Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
Oncol Lett ; 28(5): 550, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39328277

RESUMO

Lung adenocarcinoma is one of the most fatal types of cancer worldwide, with non-small cell lung cancer being the most common subtype. Therefore, there is need for improved treatment approaches. Tumor growth results from the proliferation of a very small number of tumor stem cells, giving rise to the theory of cancer stem cells (CSCs). Lung CSCs are associated with lung cancer development, and although chemotherapy drugs can inhibit the proliferation of lung cancer cells, they have difficulty acting on lung CSCs. Even if the tumor appears to have disappeared after chemotherapy, the presence of a small number of residual tumor stem cells can lead to cancer recurrence and metastasis. Hence, targeting and eliminating lung CSCs is of significant therapeutic importance. In this study, we cultured A549 cells in sphere-forming conditions using B27, EGF, and bFGF, isolated peripheral blood mononuclear cells (PBMCs), and induced and characterized dendritic cells (DCs). We also isolated and expanded T lymphocytes. DC vaccines were prepared using A549 stem cell lysate or A549 cell lysate for sensitization and compared with non-sensitized DC vaccines. The content of IFN-γ in the supernatant of cultures with vaccines and T cells was measured by ELISA. The cytotoxic effects of the vaccines on A549 cells and stem cells were assessed using the Cytotox96 assay, and the impact of the vaccines on A549 cell migration and apoptosis was evaluated using Transwell assays and flow cytometry. DC vaccines sensitized with human lung CSC lysates induced significant in vitro cytotoxic effects on A549 lung cancer cells and CSCs by T lymphocytes, while not producing immune cytotoxic effects on human airway epithelial cells. Moreover, the immune-killing effect induced by DC vaccines sensitized with lung CSC lysates was superior to that of DC vaccines sensitized with lung cancer cells.

2.
Biomed Pharmacother ; 179: 117433, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39260327

RESUMO

Anti-aging immunity induced by vaccines was recently reported to enable the elimination of senescent cells. However, the initial immune response to vaccination declines with age, and there is evidence that elderly dendritic cells (DCs) have a reduced capacity to stimulate T cells. Identification of alternative anti-aging vaccine is therefore warranted. Here, we developed a DC vaccine that delivers a cationic protein (CP) fused with the seno-antigen peptides Gpnmb (Gpnmb-CP) into DCs. The Gpnmb-CP-pulsed DC vaccine (Gpnmb-CP-DC) efficiently presented antigens and activated CD8+ T cells, leading to enhanced immune cytotoxicity and memory responses in CD8+ T cells. Thus, the targeted anti-aging immunity triggered by Gpnmb-CP-DC has the ability to selectively eliminate senescent adipocytes and effectively improve age-related metabolic abnormalities in both high-fat diet (HFD)-induced young and aged mice models, as well as in natural aging mouse model. In contrast, the Gpnmb-CP protein vaccine exhibits minimal efficacy in aged mice model. Furthermore, we observed a decreased phagocytic capacity for antigens in aging DCs, accompanied by an upregulation of the immune checkpoint PDL1 expression and a noticeable decline in activated CD8+ T cell. Hence, Gpnmb-CP-DC emerges as a promising vaccine candidate, demonstrating the capacity to induce potent anti-aging immunity, mitigating adipose tissue senescence and metabolic abnormalities, while resilient to the senescent environment of the organism.


Assuntos
Tecido Adiposo , Envelhecimento , Linfócitos T CD8-Positivos , Células Dendríticas , Camundongos Endogâmicos C57BL , Animais , Células Dendríticas/imunologia , Envelhecimento/imunologia , Camundongos , Linfócitos T CD8-Positivos/imunologia , Tecido Adiposo/imunologia , Tecido Adiposo/metabolismo , Senescência Celular/imunologia , Vacinas/imunologia , Masculino , Dieta Hiperlipídica , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/imunologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-39244742

RESUMO

BACKGROUND: Dendritic cell (DC) vaccines show promise for glioma treatment, but optimal use remains uncertain. This meta-analysis examined DC vaccine efficacy and safety for gliomas. METHODS: This systematic review and meta-analysis study was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses. From the date of inception to October 23, 2023, electronic databases PubMed, Embase, Web of Science, and Scopus have been thoroughly evaluated. RESULTS: A total of 12 studies with 998 patients and a mean age ranging from 40.2 to 56 years were included. Across 12 articles, DC vaccine 6-month overall survival (OS) was 100% [95% confidence interval {95%CI}: 100%-100%]. Respectively, 12-month OS reported 75% [95%CI: 65%-85%] but declined to 32% [95%CI: 20%-43%] for 24-month OS. 6- and 12-month progression-free survival reached 49% [95%CI: 21%-77%] and 19% [95%CI:8%-30%]. Studying radiological outcomes shows that complete response and partial response rates were 13% [95%CI: 17%-42%], and 26% [95%CI: 10%-42%], though stable disease reached 33% [95%CI: 15%-51%], suggesting predominant antineoplastic effects. The progressive disease rate also was 24% [95%CI: 9%-57%]. CONCLUSIONS: In gliomas, DC vaccinations show a temporary efficacy; stability is more prevalent than regression. Impacts favor decreased resistance to early disease. Enhancing efficacy remains critical. Early therapy can be enhanced by appropriate supplementary therapy integration.

4.
J Neurooncol ; 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39230804

RESUMO

BACKGROUND: High-grade gliomas (HGG) are the most aggressive primary brain tumors with poor prognoses despite conventional treatments. Immunotherapy has emerged as a promising avenue due to its potential to elicit a targeted immune response against tumor cells. OBJECTIVE: This meta-analysis aimed to evaluate the efficacy and safety of various immunotherapeutic strategies, including immune checkpoint inhibitors (ICI), virotherapy, and dendritic cell vaccines (DCV) in treating HGG. METHODS: Following the PRISMA framework, we searched PubMed, Cochrane, and Embase for studies reporting outcomes of HGG patients treated with immunotherapy. Key metrics included overall survival, progression-free survival, and treatment-related adverse events. RESULTS: We reviewed 47 studies, analyzing data from 3674 HGG patients treated with immunotherapy. The mean overall survival for patients treated with ICI was 11.05 months, with virotherapy at 11.79 months and notably longer for DCV at 24.11 months. The mean progression-free survival (PFS) for ICIs was 3.65 months. Virotherapy demonstrated a PFS favoring the control group, indicating minimal impact, while DCV showed substantial PFS improvement with a median of 0.43 times lower hazard compared to controls (95% CI: 29-64%). Adverse events were primarily Grade 1 or 2 for ICI, included a Grade 5 event for virotherapy, and were predominantly Grade 1 or 2 for DCV, indicating a favorable safety profile. CONCLUSION: Immunotherapy holds potential as an effective treatment for HGG, especially DCV. However, results vary significantly with the type of therapy and individual patient profiles. Further randomized controlled trials are necessary to establish robust clinical guidelines and optimize treatment protocols.

5.
J Neurooncol ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39167243

RESUMO

BACKGROUND: Dendritic cell (DC) vaccine is an emerging immunotherapy that could potentially improve glioblastoma survival. The first phase III clinical trial of DC vaccine was recently published. This meta-analysis aims to update and reappraise existing evidence on the efficacy of DC vaccine in patients with glioblastoma. METHODS: We searched PubMed, Embase, and Cochrane Library for clinical trials of DC vaccine for glioblastoma. The quality of the studies was assessed using the RoB 2.0 and ROBINS-I tools. The results of overall survival (OS) and progression-free survival (PFS) were pooled using hazard ratios (HRs) with corresponding 95% confidence intervals (CI). Summary effects were evaluated using random effects models. Trial sequential analysis (TSA) was performed. RESULTS: Seven clinical trials involving 3,619 patients were included. DC vaccine plus standard care was associated with significantly improved OS (HR = 0.71; 95% CI, 0.57 - 0.88) and PFS (HR = 0.65; 95% CI, 0.43 - 0.98). In the subgroup of newly diagnosed glioblastoma, DC vaccine was associated with improved PFS (HR = 0.59; 95% CI, 0.39 - 0.90). TSA of OS showed that the cumulative z-score line for the DC vaccine crossed the benefit boundary and reached the required sample size. TSA of PFS and subgroup analysis of newly diagnosed glioblastoma showed that the required sample size was not reached. CONCLUSIONS: This updated meta-analysis, which included the first phase III trial of a DC vaccine for glioblastoma, demonstrated that the DC vaccine was associated with improved OS. Moreover, TSA showed that the required sample size was reached, indicating a true-positive result. Future studies are required for patient subgroups with newly diagnosed and recurrent glioblastoma.

6.
Anticancer Res ; 44(9): 3713-3724, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39197920

RESUMO

Cancer immunotherapy activates the host immune system against tumor cells and has the potential to lead to the development of innovative strategies for cancer treatment. Neoantigens are non-self-antigens produced by genetic mutations in tumor cells that induce a strong immune response against tumor cells without central immune tolerance. Along with advances in neoantigen analysis technology, the development of vaccines focusing on neoantigens is being accelerated. Whereas there are various platforms for neoantigen vaccines, combined immuno-therapies are being developed simultaneously with the clinical application of synthetic long peptides and mRNA and dendritic-cell (DC)-based vaccines. Personalized DC-based vaccines not only can load various antigens including neoantigens, but also have the potential to elicit a strong immune response in T cells as antigen-presenting cells. In this review, we describe the properties of neoantigens and the basic characteristics of DCs. We also discuss the clinical applications of neoantigen vaccines, focusing on personalized DC-based vaccines, as well as future research and development directions and challenges.


Assuntos
Antígenos de Neoplasias , Vacinas Anticâncer , Células Dendríticas , Neoplasias , Medicina de Precisão , Humanos , Células Dendríticas/imunologia , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Antígenos de Neoplasias/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Medicina de Precisão/métodos , Imunoterapia/métodos , Animais
7.
Int J Mol Sci ; 25(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38892182

RESUMO

Cancer immunotherapy using antigen-pulsed dendritic cells can induce strong cellular immune responses by priming cytotoxic T lymphocytes. In this study, we pulsed tumor cell lysates with VP-R8, a cell-penetrating D-octaarginine-linked co-polymer of N-vinylacetamide and acrylic acid (PNVA-co-AA), into the DC2.4 murine dendritic cell line to improve antigen uptake and then determined the anti-tumor effect in tumor-bearing mice. DC2.4 cells were pulsed with the cell lysate of EL4, a murine lymphoma cell line, and VP-R8 to generate the DC2.4 vaccine. For the in vivo study, DC2.4 cells pulsed with EL4 lysate and VP-R8 were subcutaneously injected into the inguinal lymph node to investigate the anti-tumor effect against EL4 and EL4-specific T cell immune responses. VP-R8 significantly improved antigen uptake into DC2.4 compared to conventional keyhole limpet hemocyanin (p < 0.05). The expression of MHC class I, MHC class II, and CD86 in DC2.4 cells significantly increased after pulsing tumor lysates with VP-R8 compared to other treatments (p < 0.05). The intra-lymph node injection of DC2.4 pulsed with both VP-R8 and EL4 lysate significantly decreased tumor growth compared to DC2.4 pulsed with KLH and lysates (p < 0.05) and induced tumor-infiltrating CD8T cells. The DC2.4 vaccine also remarkably increased the population of IFN-gamma-producing T cells and CTL activity against EL4 cells. In conclusion, we demonstrated that VP-R8 markedly enhances the efficiency of dendritic cell-based vaccines in priming robust anti-tumor immunity, suggesting its potential as a beneficial additive for dendritic cell-based immunotherapy.


Assuntos
Apresentação de Antígeno , Vacinas Anticâncer , Células Dendríticas , Células Dendríticas/imunologia , Animais , Vacinas Anticâncer/imunologia , Camundongos , Linhagem Celular Tumoral , Apresentação de Antígeno/imunologia , Oligopeptídeos/química , Feminino , Camundongos Endogâmicos C57BL , Peptídeos Penetradores de Células/química
8.
Front Immunol ; 15: 1393451, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903502

RESUMO

Dendritic cells (DCs) play a central role in the orchestration of effective T cell responses against tumors. However, their functional behavior is context-dependent. DC type, transcriptional program, location, intratumoral factors, and inflammatory milieu all impact DCs with regard to promoting or inhibiting tumor immunity. The following review introduces important facets of DC function, and how subset and phenotype can affect the interplay of DCs with other factors in the tumor microenvironment. It will also discuss how current cancer treatment relies on DC function, and survey the myriad ways with which immune therapy can more directly harness DCs to enact antitumor cytotoxicity.


Assuntos
Células Dendríticas , Imunoterapia , Neoplasias , Microambiente Tumoral , Humanos , Células Dendríticas/imunologia , Neoplasias/terapia , Neoplasias/imunologia , Microambiente Tumoral/imunologia , Imunoterapia/métodos , Animais
9.
Expert Opin Biol Ther ; 24(4): 269-284, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38644655

RESUMO

INTRODUCTION: Colorectal cancer (CRC) is the second most lethal malignancy worldwide. Immune checkpoint inhibitors (ICIs) benefit only 15% of patients with mismatch repair-deficient/microsatellite instability (dMMR/MSI) CRC. The majority of patients are not suitable due to insufficient immune infiltration. Cancer vaccines are a potential approach for inducing tumor-specific immunity within the solid tumor microenvironment. AREA COVERED: In this review, we have provided an overview of the current progress in CRC vaccines over the past three years and briefly depict promising directions for further exploration. EXPERT OPINION: Cancer vaccines are certainly a promising field for the antitumor treatment against CRC. Compared to monotherapy, cancer vaccines are more appropriate as adjuvants to standard treatment, especially in combination with ICI blockade, for microsatellite stable patients. Improved vaccine construction requires neoantigens with sufficient immunogenicity, satisfactory HLA-binding affinity, and an ideal delivery platform with perfect lymph node retention and minimal off-target effects. Prophylactic vaccines that potentially prevent CRC carcinogenesis are also worth investigating. The exploration of appropriate biomarkers for cancer vaccines may benefit prognostic prediction analysis and therapeutic response prediction in patients with CRC. Although many challenges remain, CRC vaccines represent an exciting area of research that may become an effective addition to current guidelines.


Assuntos
Vacinas Anticâncer , Neoplasias Colorretais , Humanos , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/prevenção & controle , Neoplasias Colorretais/terapia , Neoplasias Colorretais/genética , Vacinas Anticâncer/uso terapêutico , Vacinas Anticâncer/imunologia , Animais , Microambiente Tumoral/imunologia
10.
Cell Rep Med ; 5(5): 101516, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38626769

RESUMO

Non-small cell lung cancer (NSCLC) is known for high relapse rates despite resection in early stages. Here, we present the results of a phase I clinical trial in which a dendritic cell (DC) vaccine targeting patient-individual neoantigens is evaluated in patients with resected NSCLC. Vaccine manufacturing is feasible in six of 10 enrolled patients. Toxicity is limited to grade 1-2 adverse events. Systemic T cell responses are observed in five out of six vaccinated patients, with T cell responses remaining detectable up to 19 months post vaccination. Single-cell analysis indicates that the responsive T cell population is polyclonal and exhibits the near-entire spectrum of T cell differentiation states, including a naive-like state, but excluding exhausted cell states. Three of six vaccinated patients experience disease recurrence during the follow-up period of 2 years. Collectively, these data support the feasibility, safety, and immunogenicity of this treatment in resected NSCLC.


Assuntos
Antígenos de Neoplasias , Vacinas Anticâncer , Carcinoma Pulmonar de Células não Pequenas , Diferenciação Celular , Células Dendríticas , Neoplasias Pulmonares , Linfócitos T , Vacinação , Humanos , Células Dendríticas/imunologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Vacinas Anticâncer/imunologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Masculino , Feminino , Pessoa de Meia-Idade , Antígenos de Neoplasias/imunologia , Diferenciação Celular/imunologia , Idoso , Linfócitos T/imunologia
11.
Biomedicines ; 12(4)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38672110

RESUMO

Oncolytic viruses and combinatorial immunotherapy for cancer (this Special Issue) are both part of cancer treatment at IOZK. This review focusses on an individual multimodal cancer immunotherapy concept developed by IOZK, Cologne, Germany. The scientific rationale for employing three main components is explained: (i) oncolytic Newcastle disease virus, (ii) modulated electrohyperthermia and (iii) individual tumor antigen and oncolytic virus modified dendritic cell vaccine (IO-VACR). The strategy involves repeated cancer-immunity cycles evoked in cancer patients by systemic oncolytic virus exposure plus hyperthermia pretreatment to induce immunogenic cell death followed by intradermal IO-VACR vaccination. As an example of the experience at IOZK, we present the latest results from combining the immunotherapy with standard treatment of patients suffering from glioblastoma multiforme. The promising clinical results in terms of overall survival benefit of additional individualized multimodal immunotherapy are presented. The cancer-immunity cycle, as introduced 10 years ago, describes key important steps occurring locally at the sites of both tumor and draining lymph nodes. This view is extended here towards systemic events occuring in blood where immunogenic cell death-induced tumor antigens are transported into the bone marrow. For 20 years it has been known that bone marrow is an antigen-responsive organ in which dendritic cells present tumor antigens to T cells leading to immunological synapse formation, tumor antigen-specific T cell activation and memory T cell formation. Bone marrow is known to be the most prominent source of de novo cellular generation in the body and to play an important role for the storage and maintenance of immunological memory. Its systemic activation is recommended to augment cancer-immunity cycles.

12.
Vaccine ; 42(3): 512-521, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38184395

RESUMO

Dendritic cell (DC) based immunotherapy is one of the strategies to combat cancer invoking a patient's immune system. This form of anticancer immunotherapy employs adjuvants to enhance the immune response, triggering mechanisms of innate immunity and thus increase immunotherapeutic efficiency. A conventional adjuvant for DCs maturation during production of anticancer vaccines is bacterial LPS. Nevertheless, synthetic dsRNAs were also shown to stimulate different receptors on innate immune cells and to activate immune responses through induction of cytokines via toll-like receptors. In our study we investigated the potential of Larifan as dsRNA of natural origin to stimulate maturation of DCs with proinflammatory (possible antitumoral) activity and to compare these immunostimulatory properties between Larifan's fractions with different molecular lengths. To explore the suitability of this product for therapy, it is necessary to study the properties of its different fractions and compare them to standard adjuvants. We investigated the effect of Larifan's fractions on immune system stimulation in vivo by monitoring the survival time of tumor-bearing mice. Murine DCs produced in vitro using Larifan and its fractions together with tumor antigens during production were also characterized. All Larifan fractions resulted in inducing high expression of immunogenic markers CD40, CD80, CD86, CCR7, MHC II and lower secretion of the immunosuppressive cytokine IL-10, compared to the maturation with LPS in mDCs. The lowest expression of tolerogenic gene Ido1 and highest expression of the immunogenic genes Clec7a, Tnf, Icosl, Il12rb2, Cd209a were characteristic to the unfractionated dsRNA and short fraction FR15. In the mouse model the best overall survival rate was observed in mice treated with medium-length FR9 and FR15. We can state that both Larifan and its fractions were superior to LPS as vaccine adjuvants in stimulating phenotype and functional activity of mature DCs. DCs maturation using these factors induces a valuable anticancer immune response.


Assuntos
Bacteriófagos , Neoplasias , Humanos , Camundongos , Animais , Adjuvantes de Vacinas , Lipopolissacarídeos , Células Dendríticas , Citocinas/metabolismo , Adjuvantes Imunológicos/metabolismo , Imunidade , Receptores de Interleucina-12 , Compostos Orgânicos
13.
Immunopharmacol Immunotoxicol ; 46(1): 73-85, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37647347

RESUMO

PURPOSE: In dendritic cells (DCs), leptin as an immune-regulating hormone, increases the IL-12 generation whereas it reduces the IL-10 production, thus contributing to TH1 cell differentiation. Using a murine model of breast cancer (BC), we evaluated the impacts of the Leptin and/or lipopolysaccharide (LPS)-treated DC vaccine on various T-cell-related immunological markers. MATERIALS AND METHODS: Tumors were established in mice by subcutaneously injecting 7 × 105 4T1 cells into the right flank. Mice received the DC vaccines pretreated with Leptin, LPS, and both Leptin/LPS, on days 12 and 19 following tumor induction. The animals were sacrificed on day 26 and after that the frequency of the splenic cytotoxic T lymphocytes (CTLs) and TH1 cells; interferon gamma (IFN-γ), interleukin 12 (IL-12) and tumor growth factor beta (TGF-ß) generation by tumor lysate-stimulated spleen cells, and the mRNA expression of T-bet, FOXP3 and Granzyme B in the tumors were measured with flow cytometry, ELISA and real-time PCR methods, respectively. RESULTS: Leptin/LPS-treated mDC group was more efficient in blunting tumor growth (p = .0002), increasing survival rate (p = .001), and preventing metastasis in comparison with the untreated tumor-bearing mice (UT-control). In comparison to the UT-control group, treatment with Leptin/LPS-treated mDC also significantly increased the splenic frequencies of CTLs (p < .001) and TH1 cells (p < .01); promoted the production of IFN-γ (p < .0001) and IL-12 (p < .001) by splenocytes; enhanced the T-bet (p < .05) and Granzyme B (p < .001) expression, whereas decreased the TGF-ß and FOXP3 expression (p < .05). CONCLUSION: Compared to the Leptin-treated mDC and LPS-treated mDC vaccines, the Leptin/LPS-treated mDC vaccine was more effective in inhibiting BC development and boosting immune responses against tumor.


Assuntos
Neoplasias , Vacinas , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Granzimas/metabolismo , Leptina/metabolismo , Imunidade Celular , Fator de Crescimento Transformador beta/metabolismo , Interferon gama/metabolismo , Modelos Animais , Neoplasias/metabolismo , Interleucina-12 , Vacinas/metabolismo , Células Dendríticas , Fatores de Transcrição Forkhead/metabolismo
14.
Hum Vaccin Immunother ; 20(1): 2296735, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38148629

RESUMO

This mini-review explores recent advancements in cancer vaccines that target Wilms' tumor (WT1). Phase I/II trials of WT1 peptide vaccines have demonstrated their safety and efficacy against various cancers. Early trials employing HLA class I peptides evolved through their combination with HLA class II peptides, resulting in improved clinical outcomes. Additionally, WT1-targeted dendritic cell vaccines have exhibited favorable results. Studies focusing on hematological malignancies have revealed promising outcomes, including long-term remission and extended survival times. The combination of vaccines with immune checkpoint inhibitors has shown synergistic effects. Current preclinical developments are focused on enhancing the effectiveness of WT1 vaccines, underscoring the necessity for future large-scale Phase III trials to further elucidate their efficacy.


Assuntos
Vacinas Anticâncer , Neoplasias Renais , Tumor de Wilms , Humanos , Proteínas WT1 , Tumor de Wilms/terapia , Peptídeos
15.
Cureus ; 15(11): e49221, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38143707

RESUMO

INTRODUCTION: It is a well-known fact that anti-tumor immunity is a crucial long-term survival factor in cancer. Wilms' tumor 1 (WT1) dendritic cell vaccine therapy (WT1-DC) is an immuno-cell therapy that has been implemented against various cancers as a tumor-specific immunotherapy targeting the common cancer antigen WT1. METHODS: Seven doses of WT1-DC vaccine were administered to six patients, three of whom had stage IV lung cancer with metastases and the other three had stage IV pancreatic cancer with metastases, all of whom were receiving chemotherapy and had similar physical conditions. Their immune response was assessed using delayed-type hypersensitivity (DTH) and immune profile status (IPS) such as blood neutrophil percentage, lymphocyte percentage, and neutrophil-to-lymphocyte (N/L) ratio. RESULTS: In lung cancer, DTH increased with repeated DC administration, and IPS improved with it, whereas in pancreatic cancer, DTH did not increase, and IPS worsened from the fifth inoculation. Fever in the 37° range was observed after DC administration in lung cancer, but not in pancreatic cancer. CONCLUSION: These results suggest that DTH and IPS are correlated in dynamics and that DTH is a good indicator of the state of anti-tumor immunity. Since IPS is a prognostic factor in advanced cancer, the magnitude of DTH due to WT1-DC inoculation is a useful indicator to estimate the patient's prognosis. Although DTH is an extremely simple test, its clinical significance has not been fully investigated. The present study demonstrates the importance of DTH in cancer treatment with WT1-DC.

16.
Cancer Cell Int ; 23(1): 270, 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37951911

RESUMO

BACKGROUND: Prostate cancer (PCa) is the second leading cause of cancer-related deaths among men worldwide. Immunotherapy is an emerging treatment modality for cancers that harnesses the immune system's ability to eliminate tumor cells. In particular, dendritic cell (DC) vaccines, have demonstrated promise in eliciting a tumor-specific immune response. In this study, we investigated the potential of using DCs loaded with the MAGE-A2 long peptide to activate T cell cytotoxicity toward PCa cell lines. METHODS: Here, we generated DCs from monocytes and thoroughly characterized their phenotypic and functional properties. Then, DCs were pulsed with MAGE-A2 long peptide (LP) as an antigen source, and monitored for their transition from immature to mature DCs by assessing the expression levels of several costimulatory and maturation molecules like CD14, HLA-DR, CD40, CD11c, CD80, CD83, CD86, and CCR7. Furthermore, the ability of MAGE-A2 -LP pulsed DCs to stimulate T cell proliferation in a mixed lymphocyte reaction (MLR) setting and induction of cytotoxic T cells (CTLs) in coculture with autologous T cells were examined. Finally, CTLs were evaluated for their capacity to produce interferon-gamma (IFN-γ) and kill PCa cell lines (PC3 and LNCaP). RESULTS: The results demonstrated that the antigen-pulsed DCs exhibited a strong ability to stimulate the expansion of T cells. Moreover, the induced CTLs displayed substantial cytotoxicity against the target cells and exhibited increased IFN-γ production during activation compared to the controls. CONCLUSIONS: Overall, this innovative approach proved efficacious in targeting PCa cell lines, showcasing its potential as a foundation for the development and improved PCa cancer immunotherapy.

17.
Front Immunol ; 14: 1259562, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781367

RESUMO

Gliomas account for the majority of brain malignant tumors. As the most malignant subtype of glioma, glioblastoma (GBM) is barely effectively treated by traditional therapies (surgery combined with radiochemotherapy), resulting in poor prognosis. Meanwhile, due to its "cold tumor" phenotype, GBM fails to respond to multiple immunotherapies. As its capacity to prime T cell response, dendritic cells (DCs) are essential to anti-tumor immunity. In recent years, as a therapeutic method, dendritic cell vaccine (DCV) has been immensely developed. However, there have long been obstacles that limit the use of DCV yet to be tackled. As is shown in the following review, the role of DCs in anti-tumor immunity and the inhibitory effects of tumor microenvironment (TME) on DCs are described, the previous clinical trials of DCV in the treatment of GBM are summarized, and the challenges and possible development directions of DCV are analyzed.


Assuntos
Neoplasias Encefálicas , Vacinas Anticâncer , Glioblastoma , Glioma , Humanos , Células Dendríticas , Vacinas Anticâncer/uso terapêutico , Microambiente Tumoral
18.
Vaccines (Basel) ; 11(10)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37896948

RESUMO

Malignant neoplasms arising from the gastrointestinal (GI) tract are among the most common types of cancer with high mortality rates. Despite advances in treatment in a small subgroup harboring targetable mutations, the outcome remains poor, accounting for one in three cancer-related deaths observed globally. As a promising therapeutic option in various tumor types, immunotherapy with immune checkpoint inhibitors has also been evaluated in GI cancer, albeit with limited efficacy except for a small subgroup expressing microsatellite instability. In the quest for more effective treatment options, energetic efforts have been placed to evaluate the role of several immunotherapy approaches comprising of cancer vaccines, adoptive cell therapies and immune checkpoint inhibitors. In this review, we report our experience with a personalized dendritic cell cancer vaccine and cytokine-induced killer cell therapy in three patients with GI cancers and summarize current clinical data on combined immunotherapy strategies.

19.
Vaccines (Basel) ; 11(10)2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37896962

RESUMO

Dendritic cell (DC) vaccines can stimulate the immune system to target cancer antigens, making them a promising therapy in immunotherapy. Clinical trials have shown limited effectiveness of DC vaccines, highlighting the need to enhance the immune responses they generate. Innate lymphoid cells (ILCs) are a diverse group of innate leukocytes that produce various cytokines and regulate the immune system. These cells have the potential to improve immunotherapies. There is not much research on how group 2 ILCs (ILC2s) communicate with DC vaccines. Therefore, examining the roles of DC vaccination in immune responses is crucial. Our research analyzed the effects of DC vaccination on the ILC2 populations and their cytokine production. By exploring the relationship between ILC2s and DCs, we aimed to understand how this could affect DC-based immunotherapies. The results showed an increase in the number of ILC2s in the local draining lymph node and spleen of tumor-free mice, as well as in the lungs of mice challenged with tumors in a pulmonary metastasis model. This suggests a complex interplay between DC-based vaccines and ILC2s, which is further influenced by the presence of tumors.

20.
Adv Sci (Weinh) ; 10(30): e2303006, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37638719

RESUMO

Immunotherapy using dendritic cell (DC)-based vaccination is an established approach for treating cancer and infectious diseases; however, its efficacy is limited. Therefore, targeting the restricted migratory capacity of the DCs may enhance their therapeutic efficacy. In this study, the effect of laponite (Lap) on DCs, which can be internalized into lysosomes and induce cytoskeletal reorganization via the lysosomal reprogramming-calcium flicker axis, is evaluated, and it is found that Lap dramatically improves the in vivo homing ability of these DCs to lymphoid tissues. In addition, Lap improves antigen cross-presentation by DCs and increases DC-T-cell synapse formation, resulting in enhanced antigen-specific CD8+ T-cell activation. Furthermore, a Lap-modified cocktail (Lap@cytokine cocktail [C-C]) is constructed based on the gold standard, C-C, as an adjuvant for DC vaccines. Lap@C-C-adjuvanted DCs initiated a robust cytotoxic T-cell immune response against hepatitis B infection, resulting in > 99.6% clearance of viral DNA and successful hepatitis B surface antigen seroconversion. These findings highlight the potential value of Lap as a DC vaccine adjuvant that can regulate DC homing, and provide a basis for the development of effective DC vaccines.


Assuntos
Cálcio , Vacinas , Linfócitos T CD8-Positivos , Antígenos , Adjuvantes Imunológicos , Citocinas , Lisossomos , Antivirais , Células Dendríticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA