Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
FEBS Open Bio ; 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39073017

RESUMO

Ageing is an inherent and intricate biological process that takes place in living organisms as time progresses. It involves the decline of multiple physiological functions, leading to body structure and overall performance modifications. The ageing process differs among individuals and is influenced by various factors, including lifestyle, environment and genetic makeup. Metabolic changes and reduced locomotor activity are common hallmarks of ageing. Our study focuses on exploring these phenomena in prematurely ageing PolgA(D257A/D257A) mice (also known as PolgA) aged 41-42 weeks, as they closely mimic human ageing. We assess parameters such as oxygen consumption (VO2), carbon dioxide production (VCO2), respiratory exchange ratio (RER) and locomotor activity using a metabolic cage for 4 days and comparing them with age-matched wild-type littermates (WT). Our findings revealed that VO2, VCO2, RER, locomotor activities, water intake and feeding behaviour show a daily rhythm, aligning with roughly a 24-h cycle. We observed that the RER was significantly increased in PolgA mice compared to WT mice during the night-time of the light-dark cycle, suggesting a shift towards a higher reliance on carbohydrate metabolism due to more food intake during the active phase. Additionally, female PolgA mice displayed a distinct phenotype with reduced walking speed, walking distance, body weight and grip strength in comparison to male PolgA and WT mice, indicating an early sign of ageing. Taken together, our research highlights the impact of sex-specific patterns on ageing traits in PolgA mice aged 41-42 weeks, which may be attributable to human ageing phenotypes. The unique genetic composition and accelerated ageing characteristics of PolgA mice make them invaluable in ageing studies, facilitating the investigation of underlying biological mechanisms and the identification of potential therapeutic targets for age-related diseases.

2.
Metabolomics ; 20(2): 23, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347335

RESUMO

INTRODUCTION: Animal welfare in aquaculture is becoming increasingly important, and detailed knowledge of the species concerned is essential for further optimization on farms. Every organism is controlled by an internal clock, the circadian rhythm, which is crucial for metabolic processes and is partially influenced by abiotic factors, making it important for aquaculture practices. OBJECTIVE: In order to determine the circadian rhythm of adult turbot (Scophthalmus maximus), blood samples were collected over a 24-h period and plasma metabolite profiles were analyzed by 1H-NMR spectroscopy. METHODS: The fish were habituated to feeding times at 9 am and 3 pm and with the NMR spectroscopy 46 metabolites could be identified, eight of which appeared to shift throughout the day. RESULTS: We noted exceptionally high values around 3 pm for the amino acids isoleucine, leucine, valine, phenylalanine, lysine, and the stress indicator lactate. These metabolic peaks were interpreted as either habituation to the usual feeding time or as natural peak levels in turbot in a 24-h circle because other indicators for stress (glucose, cortisol and lysozymes) showed a stable baseline, indicating that the animals had no or very little stress during the experimental period. CONCLUSION: This study provides initial insights into the diurnal variation of metabolites in adult turbot; however, further studies are needed to confirm present findings of possible fluctuations in amino acids and sugars. Implementing optimized feeding times (with high levels of sugars and low levels of stress metabolites) could lead to less stress, fewer disease outbreaks and overall improved fish welfare in aquaculture facilities.


Assuntos
Linguados , Animais , Linguados/metabolismo , Metabolômica , Ritmo Circadiano , Aquicultura/métodos , Aminoácidos/metabolismo , Açúcares/metabolismo
3.
Chronobiol Int ; 41(3): 369-377, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38326980

RESUMO

Dogs are the common pets adopted by humans, and their circadian behavior and physiology are influenced by human habits. In many families, there is a change of lifestyle with respect to the natural daylight (NDL) cycle. Exposure to constant light disrupts some central and peripheral circadian rhythms. The aim of the present study was to improve the knowledge about the circadian changes of clock components in the peripheral blood in dogs housed under NDL and constant light (LL) conditions. Blood samples were collected on five female Beagle dogs (2 years old, 14 ± 0.5 kg) every 4 hours for a 24-hour period during an NDL (Sunrise 05:05 h - Sunset 20:55 h) and 24-hour period of constant light (LL). Blood samples were stored in a PAX gene Blood RNA Tube, real-time RT-quantitative polymerase chain reaction was performed to determine Clock, Per1-3, and Cry1-2 gene expression. During the NDL, all genes investigated showed robust diurnal daily rhythmicity. During the constant light, only Clock maintained its daily rhythmicity. Clock acrophase was observed close to sunrise (ZT 0) and was statistically different from the other clock genes except for Per3. Per3 daily oscillations were not statistically significant. No differences were observed among the clock genes tested in the amplitude and robustness values. Our results can be considered preliminary data to provide new insights into the adaptation mechanism of the canine peripheral circadian clock. The persistence of Clock gene expression during the LL indicated the presence of an endogenously generated signal in blood. Because peripheral blood is an easily accessible sample in dogs, the analysis of clock gene expression in this tissue could be useful to investigate the adaptive capacity of this species housed in different environmental conditions linked to the owner's lifestyle.


Assuntos
Relógios Circadianos , Fotoperíodo , Cães , Animais , Feminino , Humanos , Pré-Escolar , Ritmo Circadiano/genética , Relógios Circadianos/genética , RNA Mensageiro/metabolismo , Expressão Gênica
4.
Pest Manag Sci ; 80(2): 508-517, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37735824

RESUMO

BACKGROUND: Vibrational signal plays a crucial role in courtship communication in many insects. However, it remains unclear whether insect vibrational signals exhibit daily rhythmicity in response to changes in environmental cues. RESULTS: In this study, we observed daily rhythms of both female vibrational signals (FVS) and male vibrational signals (MVS) in the brown planthopper (BPH), Nilaparvata lugens (Stål), one of the most notorious rice pests across Asia. Notably, oscillations of FVS and MVS in paired BPHs were synchronized as part of male-female duetting interactions, displaying significant day-night rhythmicity. Furthermore, we observed light dependency of FVS emissions under different photoperiodic regimes (18 L:6 D and 6 L:18 D) and illumination intensity levels (>300 lx, 50 lx, and 25 lx). Subsequently, the potential role of circadian clock genes cryptochromes (Nlcry1 and Nlcry2) in regulating FVS daily oscillations was examined using gene knockdown via RNA interference. We observed sharp declines and disrupted rhythms in FVS frequencies when either of the Nlcrys was downregulated, with Nlcry2 knockdown showing a more prominent effect. Moreover, we recorded a novel FVS variant (with a dominant frequency of 361.76 ± 4.31 Hz) emitted by dsNlcry1-treated BPH females, which significantly diminished the impact of courtship stimuli on receptive males. CONCLUSION: We observed light-dependent daily rhythms of substrate-borne vibrational signals (SBVS) in BPH and demonstrated essential yet distinct roles of the two Nlcrys. These findings enhanced our understanding of insect SBVS and illustrated the potential of novel precision physical control strategies for disrupting mating behaviors in this rice pest. © 2023 Society of Chemical Industry.


Assuntos
Hemípteros , Oryza , Feminino , Masculino , Animais , Criptocromos/genética , Criptocromos/metabolismo , Corte , Interferência de RNA , Hemípteros/fisiologia , Ritmo Circadiano , Oryza/metabolismo
5.
Environ Sci Pollut Res Int ; 30(57): 120375-120386, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37938485

RESUMO

Artificial light at night (ALAN) constitutes a growing threat to coastal ecosystems by altering natural light cycles, which could impair organisms' biological rhythms, with resulting physiological and ecological consequences. Coastal ecosystems are strongly exposed to ALAN, but its effects on coastal organisms are poorly studied. Besides ALAN's intensity, ALAN's quality exposure may change the impacts on organisms. This study aims to characterize the effects of different ALAN's spectral compositions (monochromatic wavelength lights in red (peak at 626 nm), green (peak at 515 nm), blue (peak at 467 nm), and white (410-680 nm) light) at low and realistic intensity (1 lx) on the oyster Crassostrea gigas daily rhythm. Results reveal that all ALAN's treatments affect the oysters' daily valve activity rhythm in different manners and the overall expression of the 13 studied genes. Eight of these genes are involved in the oyster's circadian clock, 2 are clock-associated genes, and 3 are light perception genes. The blue light has the most important effects on oysters' valve behavior and clock and clock-associated gene expression. Interestingly, red and green lights also show significant impacts on the daily rhythm, while the lowest impacts are shown with the green light. Finally, ALAN white light shows the same impact as the blue one in terms of loss of rhythmic oysters' percentage, but the chronobiological parameters of the remaining rhythmic oysters are less disrupted than when exposed to each of the monochromatic light's treatments alone. We conclude that ALAN's spectral composition does influence its effect on oysters' daily rhythm, which could give clues to limit physiological and ecological impacts on coastal environments.


Assuntos
Crassostrea , Animais , Crassostrea/metabolismo , Ritmo Circadiano , Ecossistema , Poluição Luminosa , Expressão Gênica
6.
Sci Total Environ ; 905: 167052, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37714354

RESUMO

Artificial Light at Night (ALAN) is a fast-spreading threat to organisms, especially in coastal environments, where night lighting is increasing due to constant anthropization. Considering that ALAN affects a large diversity of coastal organisms, finding efficient solutions to limit these effects is of great importance but poorly investigated. The potential benefit of one strategy, in particular, should be studied since its use is growing: part-night lighting (PNL), which consists in switching off the lights for a few hours during nighttime. The aim of this study is to investigate the positive potential of the PNL strategy on the daily rhythm of the oyster Crassostrea gigas, a key species of coastal areas of ecological and commercial interest. Oysters were exposed to a control condition and three different ALAN modalities. A realistic PNL condition is applied, recreating a strategy of city policy in a coastal city boarding an urbanized bay (Lanton, Arcachon Bay, France). The PNL modality consists in switching off ALAN direct sources (5 lx) for 4 h (23-3 h) during which oysters are in darkness. Then, a PNL + skyglow (PNL + S) modality reproduces the previous one mimicking a skyglow (0.1 lx), an indirect ALAN source, during the direct lighting switch off, to get as close as possible to realistic conditions. Finally, the third ALAN condition mimics full-night direct lighting (FNL). Results revealed that PNL reduces some adverse effects of FNL on the behavioral daily rhythm. But, counterintuitively, PNL + S appears more harmful than FNL for some parameters of the behavioral daily rhythm. PNL + S modality is also the only one that affect oysters' clock and melatonin synthesis gene expression, suggesting physiological consequences. Thus, in realistic conditions, the PNL mitigation strategy might not be beneficial in the presence of skyglow, seeing worse for a coastal organism such as the oysters.


Assuntos
Crassostrea , Iluminação , Animais , Poluição Luminosa , Ritmo Circadiano , Meio Ambiente , Luz
7.
Adv Exp Med Biol ; 1415: 515-519, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37440080

RESUMO

Retinal pigment epithelium (RPE) cells daily ingest the tips of the photoreceptor outer segments (POSs), with phagosome number varying throughout a 24-h cycle. A major focus in the literature has been on a peak in phagosome concentration shortly after lights-on. Moreover, this peak has frequently been inferred to represent a peak in POS tip ingestion. Here, we have reviewed old and new literature on the daily cycle of phagosome number in the RPE and conclude that there is more variation in the timing of phagosome concentration peaks than is currently acknowledged. We also discuss that phagosome quantity is affected by the rate of phagosome degradation as well as the rate of ingestion; given that phagosome half-life may not be constant throughout the daily cycle, maximal POS ingestion may not necessarily coincide with a peak in phagosome concentration.


Assuntos
Fagocitose , Epitélio Pigmentado da Retina , Fagossomos/metabolismo , Neurônios , Células Cultivadas , Segmento Externo das Células Fotorreceptoras da Retina
8.
J Dairy Sci ; 106(8): 5351-5363, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37268575

RESUMO

Milk synthesis exhibits a daily rhythm that is modified by the timing of feed intake. However, it is unknown how specific nutrients entrain this daily rhythm. Amino acids have an important role in milk synthesis, and may have a role in entrainment of mammary circadian rhythms. The objective of this study was to determine the effects of intestinally absorbed protein on daily rhythms of milk and milk component synthesis and key plasma hormones and metabolites. Nine lactating Holstein cows were assigned to 1 of 3 treatment sequences in a 3 × 3 Latin square. Treatments included abomasal infusions of 500 g/d of sodium caseinate either continuously throughout the day (CON), for 8 h/d from 0900 to 1700 h (DAY), or for 8 h/d from 2100 to 0500 h (NGT). Cows were milked every 6 h during the final 8 d of each period. A 24-h rhythm was fit to data using cosine analysis and the amplitude and acrophase were determined. Night infusion of protein decreased the daily milk yield and milk protein yield by 8.2% and 9.2%, respectively. Milk fat yield was increased 5.5% by DAY and milk fat concentration was increased 8.8% by NGT. Milk yield exhibited a daily rhythm in all treatments, with NGT increasing the amplitude of the daily rhythm 33% compared with CON. Milk fat concentration fit a daily rhythm in CON and NGT, but not DAY, whereas milk protein concentration fit a daily rhythm in CON and DAY, but not NGT. Moreover, DAY abolished the daily rhythm of plasma glucose concentration, but induced rhythms of plasma insulin and nonesterified fatty acid concentrations. Results suggest that feeding increased protein levels during the early part of the day may increase milk fat yield and modify energy metabolism through increased daily variation in insulin-stimulated lipid release, but additional research focused on feeding multiple diets across the day is required.


Assuntos
Lactação , Leite , Feminino , Bovinos , Animais , Leite/química , Ácidos Graxos não Esterificados/metabolismo , Dieta/veterinária , Proteínas do Leite/análise , Insulina , Ração Animal/análise
9.
Physiol Behav ; 268: 114241, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37201692

RESUMO

In nature, animals are exposed to stressors that occur with different likelihood throughout the day, such as risk of predation and human disturbance. Hence, the stress response is expected to vary plastically to adaptively match these challenges. Several studies have supported this hypothesis in a wide range of vertebrate species, including some teleost fish, mostly through evidence of circadian variation in physiology. However, in teleost fish, circadian variation in behavioural stress responses is less understood. Here, we investigated the daily rhythm of stress response at the behavioural level in the zebrafish Danio rerio. We exposed individuals and shoals to an open field test every 4 h over a 24 h cycle, recording three behavioural indicators of stress and anxiety levels in novel environments (thigmotaxis, activity and freezing). Thigmotaxis and activity significantly varied throughout the day with a similar pattern, in line with a stronger stress response in the night phase. The same was suggested by analysis of freezing in shoals, but not in individual fish, in which variation appeared mostly driven by a single peak in the light phase. In a control experiment, we observed a set of subjects after familiarisation with the open-field apparatus. This experiment indicated that activity and freezing might present a daily rhythmicity that is unrelated to environmental novelty, and thus to stress responses. However, the thigmotaxis was constant through the day in the control condition, suggesting that the daily variation of this indicator is mostly attributable to the stress response. Overall, this research indicates that behavioural stress response of zebrafish does follow a daily rhythm, although this may be masked using behavioural indicators other than thigmotaxis. This rhythmicity can be relevant to improve welfare in aquaculture and reliability of behavioural research in fish models.


Assuntos
Comportamento Animal , Peixe-Zebra , Humanos , Animais , Reprodutibilidade dos Testes , Comportamento Animal/fisiologia
10.
Conserv Physiol ; 11(1): coad016, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37101705

RESUMO

Glucocorticoids mediate physiological processes to obtain energy, presenting daily variation in basal levels that may be related to behavioural activity pattern. Identification of plasticity in the secretion of these hormones is essential to understand their effects on physiology and behaviour of wild birds and, therefore, their success in their natural or artificial environment. Serial endocrine evaluations are facilitated by implementing non-invasive methodologies that minimize possible effects of manipulation on the animal's physiological variables. However, non-invasive endocrine-behavioural studies in nocturnal birds, such as owls, are immature. The present work aimed to validate an enzyme immunoassay (EIA) to quantify glucocorticoid metabolites (MGC) in Megascops choliba as well as to evaluate differences in their production at the individual, sexual or daily level. We recorded the behaviour of nine owls during three continuous days to establish activity budget under captive conditions and aiming to correlate with daily MGC variation. The EIA proved to be effective in analytical assays and in pharmacological testing with synthetic ACTH, validating this immunoassay for the species. Additionally, individual differences in MGC production were confirmed in relation to the time of day, especially at 1700 and 2100, but not in relation to sex. During night hours, the owls showed greater behavioural activity, positively related to MGC values. Higher MGC concentrations were significantly related to greater expressions of active behaviours, such as maintenance, while lower MGC concentrations were recorded during moments of higher alertness and resting. The results presented show daily MGC variation to be inversed in this nocturnal species. Our findings can aid future theoretical studies of daily rhythm and evaluations of challenging and/or disturbing situations that result in changes in behaviour or hormonal cascades of these changes in ex situ populations of owls.

11.
Int J Adolesc Med Health ; 35(2): 219-226, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36947850

RESUMO

OBJECTIVES: Excessive Internet use is a health concern among higher education students leading to reduced academic performance and problems in everyday life. This study aimed to explore the relationship between health and problems of studying and daily rhythm caused by time spent online among students (n=3,050). METHODS: A cross-sectional survey was carried out. The data were analyzed using descriptive and chi-square tests and logistic regression analyses. RESULTS: Findings indicated that one fifth of students reported having problems of studying and daily rhythm caused by time spent online. Psychological health symptoms such as anxiety (p<0.001) and physical health symptoms including lower back problems (p<0.001) were associated with these problems. According to the logistic regression analyses, problems of studying and daily rhythm caused by time spent online and higher amount of Internet use by time were associated with psychological and physical health symptoms. CONCLUSIONS: The findings suggest that problems of studying and daily rhythm and spending more time online are related to health symptoms among the students. The study's findings can be used from a prevention standpoint for early identification and further to identify the need for seeking professional treatment.


Assuntos
Saúde Mental , Estudantes , Humanos , Estudos Transversais , Estudantes/psicologia , Medição de Risco , Internet
12.
J Cereb Blood Flow Metab ; 43(6): 989-998, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36722135

RESUMO

Dynamic cerebral autoregulation (dCA) in healthy young adults displays a daily variation. Whether the rhythm exists in patients with stroke is unknown. We studied 28 stroke patients (age: 26-83 years, 7 females) within 48 hours after thrombolysis. dCA was assessed 54 times in these patients during supine rest (twice in 26 and once in 2 patients): 9 assessments between 0-9AM, 12 between 9AM-2PM, 20 between 2-7PM, and 13 between 7PM-12AM. To estimate dCA, phase shifts between spontaneous oscillations of cerebral blood flow velocity (CBFV) in the middle cerebral artery and arterial blood pressure (BP) were obtained in four frequency bands: <0.05 Hz, 0.05-0.1 Hz, 0.1-0.2 Hz, and >0.2 Hz. CBFV-BP phase shifts at <0.05 Hz were significantly larger between 2-7PM, suggesting better dCA, than those at other times (p < 0.0001), and the daily rhythm was consistent for stroke and non-stroke sides. No significant rhythms were observed at higher frequencies (all p > 0.2). All results were independent of age, sex, stroke type and severity, and other cardiovascular conditions. dCA after stroke showed a daily rhythm, leading to a better regulation of CBFV at <0.05 Hz during the afternoon. The finding may have implications for daily activity management of stroke patients.


Assuntos
Acidente Vascular Cerebral , Feminino , Adulto Jovem , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Pressão Sanguínea/fisiologia , Pressão Arterial , Homeostase/fisiologia , Circulação Cerebrovascular/fisiologia , Velocidade do Fluxo Sanguíneo/fisiologia
13.
Vet Sci ; 10(1)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36669065

RESUMO

Housing confinement, adaptation to different light/dark conditions, and social deprivation could modify the amount of total locomotor behavior of calves recommended for their psychophysical health. Total locomotor behavior was recorded by means of an activity data logger every 5 min for 6 consecutive days. To do that eight clinically healthy 30-day-old Holstein calves living in calf boxes under natural photoperiod and environmental conditions were enrolled. ANOVA (analysis of variance) showed a statistical effect of the day of monitoring and animal. In the temporal distribution of the resting-activity frequency, it was observed that the calves presented periods of total locomotor behavior with the existence of two peaks, one between 06:00-07:00 and another between 17:00-18:00, which corresponds to time of food intake. In all animals, a diurnal daily rhythm of total locomotor behavior was observed during time of monitoring. Intrasubject and intersubject variabilities were statistically different in mesor, amplitude, and robustness of rhythm. In conclusion, the total locomotor behavior showed a diurnal daily rhythmicity in 30-day-old calves. The characteristics of rhythm were different from individual to individual and from day to day. The recorded intersubject variability must be taken in consideration during the monitoring of farm animals and justifies the application of the device to each animal, as precision livestock farming suggests.

14.
Chemosphere ; 316: 137862, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36642134

RESUMO

Toxic elements, such as mercury (Hg) and arsenic (As), are major pollutants in aquatic environments, posing ecological threats to living organisms due to their toxicity and bioaccumulation. This paper investigated whether zebrafish response to Hg and As displayed day/night differences. Fish were exposed to either 35 µg/L of mercury chloride for 6 h or 65 mg/L of sodium arsenate for 4 h, at two different times of the day: mid-light (day; ML) and mid-darkness (night; MD). Fish were video-recorded to investigate their behavioural response and at the end of each trial, gills and liver samples were collected for gene expression measurement. Gills, liver and brain samples were also obtained to determine Hg and As concentration. A control group (non-exposed) was video-recorded and sampled too. The effect of Hg and As on zebrafish swimming activity and the expression of antioxidant and metallothionein genes was time-of-day-dependent, with a stronger response being observed during the day than at night. However, the neurobehavioural effect of Hg was more affected by the time of exposure than the effect of As. In addition, Hg concentration in the gills was significantly higher in zebrafish exposed at ML than at MD. Altogether, these findings suggest that zebrafish response to Hg and As is time-of-day-dependent and remark the importance of considering toxicity rhythms when using this fish species as a model in toxicological research.


Assuntos
Mercúrio , Poluentes Químicos da Água , Animais , Antioxidantes/metabolismo , Cloreto de Mercúrio/toxicidade , Mercúrio/metabolismo , Natação , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo , Peixe-Zebra/metabolismo
15.
EMBO J ; 42(3): e111304, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36477886

RESUMO

Parvalbumin-positive neurons (PVs) are the main class of inhibitory neurons in the mammalian central nervous system. By examining diurnal changes in synaptic and neuronal activity of PVs in the supragranular layer of the mouse primary visual cortex (V1), we found that both PV input and output are modulated in a time- and sleep-dependent manner throughout the 24-h day. We first show that PV-evoked inhibition is stronger by the end of the light cycle (ZT12) relative to the end of the dark cycle (ZT0), which is in line with the lower inhibitory input of PV neurons at ZT12 than at ZT0. Interestingly, PV inhibitory and excitatory synaptic transmission slowly oscillate in opposite directions during the light/dark cycle. Although excitatory synapses are predominantly regulated by experience, inhibitory synapses are regulated by sleep, via acetylcholine activating M1 receptors. Consistent with synaptic regulation of PVs, we further show in vivo that spontaneous PV activity displays daily rhythm mainly determined by visual experience, which negatively correlates with the activity cycle of surrounding pyramidal neurons and the dorsal lateral geniculate nucleus-evoked responses in V1. These findings underscore the physiological significance of PV's daily modulation.


Assuntos
Neurônios , Parvalbuminas , Animais , Camundongos , Parvalbuminas/metabolismo , Neurônios/metabolismo , Células Piramidais/metabolismo , Transmissão Sináptica , Sono , Mamíferos
16.
Front Endocrinol (Lausanne) ; 14: 1281617, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38374960

RESUMO

The circadian clock regulates the behavior, physiology, and metabolism of mammals, and these characteristics, such as sleep-wake cycles, exercise capacity, and hormone levels, exhibit circadian rhythms. Light signaling is the main stimulator of the mammalian circadian system. The photoperiod regulates the reproductive cycle of seasonal breeding animals, and the circadian clock plays a pivotal role in this process. However, the role of the clock in coordinating animal behavior and physiology in response to photoperiodic changes needs further investigation. The present study investigated the changes and correlation of behavioral activities, physiological indicators, and gene expression in female striped hamsters (Cricetulus barabensis) within 24 h under a 12L:12D photoperiod. We found that the daily rhythms of sleep-wake and open field were significant in hamsters. The expression of clock genes, melatonin receptor genes, and genes involved in general metabolism oscillated significantly in central and peripheral tissues (brain, hypothalamus, liver, ovary, and thymus) and was significantly associated with behavior and physiology. Our results revealed that the neuroendocrine system regulated the rhythmicity of behavior and physiology, and central and peripheral clock genes (Bmal1, Clock, Per1, Per2, Cry1, and Cry2), melatonin receptor genes (MT1, MT2, and GPR50), and metabolizing genes (SIRT1, FGF21, and PPARα) played important roles. Our results suggest that central and peripheral circadian clocks, melatonin receptors, and genes involved in general metabolism may play key roles in maintaining circadian behavior and metabolic homeostasis in striped hamsters. Our results may have important implication for rodent pest control.


Assuntos
Ritmo Circadiano , Fotoperíodo , Cricetinae , Animais , Feminino , Cricetulus , Receptores de Melatonina , Ritmo Circadiano/genética , Hipotálamo/metabolismo
17.
Trop Anim Health Prod ; 54(6): 371, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36326987

RESUMO

The aim of this study was to evaluate some physiological parameters as total locomotor activity and subcutaneous temperature in two different bovine breeds under tropical environment. In this study, total locomotor activity and subcutaneous temperature were evaluated in 18 clinically healthy female cows. All cows were divided into 3 groups: group A1 was constituted by 6 Holstein Bos taurus, group A2 was constituted by 6 female Herford Bos taurus cows, and group B was constituted by 6 female Bradford Bos indicus cows. Data recording of total locomotor activity (TLA) and subcutaneous temperature (ST) was performed by means of a subcutaneous thermometer (Thermocron) and an actimeter ACTIWATCH® (Cambridge Neurotechnology Ltd.) based on accelerometer technologies equipped on all subjects to record TLA. At the same time, thermal and hygrometric recording were carried out, considering the subtropical climate of Santa Fe. The application of GLM for statistical analysis showed a significant effect (P < 0.05) on statistical model and time of the day on TLA and ST for all groups; no significative effects on animal parameters were found for ST and TLA except for group B. Circadian parameters have been evaluated according to the single cosinor procedure of ST that showed a diurnal daily rhythmicity for all investigated groups and TLA which is focused almost during the photophase for groups A1 and A2 and during scotophase for group B. Considering different species and breeds, and different environmental conditions, this study suggested that some subjects may be much more able to adapt themselves to environmental stress than others. During their evolution from Bos taurus, zebu cattle (Bos indicus) have acquired genes that confer thermotolerance. Subjects from Bos indicus breeds are better able to regulate body temperature in response to heat stress than Bos taurus subjects.


Assuntos
Adaptação Fisiológica , Locomoção , Bovinos , Animais , Feminino , Temperatura , Argentina
18.
Front Nutr ; 9: 963804, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35990356

RESUMO

The mouse N. alstoni spontaneously develops the condition of obesity in captivity when fed regular chow. We aim to study the differences in metabolic performance and thermoregulation between adult lean and obese male mice. The experimental approach included indirect calorimetry using metabolic cages for VO2 intake and VCO2 production. In contrast, the body temperature was measured and analyzed using intraperitoneal data loggers. It was correlated with the relative presence of UCP1 protein and its gene expression from interscapular adipose tissue (iBAT). We also explored in this tissue the relative presence of Tyrosine Hydroxylase (TH) protein, the rate-limiting enzyme for catecholamine biosynthesis present in iBAT. Results indicate that obese mice show a daily rhythm persists in estimated parameters but with differences in amplitude and profile. Obese mice presented lower body temperature, and a low caloric expenditure, together with lower VO2 intake and VCO2 than lean mice. Also, obese mice present a reduced thermoregulatory response after a cold pulse. Results are correlated with a low relative presence of TH and UCP1 protein. However, qPCR analysis of Ucp1 presents an increase in gene expression in iBAT. Histology showed a reduced amount of brown adipocytes in BAT. The aforementioned indicates that the daily rhythm in aerobic metabolism, thermoregulation, and body temperature control have reduced amplitude in obese mice Neotomodon alstoni.

19.
Chronobiol Int ; 39(9): 1256-1267, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35786237

RESUMO

The circadian clock of vertebrates regulates many biological processes, including the immune system. This paper investigated whether responsiveness to poly (I:C), a synthetic analog of double-stranded RNA used as an immunostimulant, exhibits day/night differences in zebrafish. Fish were intraperitoneally (IP) injected with either phosphate-buffered saline (PBS) or poly (I:C) at two different time points: "Zeitgeber Time" (ZT) 4 (day) and ZT16 (night). Then, 6 h later, fish were euthanized, and tissue samples (skin, liver and kidney) were collected. A control group (intact fish) was also sampled at the same time points. The effect of poly (I:C) on the expression of antioxidant and immune genes was time-of-day-dependent, and the response was stronger following poly (I:C) administration in the day than at night. Time-dependent differences were observed for some genes in the PBS and control groups. However, these differences were tissue-specific. In liver, almost all the genes were affected by time of day. In kidney, poly (I:C) affected the expression of all the gene markers regardless of administration time. These findings highlight the importance of considering the time to administer poly (I:C) when evaluating the fish immune response.


Assuntos
Relógios Circadianos , Peixe-Zebra , Animais , Antioxidantes/farmacologia , Relógios Circadianos/genética , Ritmo Circadiano/fisiologia , Imunidade
20.
Prog Brain Res ; 271(1): 101-132, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35397885

RESUMO

Modulation of Tonic Immobility (TI) concerns environmental and individual factors. TI is modulated by processes of habituation and sensitization. In poikilotherm frog and lizard, TI duration is much shorter at usual environmental temperatures and is potentiated at higher or lower temperatures, as the last resource for survival. During ontogeny, age may differentially affect TI susceptibility to the induction procedures, as in the case of newborn ectothermic and older endothermic rabbits. TI duration displays a daily rhythm, with longer TI in the night. Its resistance to habituation indicates that in the dark TI is the most prominent defense against nocturnal predators. In all studied species, there is synchronization of the prey's defensive responses with the feeding activity of predators. Ecological factors and exposure to different anthropogenic environmental pressures may alter morphology, behavior and TI in wild populations. TI duration has been associated with a genomic region comprising the dystrophin gene on quail chromosome 1.


Assuntos
Resposta de Imobilidade Tônica , Animais , Humanos , Resposta de Imobilidade Tônica/fisiologia , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA