Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 45(6): 3562-3570, 2024 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-38897776

RESUMO

Studying the effects of different modified materials on the physicochemical properties and fungal community structure of saline-alkali soil can provide theoretical basis for reasonable improvement of saline-alkali soil. High-throughput sequencing technology was used to explore the effects of five treatments, namely, control (CK), desulfurization gypsum (T1), soil ameliorant (T2), organic fertilizer (T3), and desulfurization gypsum compounds soil ameliorant and organic fertilizer (T4), on soil physicochemical properties and fungal community diversity, composition, and structure of saline-alkali soil in Hetao Plain, Inner Mongolia. The results showed that compared with those in CK, the contents of available phosphorus, available potassium, organic matter, and alkali hydrolysis nitrogen were significantly increased in modified material treatments, and the T4 treatment significantly decreased soil pH. Modified treatments increased the Simpson and Shannon indexes of fungi but decreased the Chao1 index. The dominant fungi were Ascomycota, Basidiomycota, and Mortierellomycota, and the dominant genera were Mortierella, Conocybe, Botryotrichum, Fusarium, and Pseudogymnoascus. The application of modified materials increased the relative abundance of Ascomycota, Basidiomycota, Fusarium, and Pseudogymnoascus, while decreasing the relative abundance of Mortierellomycota, Chytridiomycota, and Mortierella. LEfSe analysis showed that modified treatments altered the fungal community biomarkers. Correlation analysis showed that pH and available potassium were the main environmental factors affecting fungal community structure. The results can provide scientific basis for improving saline-alkali soil and increasing soil nutrients in Hetao Plain, Inner Mongolia.


Assuntos
Álcalis , Fungos , Microbiologia do Solo , Solo , Solo/química , Fungos/classificação , Álcalis/química , China , Fertilizantes , Dinâmica Populacional , Micobioma , Ascomicetos , Basidiomycota , Salinidade
2.
Sci Total Environ ; 945: 174053, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38897464

RESUMO

Flue gas desulfurization gypsum (FGDG), a solid waste produced during sulfur removal in coal-fired power plants, has applications in saline-alkali soil amelioration due to its function of calcium­sodium ion exchange. Existing research has focused on the use of gypsum to improve saline-alkali soils in non-coastal areas. However, coastal areas are not only extensively salinized, but an important source of methane, and surprisingly, FGDG may assist to decrease methane formation mainly by the action of sulfate radical. This is the first critical review to systematically discuss the effects of FGDG on both saline-alkali soil improvement and carbon emission control in tidal flats, including application status, amendment principles, environmental risks and methane emission control. After adding FGDG, soil salinization degree was weakened via adjusting soil structure, pH, exchangeable sodium percentage and electric conductivity, introduction of nutrients also promotes crop growth. The optimal FGDG dosage in tidal flats seems to be higher (>2 %) than that in non-coastal areas (<1 %). Its environmental risks regarding heavy metals and eutrophication are evaluated safe. In tidal areas, more methane is produced in hot seasons and ebb tides. Plants and invertebrates also promote methane release. FGDG controls methane production by promoting the activity of sulfate-reducing bacteria and inhibiting methanogens. Considering methane flux levels and seawater erosion, FGDG use in low tidal beach needs more research, while that in high and middle tidal beach is recommended. This review will expand applications and appropriate use of FGDG for reducing carbon emission and improving ecological services in coastal areas.

3.
Materials (Basel) ; 17(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38793294

RESUMO

The production of flue gas desulfurization gypsum poses a serious threat to the environment. Thus, utilizing gypsum-based self-leveling mortar (GSLM) stands out as a promising and effective approach to address the issue. ß-hemihydrate gypsum, cement, polycarboxylate superplasticizer, hydroxypropyl methyl cellulose ether (HPMC), retarder, and defoamer were used to prepare GSLM. The impact of mineral admixtures (steel slag (SS), silica fume (SF), and fly ash (FA)) on the physical, mechanical, and microstructural properties of GSLM was examined through hydration heat, X-ray diffractometry (XRD), Raman spectroscopy, and scanning electron microscopy (SEM) analyses. The GSLM benchmark mix ratio was determined as follows: 94% of desulfurization building gypsum, 6% of cement, 0.638% each of water reducer and retarder, 0.085% each of HPMC and defoamer (calculated additive ratio relative to gypsum), and 0.54 water-to-cement ratio. Although the initial fluidity decreased in the GSLM slurry with silica fume, there was minimal change in 30 min fluidity. Notably, at an SS content of 16%, the GSLM exhibited optimal flexural strength (6.6 MPa) and compressive strength (20.4 MPa). Hydration heat, XRD, and Raman analyses revealed that a small portion of SS actively participated in the hydration reaction, while the remaining SS served as a filler.

4.
Front Microbiol ; 14: 1239855, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37779720

RESUMO

The utilization of industrial and agricultural resources, such as desulfurization gypsum and straw, is increasingly favored to improve saline alkali land. However, there is still a lack of comprehensive study on the mechanism of organic carbon turnover under the conditions of desulfurization gypsum and straw application. We studied the changes in soil chemical performance, microbial diversity, and microbial community structure in soils with the addition of various levels of straw (no straw, S0; low straw, Sl; medium straw, Sm; and high straw, Sh) and gypsum (no gypsum, DG0; low gypsum, DGl; and high gypsum, DGh) in a 120-day incubation experiment. The bacterial and fungal community richness was higher in the SmDGl treatment than in the SmDG0 treatment. The microbial community evenness showed a similar pattern between the SmDGl and SmDG0 treatments. The combination of the straw and desulfurization gypsum treatments altered the relative abundance of the main bacterial phyla Bacteroidetes and Firmicutes and the dominant fungal class Sordariomycetes, which increased with the enhancement of the SOC ratio. The combination of the straw and desulfurization gypsum treatments, particularly SmDGl, significantly decreased the soil pH and exchangeable sodium percentage (ESP), while it increased the soil organic carbon, microbial biomass carbon, and activities of soil enzymes. Improvement in the soil salinization environment clearly drove the changes in bacterial α-diversity and community, particularly those in the soil carbon fractions and ESP. In conclusion, these findings provide a strong framework to determine the impact of application practices on soil restoration, and the information gained in this study will help to develop more sustainable and effective integrated strategies for the restoration of saline-alkali soil.

5.
Environ Monit Assess ; 195(11): 1273, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37798370

RESUMO

The application of flue gas desulfurization gypsum (FGDG) improves the soil structure, reduces soil pH, and accelerates soil salt leaching. Biochar amendment to soil can affect the soil infiltration rate, increase soil porosity, decrease soil bulk density, and enhance the water retention capacity. This study investigated the interactive effect of FGDG and biochar on water infiltration characteristics and physicochemical properties as well as determined the optimal amendment rate as a saline-alkaline soil conditioner. Seven experimental schemes were designed, and the newly reclaimed cultivated soil from Pingtan Comprehensive Experimental Zone in Fujian Province, China, was used in an indoor soil column experiment to simulate soil infiltration. Five models were employed to describe the infiltration process. The power function was used to represent the dynamic process of the wetting front. The conclusions of this study are as follows: (1) there was a reduction in the infiltration capacity of saline-alkaline soil (sandy soil) in each treatment, and the application of FGDG alone had the highest inhibition effect compared to the control (CK). The Kostiakov model provides the best fit for the experimental data of soil cumulative infiltration. (2) All treatments increased the total porosity and water content of saline-alkali soil, with the combined application of FGDG and biochar found to be more effective. (3) The application of FGDG alone or in combination with biochar decreased the pH and increased the electrical conductivity of the saline-alkali soil significantly, with the combined application having the most significant effect. In contrast, soil amended with biochar alone had minimal effect on the pH and EC of the soil. (4) The best improvement ratio was achieved with the F1B2 combination (75 g/kg FGDG + 30 g/kg biochar).


Assuntos
Sulfato de Cálcio , Solo , Sulfato de Cálcio/química , Solo/química , Monitoramento Ambiental , Carvão Vegetal , Gases , Álcalis , Água
6.
Environ Sci Pollut Res Int ; 30(32): 79241-79257, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37286836

RESUMO

Red mud (RM) is a solid waste material with high alkalinity and low cementing activity component. The low activity of RM makes it difficult to prepare high-performance cementitious materials from RM alone. Five groups of RM-based cementitious samples were prepared by adding steel slag (SS), grade 42.5 ordinary Portland cement (OPC), blast furnace slag cement (BFSC), flue gas desulfurization gypsum (FGDG), and fly ash (FA). The effects of different solid waste additives on the hydration mechanisms, mechanical properties, and environmental safety of RM-based cementitious materials were discussed and analyzed. The results showed that the samples prepared from different solid waste materials and RM formed similar hydration products, and the main products were C-S-H, tobermorite, and Ca(OH)2. The mechanical properties of the samples met the single flexural strength criterion (≥ 3.0 MPa) for first-grade pavement brick in the Industry Standard of Building Materials of the People's Republic of China-Concrete Pavement Brick. The alkali substances in the samples existed stably, and the leaching concentrations of the heavy metals reached class III of the surface water environmental quality standards. The radioactivity level was in the unrestricted range for main building materials and decorative materials. The results manifest that RM-based cementitious materials have the characteristics of environmentally friendly materials and possess the potential to partially or fully replace traditional cement in the development of engineering and construction applications and it provides innovative guidance for combined utilization of multi-solid waste materials and RM resources.


Assuntos
Metais Pesados , Resíduos Sólidos , Resíduos Sólidos/análise , Cinza de Carvão , Metais Pesados/análise , Sulfato de Cálcio , Aço
7.
Polymers (Basel) ; 14(21)2022 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-36365753

RESUMO

To resolve problems caused by the accumulation of flue gas desulfurization gypsum (FGDG) in the environment, a polymer material was prepared using FGDG, granulated blast furnace slag (GBFS), fly ash (FA), and solid sodium silicate (SSS). The compressive strength of these polymer specimens cured for 3, 28, and 60 d was regularly measured, and their condensation behavior was analyzed. Both the formation behavior of mineral crystals and microstructure characteristics were analyzed further using X-ray diffraction and scanning electron microscopy. The compressive strength of pure FGDG polymer specimen (whose strength is generated by particle condensation crystallization) is insufficient and the condensation is slow. The addition of appropriate amounts of GBFS, FA, and SSS can continuously and considerably improve the compressive strength and shorten the setting time. The optimal proportions of FGDG, GBFS, and FA are 50%, 20%, and 30%, respectively, with the SSS addition amount of 20 g. The incorporation of GBFS, FA, and SSS can promote the polymerization of calcium, silicon, and aluminum in FGDG to form silicate and aluminosilicate minerals. Their formation is the main reason for the increased compressive strength and accelerated coagulation.

8.
Artigo em Inglês | MEDLINE | ID: mdl-36231915

RESUMO

Hazardous heavy metal-laden coal combustion byproducts exposed to precipitation or surface/groundwater are of environmental concern. This study analyzed fly ash (FA) and desulfurization gypsum (FGD gypsum) samples obtained from 16 coal-fired power plants in Guizhou Province, China. A combination of field and laboratory studies was used to investigate the binding forms of lead (Pb), cadmium (Cd), and chromium (Cr) and their leaching characteristics under natural storage conditions. The results showed that there were significant proportions of residual states of these elements in FA (84-99% for Pb, 83-91% for Cd, and 73-97% for Cr), indicating a lack of migration to other environmental media. FGD gypsum contained high proportions of metals in migratable states, but the environmental risks were low due to their very low concentrations. The release of Pb, Cd, and Cr from FA and FGD gypsum into extracts varied according to pH. This is related to the form of each element in the solid and the series of reactions that occurs during the leaching process. However, aside from Cr in FA, all heavy metals in FA and FGD gypsum samples were present in concentrations below the relevant standards for landfill leachate, indicating very low release rates. The Cr levels (206-273 µg/L) in some of the FA extracts were higher than the limits for water pollution from domestic landfill, indicating that Cr in FA poses a leaching risk. The results of field leachate sampling and indoor simulated rainfall experiments further validated these findings, indicating that the release of Cr from stockpiled coal FA is a cause for concern.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Cádmio , Sulfato de Cálcio/química , Cromo , Carvão Mineral , Cinza de Carvão/química , Chumbo , Centrais Elétricas
9.
J Environ Manage ; 298: 113535, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34391105

RESUMO

Blending flue gas desulfurization (FGD) gypsum with surface sodic soil is a universally recognized method for the rapid amelioration of sodic soils; however, little information is available on whether other application methods (band application) will reclaim sodic soil. Three FGD gypsum application methods (single-band, dual-band and blend applications) and a control treatment (non-FGD gypsum) were carried out using sodic soil in soil bins to investigate the effects of the application method on the wetting front, major cations in the leachate during the process of water infiltration and soluble and exchangeable cations in the soil profile after infiltration. The results showed that the wetting fronts in the band treatments were denser in the horizontal direction than in the vertical direction, but the blend and control treatments only had vertical migration. The main channel of the stream in the band treatment was concentrated below the application site of FGD gypsum. The orders of desalting capacity were blend treatment, dual-band treatment and single-band treatment for the same volume of outlet water. There was no water outflow in the control treatment even after 115 days of leaching. The dual-band treatment significantly decreased the soil sodicity of the 0-40 cm soil profile, while the single-band treatment only effectively reclaimed (horizontally) half of the soil. In the blend treatment, the exchangeable sodium percentages were 21.3 % and 34.7 % at depths of 30-35 cm and 35-40 cm, respectively, and were close to zero at a depth of 0-30 cm. Compared with blend treatment, band application could be a better way to reclaim sodic soil with FGD gypsum due to its advantages of long-term and efficient amelioration with low consumption.


Assuntos
Poluentes do Solo , Solo , Sulfato de Cálcio , Rios , Água
10.
Bioresour Technol ; 340: 125719, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34365299

RESUMO

Composting is an environmentally friendly and sustainable way to transform Green waste (GW) into a useful product. GW, however, contains substantial quantities of lignocelluloses that extend the composting period unless substances that accelerate composting are added. The objective of this research was to assess the influence of the following additives on GW composting (w/w dry matter contents of the additives were indicated): sugarcane bagasse at 15%; bean dregs at 35%; silage at 45%; flue gas desulfurization gypsum at 5%; maifanite at 4%; and furfural residue at 20%. Based on the composting temperature, compost density, porosity, particle-size distribution, water retention, pH, cation exchange capacity, available nutrient contents, humification coefficient, organic matter loss, microbial populations, and phytotoxicity, the best additives were 45% silage and 5% flue gas desulfurization gypsum. The latter two additives produced a high-quality product in only 35 and 37 days, respectively.


Assuntos
Compostagem , Saccharum , Nitrogênio/análise , Solo , Temperatura
11.
Materials (Basel) ; 14(2)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466761

RESUMO

This work aims to investigate the effect of additional flue gas desulfurization gypsum (FGDG) on the properties of calcium sulfoaluminate cement (CSAC) blended with ground granulated blast furnace slag (GGBFS). The hydration rate, setting time, mechanical strength, pore structure and hydration products of the CSAC-GGBFS mixture containing FGDG were investigated systematically. The results show that the addition of FGDG promotes the hydration of the CSAC-GGBFS mixture and improves its mechanical strength; however, the FGDG content should not exceed 6%.

12.
Water Environ Res ; 92(10): 1711-1716, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32762097

RESUMO

The storage of large amount of power production waste occupies huge land resource; moreover, the stored or discarded waste may pollute the water environment through changing the water pH, releasing the trace and toxic elements even radioactive elements, and so on by leachate. Therefore, the recycling and disposal of power production waste are important and necessary. This paper reviews the research literatures published in 2019 on power generation waste from coal-fired and nuclear power plants, mainly including the recycling of fly ash and flue gas desulfurization gypsum in construction industry and environmental application, the recovery and immobilization of different metals from coal combustion products and selective catalytic reduction catalysts, and the treatment and disposal of radioactive elements from nuclear power plants. Practioner points Coal-fired power plant waste can be applied for material preparation and wastewater purification. Valued and toxic metals are normally recovered or removed from spent selective catalytic reduction catalyst. Recovery and removal of radioactive elements is essential for nuclear power plant wastes disposal.


Assuntos
Carvão Mineral , Centrais Elétricas , Carvão Mineral/análise , Cinza de Carvão , Metais
13.
Bioresour Technol ; 314: 123781, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32652451

RESUMO

Composting is an efficient method for treating agricultural wastes. This study investigated the effects of the addition of biochar (B) and gypsum (G) to straw mixed with chicken manure (SC) (i.e. SC, SC + B, SC + G and SC + B + G) on composting performance at different initial C/N ratios (20, 25 and 30). In general, biochar combined with gypsum (BCG) efficiently shortened composting time and reduced N loss, C loss and potential ecological risk. It also enhanced lignocellulose decomposition, nutrient retention and the overall compost quality expressed by a compost quality index (CQI), and increased the biomass of four different test crops. The BCG-induced increase in CQI was closely associated with microbial enzyme activities and C catabolic profiles. These results indicated that the combination of biochar and gypsum is more effective than each single additive during composting, and emphasized that microbial activities and functions play pivotal roles in determining compost quality and thereby agronomic performance.


Assuntos
Compostagem , Sulfato de Cálcio , Carbono , Carvão Vegetal , Esterco , Nitrogênio/análise , Solo
14.
Materials (Basel) ; 12(22)2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31703333

RESUMO

The effects or high CaO fly ash and sulfate activator on cementless grouting material were investigated through Labiles Waterglass (LW) grouting applied at an actual construction field. Circulating fluidized bed combustion ash was used as CaO fly ash, and petro cokes desulfurization gypsum was used as sulfate activator. Cementless grouting material (CGM) could decrease the gel time by about 16.7% compared with ordinary Portland cement (OPC). This characteristic improved the average daily workload and construction period per meter by about 13.5% with CGM. Furthermore, when constructing 1000 holes of LW grouting, the construction time could be reduced by 19 days (20% of the total construction period of LW grouting). Meanwhile, CGM could increase the homogel strength by about 48.4% after 28 days compared with OPC. After X-ray diffraction analysis and scanning electron microscope analysis, CGM was found to produce cement hydrate by chemical reaction mechanism of high CaO fly ash and sulfate activator, even though cement was not used. The matrix structure properties of CGM and OPC specimens were similar, but CGM, with 134.3% fineness, exhibited higher compressive strength and lower air permeability than OPC. As a result, CGM could reduce the leakage length per square meter by 74.4% compared with OPC. Using CGM as a substitute for OPC in LW grouting in actual sites could be beneficial in terms of securing construction speed and durability, as well as reducing CO2 emissions due to reduction of OPC usage.

15.
Water Environ Res ; 91(10): 1091-1096, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31408924

RESUMO

In this paper, the research literatures published in 2018 about power production waste generated from the coal-fired power plants and nuclear power plants are reviewed. The wastes from coal-fired plants include fly ash, flue gas desulfurization gypsum, spent selective catalytic reduction catalyst, hazardous trace elements, and the management, reuse, and disposal of these wastes are discussed. The treatment and disposal of wastes generated from nuclear power plants is also considered. PRACTITIONER POINTS: Reuse and disposal of coal-fired and nuclear power plant waste is discussed in this annual literature review. Emission of hazardous trace elements from coal-fired power plant is summarized. Radiological contaminant removal and radionuclides waste disposal is essential for nuclear power plant.


Assuntos
Centrais Elétricas , Oligoelementos , Carvão Mineral , Cinza de Carvão , Conservação dos Recursos Naturais
16.
Environ Sci Pollut Res Int ; 26(17): 17195-17203, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31012070

RESUMO

To explore the possibility of using flue gas desulfurization gypsum (FGDG) for inhibiting phosphorus (P) loss due to agricultural runoff, a 3-year study was performed in the farmlands of Chongming Dongtan between 2012 and 2015. Five different quantities of FGDG were used to treat the soil, and the effects of different treatments on the characteristics of soil P and crop growth were investigated. The results showed that 2 years after application of FGDG, the soil density at a depth of 0-10 cm decreased by 4.35-7.97%, the porosity increased by 1.77-11.0%, and the topsoil permeability increased by 0.87-3.81 times. Although the use of FGDG did not change the total P concentration in the soil, it decreased the concentration of sodium bicarbonate extractable P in the soil. Compared to the control, the average extractable P concentration at depths of 0-10 cm, 10-20 cm, and 20-30 cm decreased by 22.0-46.1%, 26.9-40.5%, and 22.8-34.8%, respectively. The inorganic P in the soil increased as the amount of FGDG increased, and the increase was mainly as Ca-P in the forms Ca2-P and Ca10-P. The decrease in bicarbonate extractable P and increase in inorganic P in the soil did not affect the growth of the crops, and the biomass and output of the crops increased compared to the control. Therefore, FGDG can enhance soil P immobilization, thus reducing soluble P runoff from farm fields, and improving water quality in receiving lakes and rivers while maintaining P nutrition to the crops.


Assuntos
Sulfato de Cálcio/química , Conservação dos Recursos Naturais/métodos , Fósforo/análise , Solo/química , Agricultura , China , Gases/química , Solo/normas
17.
J Colloid Interface Sci ; 542: 379-386, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30771633

RESUMO

This study introduces the application of the Fe(III)/flue gas desulfurization gypsum (FGDG) system to remove EDTA-chelated Pb(II). Systematic experiments were conducted to explore the possibility of removing EDTA-chelated Pb(II) and the crucial factors of the removal process, as well as to determine the underlying removal mechanism. The results showed that the removal reaction was a quick process, with the removal rate exceeding 90% after 1 min. The system removed 97.35% of EDTA-chelated Pb(II), reducing its concentration from 700 mg/L to 18.81 mg/L. EDTA-chelated Pb(II) can be most effectively removed at pH 2. This system had a high removal rate from 50 mg/L to 1000 mg/L of EDTA-chelated Pb(II), particularly at 700 mg/L when the removal rate reached 97.35%. When the molar ratio of Fe(III)/Pb(II) was greater or smaller than 1:1, an inhibitory effect on removal was observed. TOC and UV-Vis analyses indicated that ferric ions replaced lead ions, resulting in the conversion of the EDTA-chelated Pb(II) to EDTA-chelated Fe(III). Surface structure, crystalline phase and elemental distribution were analyzed to explore the transformation of substances. The results indicated that FGDG coprecipitated with free lead ions to form lead sulfate. Overall, the rapid and efficient removal performance with cost-effective characteristics makes the Fe(III)/FGDG system a potentially attractive method for the removal of EDTA-chelated Pb(II)in wastewater.

18.
Waste Manag Res ; 35(12): 1296-1301, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29070004

RESUMO

CO2 sequestration by flue gas desulfurization gypsum (FGDG) has become a promising FGDG disposal technology due to simultaneous CO2 emission reduction and FGDG conversion into calcium carbonate. In this paper, another merit of the novel technology, i.e., the removal of toxic elements (e.g., Hg and As) in FGDG, will be addressed for the first time. In three different aqueous ammonia (or amines) media, removal efficiencies of Hg and As in FGDG samples were evaluated during CO2 sequestration. Higher than 90% and 20% removal efficiencies, respectively, for Hg and As are achieved at 40°C in aqueous ammonia media, but they decrease at elevated temperatures. Ammonia loss takes place at 80°C and pH varies greatly with temperatures in aqueous ammonia. This is disadvantageous for the formation of Hg-ammonia complexes and for the yield of carbonates, which are responsible for Hg or As re-adsorption. The sequential chemical extraction method suggests that the speciation changes of Hg are induced by FGDG carbonation, and that unstable Hg speciation in triethanolamine increases at elevated temperatures.


Assuntos
Aminas/química , Arsênio/química , Mercúrio/química , Amônia , Sulfato de Cálcio/química , Dióxido de Carbono
19.
Poult Sci ; 96(8): 2676-2683, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28482091

RESUMO

A major concern of the broiler industry is the volatilization of ammonia (NH3) from the mixture of bedding material and broiler excretion that covers the floor of broiler houses. Gypsum has been proposed as a litter amendment to reduce NH3 volatilization, but reports of NH3 abatement vary among studies and the mechanism responsible for decreasing NH3 volatilization is not well understood. The goal of this study was to evaluate the effect of adding 20 or 40% flue-gas desulfurization gypsum (FGDG) to broiler litter on pH, electrical conductivity (EC), water potential, urea-degrading bacteria abundance, NH3 and carbon dioxide (CO2) evolution, and nitrogen (N) mineralization in several 21-d experiments. The addition of FGDG to broiler litter increased EC by 24 to 33% (P < 0.0001), decreased urea-degrading bacteria by 48 to 57% (P = 0.0001) and increased N mineralization by 10 to 11% (P = 0.0001) as compared to litters not amended with FGDG. Furthermore, the addition of FGDG to broiler litter decreased NH3 volatilization by 18 to 28% (P < 0.0001), potentially resulting from the significantly lower litter pH values compared to un-amended litter (P < 0.0001). Findings of this study indicate that amending broiler litter with 20% FGDG can decrease NH3 volatilization and increase the fertlizer value of broiler litter.


Assuntos
Poluição do Ar/prevenção & controle , Amônia/química , Bactérias/metabolismo , Sulfato de Cálcio/química , Galinhas , Pisos e Cobertura de Pisos , Esterco/análise , Poluentes Atmosféricos/química , Animais , Biodegradação Ambiental , Ureia/metabolismo , Volatilização
20.
Environ Sci Pollut Res Int ; 24(9): 8602-8608, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28194677

RESUMO

In this paper, waste gypsum from wet flue gas desulfurization (WFGD) mixed with NH3·H2O was applied for CO2 absorption in the solid-liquid-gas phase system. The effects of operation temperature, CO2 flow rates, and ammonia-to-gypsum ratio on carbonation process were discussed. Meanwhile, a model for CO2 absorption in the suspension of WFGD gypsum and ammonia was established. The results indicate that higher temperature favors the reaction, and WFGD gypsum conversion can be achieved above 90% even at lower ammonia-to-gypsum ratio, while CO2 conversion reaches 90% and ammonia utilization is up to 83.69%. The model fits well with the experimental results at various CO2 flow rates and predicts the concentration distribution of the main species, including CO2 absorbed, NH2COO-, and HCO3-.


Assuntos
Sulfato de Cálcio/química , Carbono/química , Enxofre/química , Dióxido de Carbono/química , Gases , Modelos Químicos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA