Here, a heavily labeled signal probe was synthesized for ECL peptide-based biosensing tactic by using a new aldehyde bearing cyclometalated Ir(III) complex ([Ir(bt)2(bpy-CHO)PF6 (bt=2-phenylbenzothiazole, bpy-CHO=4'-methyl-[2,2'-bipyridine]-4-carbaldehyde, denoted as Ir1) as ECL signal reagent and streptavidin (SA) as carrier protein. One ECL peptide-based biosensing method was exemplified for the detection of matrix metalloproteinase 2 (MMP-2) by using Ir1 labeled SA (SA-Ir1) as heavily labeled signal probe and biotinylated peptide as molecular recognition substrate. MMP-2 was sensitively detected in the range from 5 to 100 ng/mL with a detection limit of 1.5 ng/mL. Importantly, two detection modes differing in the order of cleavage recognition by MMP-2 and signal transduction with SA-Ir1 were compared for the first time. First cleavage and second signal transduction were proposed to be beneficial to sensitive detection of target, which provides some ideas for biomarker diagnostics in disease screening at an early stage.

2.
Biosensors (Basel) ; 14(4)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38667174

RESUMO

A highly sensitive and selective electrogenerated chemiluminescence (ECL) biosensor was developed for the determination of matrix metalloproteinase 3 (MMP-3) in serum via the target-induced cleavage of an oligopeptide. One ECL probe (named as Ir-peptide) was synthesized by covalently linking a new cyclometalated iridium(III) complex ([(3-pba)2Ir(bpy-COOH)](PF6)) (3-pba = 3-(2-pyridyl) benzaldehyde, bpy-COOH = 4'-methyl-2,2'-bipyridine-4-carboxylic acid) with an oligopeptide (CGVPLSLTMGKGGK). An ECL biosensor was fabricated by firstly casting Nafion and gold nanoparticles (AuNPs) on a glassy carbon electrode and then self-assembling both of the ECL probes, 6-mercapto-1-hexanol and zwitterionic peptide, on the electrode surface, from which the AuNPs could be used to amplify the ECL signal and Ir-peptide could serve as an ECL probe to detect the MMP-3. Thanks to the MMP-3-induced cleavage of the oligopeptide contributing to the decrease in ECL intensity and the amplification of the ECL signal using AuNPs, the ECL biosensor could selectively and sensitively quantify MMP-3 in the concentration range of 10-150 ng·mL-1 and with both a limit of quantification (26.7 ng·mL-1) and a limit of detection (8.0 ng·mL-1) via one-step recognition. In addition, the developed ECL biosensor showed good performance in the quantization of MMP-3 in serum samples, with a recovery of 92.6% ± 2.8%-105.6% ± 5.0%. An increased level of MMP-3 was found in the serum of rheumatoid arthritis patients compared with that of healthy people. This work provides a sensitive and selective biosensing method for the detection of MMP-3 in human serum, which is promising in the identification of patients with rheumatoid arthritis.


Assuntos
Técnicas Biossensoriais , Ouro , Medições Luminescentes , Metaloproteinase 3 da Matriz , Nanopartículas Metálicas , Oligopeptídeos , Humanos , Metaloproteinase 3 da Matriz/sangue , Ouro/química , Nanopartículas Metálicas/química , Luminescência , Limite de Detecção , Eletrodos , Técnicas Eletroquímicas
3.
Mikrochim Acta ; 190(10): 422, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37775573

RESUMO

An electrochemiluminescence (ECL) bioassay with high sensitivity and anti-fouling ability was developed for determination of matrix metalloproteinase 9 (MMP-9) secreted from living cells under external stimulation. A peptide with sequence of CLGRMGLPGK and a new cyclometalated iridium(III) complex bearing carboxyl group, (pq)2Ir(dcbpy) (pq = 2-phenylquinoline, dcbpy = 2,2'-bipyridyl-4,4'-dicarboxyli acid, abbreviated as Ir) were employed as molecular recognition substrate and ECL emitter, respectively. The peptide was labelled with the Ir to form Ir-peptide as ECL probe. Ir-peptide was self-assembled onto Nafion and gold nanoparticles (AuNPs) modified glassy carbon electrode (AuNPs/Nafion/GCE) and then both of 6-mercapto-1-hexanol (MCH) and zwitterionic peptide as blocking reagents were co-assembled on Ir-peptide/AuNPs/Nafion/GCE to form an anti-fouling ECL peptide-based biosensor. MMP-9 can be quantified in the range 1.0-50 ng·mL-1 with a detection limit of 0.50 ng·mL-1 based on the decreased ECL intensity. Relative standard derivation was 2.3% for six fabricated anti-fouling ECL peptide-based biosensors after reaction with 50 ng·mL-1 MMP-9. The anti-fouling ECL peptide-based biosensor can be used to monitor MMP-9 secreted from living cells under external stimulation. 96.0%-108.0% of recoveries were obtained in 60-diluted cell culture media. This study demonstrates that the ECL biosensor by the combination of iridium(III) complex-based sensitive ECL method and the anti-fouling interface provides a promising way for the determination of MMP-9 in biological sample, which is viable in clinical diagnosis and point-of-care test of protease.


Assuntos
Incrustação Biológica , Nanopartículas Metálicas , Ouro/química , Metaloproteinase 9 da Matriz , Irídio , Incrustação Biológica/prevenção & controle , Medições Luminescentes/métodos , Nanopartículas Metálicas/química , Peptídeos/química
4.
Molecules ; 28(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36771099

RESUMO

Photodynamic therapy (PDT), a noninvasive method for cancer therapy, involves the generation of reactive oxygen species (ROS) by the photochemical excitation of photosensitizers (PSs) to induce cell death in cancer cells. A variety of PS including porphyrin derivatives and metal complexes such as iridium (Ir) complexes have been reported. In clinical trials, red-near infrared (NIR) light (650-900 nm) is preferred for the excitation of PSs due to its deeper penetration into tissues compared with visible light (400-500 nm). To overcome this limitation, we established a PDT system that uses cyclometalated iridium(III) (Ir(III)) complexes that are excited with blue light in the wireless power transmission (WPT) system. To achieve this, we developed a light-emitting diode (LED) light device equipped with a receiver coil that receives electricity from the transmitter coil through magnetic resonance coupling. The LEDs in the receiving device use blue light (470 nm) to irradiate a given Ir(III) complex and excite triplet oxygen (3O2) to singlet oxygen (1O2) which induces cell death in HeLa S3 cells (human cervical carcinoma cells). The results obtained in this study suggest that WPT-based PDT represents a potentially new method for the treatment of tumors by a non-battery LED, which are otherwise difficult to treat by previous PDT systems.


Assuntos
Complexos de Coordenação , Neoplasias , Fotoquimioterapia , Humanos , Irídio/farmacologia , Irídio/química , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes/química , Morte Celular , Complexos de Coordenação/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia
5.
Appl Spectrosc ; 73(11): 1292-1298, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31219327

RESUMO

The development of new methods for the detection of redox cycle is important for biological and clinical diagnoses. Here, a new cyclometalated iridium complex, (4-(2-pyridyl) benzaldehyde)2Ir (5-chloro-1,10-phenanthroline) ([(4-pba)2Ir(5-Cl-phen)]PF6, probe 1), has been synthesized and applied to rapid, sensitive, and reversible detection and imaging of redox cycle HSO3-/H2O2 in living cells. The probe 1 is synthesized by using 4-(2-pyridyl) benzaldehyde as main ligand and 5-chloro-1,10-phenanthroline as ancillary ligand. Probe 1 exhibited "off-on-off" photoluminescence (PL) signal change in response to HSO3- and H2O2 in aqueous solution within 1 min. The change of PL intensity is proportional to HSO3- concentration from 40 µM to 300 µM and to H2O2 concentration from 40 µM to 260 µM. The detection limit is 10 µM for HSO3- and 20 µM for H2O2. Additionally, probe 1 was applied to detect HSO3- in food samples with satisfactory results. More importantly, PL imaging of HeLa cells indicates that probe 1 is able to image redox cycle HSO3-/H2O2 in living cells.


Assuntos
Complexos de Coordenação/química , Corantes Fluorescentes/química , Peróxido de Hidrogênio/análise , Irídio/química , Sulfitos/análise , Técnicas Citológicas/métodos , Células HeLa , Humanos , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Oxirredução , Espectrometria de Fluorescência/métodos , Sulfitos/química , Sulfitos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA