Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 1074106, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438096

RESUMO

Many QTL have been identified for grain appearance quality by linkage analysis (LA) in bi-parental mapping populations and by genome-wide association study (GWAS) in natural populations in rice. However, few of the well characterized genes/QTL have been successfully applied in molecular rice breeding due to genetic background (GB) and environment effects on QTL expression and deficiency of favorable alleles. In this study, GWAS and LA were performed to identify QTL for five grain appearance quality-related traits using three multi-parent advanced generation inter-cross (MAGIC) populations. A total of 22 QTL on chromosomes 1-3, 5-8 were identified by GWAS for five traits in DC1, DC2 and 8way, and four combined populations DC12 (DC1+DC2), DC18 (DC1+8way), DC28 (DC2+8way) and DC128 (DC1+DC2+8way). And a total of 42 QTL were identified on all 12 chromosomes except 10 by LA in the three single populations. Among 20 QTL identified by GWAS in DC1, DC2 and 8way, 10, four and three QTL were commonly detected in DC18, DC28, and DC128, respectively. Similarly, among 42 QTL detected by LA in the three populations, four, one and two QTL were commonly detected in DC18, DC28, and DC128, respectively. There was no QTL mapped together in DC12 by both two mapping methods, indicating that GB could greatly affect the mapping results, and it was easier to map the common QTL among populations with similar GB. The 8way population was more powerful for QTL mapping than the DC1, DC2 and various combined populations. Compared with GWAS, LA can not only identify large-effect QTL, but also identify minor-effect ones. Among 11 QTL simultaneously detected by the two methods in different GBs and environments, eight QTL corresponded to known genes, including AqGL3b and AqGLWR3a for GL and GLWR, AqGW5a, AqGLWR5, AqDEC5 and AqPGWC5 for GW, GLWR, DEC and PGWC, and AqDEC6b and AqPGWC6b for DEC and PGWC, respectively. AqGL7, AqGL3c/AqGLWR3b, AqDEC6a/AqPGWC6a, and AqPGWC7 were newly identified and their candidate genes were analyzed and inferred. It was discussed to further improve grain appearance quality through designed QTL pyramiding strategy based on the stable QTL identified in the MAGIC populations.

2.
Front Plant Sci ; 8: 1275, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28775730

RESUMO

Breeding of multi-stress tolerant rice varieties with higher grain yields is the best option to enhance the rice productivity of abiotic stresses prone areas. It also poses the greatest challenge to plant breeders to breed rice varieties for such stress prone conditions. Here, we carried out a designed QTL pyramiding experiment to develop high yielding "Green Super Rice" varieties with significantly improved tolerance to salt stress and grain yield. Using the F4 population derived from a cross between two selected introgression lines, we were able to develop six mostly homozygous promising high yielding lines with significantly improved salt tolerance and grain yield under optimal and/or saline conditions in 3 years. Simultaneous mapping using the same breeding population and tunable genotyping-by-sequencing technology, we identified three QTL affecting salt injury score and leaf chlorophyll content. By analyzing 32M SNP data of the grandparents and graphical genotypes of the parents, we discovered 87 positional candidate genes for salt tolerant QTL. According to their functional annotation, we inferred the most likely candidate genes. We demonstrated that designed QTL pyramiding is a powerful strategy for simultaneous improvement and genetic dissection of complex traits in rice.

3.
Front Plant Sci ; 8: 977, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28642778

RESUMO

In a breeding effort to develop salt tolerant (ST) rice varieties by designed QTL pyramiding, large numbers of progenies derived from four crosses between salt- or drought- tolerant BC2F5 IR64 introgression lines, were subjected to severe salt stress, resulting in 422 ST plants. The progeny testing of the selected F3 lines under more severe salt stress resulted in identification of 16 promising homozygous lines with high levels of ST. Genetic characterization of the 422 ST F3 progeny and 318 random F2 plants from the same four crosses using 105 segregating SSR markers lead to three interesting discoveries: (1) salt stress can induce genome-wide epigenetic segregation (ES) characterized by complete loss of heterozygosity (LOH) and nearly complete loss of an allele (LOA) in the F3 progenies of four rice populations in a single generation; (2) ∼25% of the stress-induced ES loci were transgenerational and inherited from their salt- and drought- selected parents; and (3) the salt-induced LOH and LOA loci (regions) appeared to contain genes/alleles associated with ST and/or drought tolerance. 32 genomic regions that showed one or more types of salt-induced ES in the random and salt-selected progenies from these crosses. The same or different types of ES were detected with two large genomic regions on chromosomes 1 and 6 where more and the strongest ES were found across different populations. 14 genomic regions were found where the salt-induced ES regions were overlapping with QTL affecting ST related traits. The discovery of the three types of salt-induced ES showed several interesting characteristics and had important implications in evolution and future breeding for developing stress-resilient rice and crops.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA