RESUMO
Working memory (WM) load has been well-documented to impair selective attention and inhibitory control. However, its effects on motor function remain insufficiently explored. To extend the existing literature, we investigated the impact of WM load on force control and movement-related brain activity. Sixteen healthy young participants performed a visual static force matching task using a pinch grip under varying WM loads. The task included low and high WM load conditions (memorizing one digit or six digits), and the precision level required to control force was adjusted by manipulating visual gain (low vs. high visual gains), with higher visual gain necessitating more precise force control. Peri-movement alpha and beta event-related desynchronization (ERD), along with force accuracy and steadiness, were measured using electroencephalography recorded over the central areas during the force control task. Results indicated that while force accuracy and steadiness significantly improved with higher visual gain, there was no significant effect of WM load on these measures. Alpha and beta ERD were greater under high than low visual gain, and also greater under high than low WM load. These findings suggest that in young adults, increased WM load leads to compensatory increases in sensorimotor cortical activity to mitigate potential declines in static force control performance that may result from the depletion of neural resources caused by WM load. Our findings extend current understanding of the interaction between WM and sensorimotor processes by offering new insights into how movement-related brain activity is influenced by heightened WM load.
RESUMO
A periodic sound with a fixed inter-stimulus interval elicits an auditory steady-state response (ASSR). An abrupt change in a continuous sound is known to affect the brain's ongoing neural oscillatory activity, but the underlying mechanism has not been fully clarified. We investigated whether and how an abrupt change in sound intensity affects the ASSR. The control stimulus was a train of 1-ms clicks with a sound pressure level (SPL) of 70 dB at 40 Hz for 1000 ms. In addition to the control stimulus, we applied six stimuli with changes consisting of a 500-ms train at 70 dB followed by a 500-ms similar train with louder clicks of 75, 80, or 85 dB or weaker clicks of 55, 60, or 65 dB. We obtained the magnetoencephalographic responses from 15 healthy subjects while presenting the seven stimuli randomly. The two-dipole model obtained for the 40-Hz ASSR in the control condition was applied to all of the stimulus conditions for each subject, and then the time-frequency analysis was conducted. We observed that both the amplitude and the inter-trial phase coherence of the 40-Hz ASSR transiently decreased and returned to the steady state after the change onset, i.e., the desynchronization of 40-Hz ASSR. The degree of desynchronization depended on the magnitude of the change regardless of whether the sound intensity increased or decreased, which might be a novel neurophysiological index of cerebral response driven by a change in the sensory environment.
RESUMO
Objective.Stroke is a major cause of adult disability worldwide, resulting in motor impairments. To regain motor function, patients undergo rehabilitation, typically involving repetitive movement training. For those who lack volitional movement, novel technology-based approaches have emerged that directly involve the central nervous system, through neuromodulation techniques such as transcranial magnetic stimulation (TMS), and closed-loop neurofeedback like brain-computer interfaces (BCIs). This, can be augmented through proprioceptive feedback delivered many times by embodied virtual reality (VR). Nonetheless, despite a growing body of research demonstrating the individual efficacy of each technique, there is limited information on their combined effects.Approach.In this study, we analyzed the Electroencephalographic (EEG) signals acquired from 10 patients with more than 4 months since stroke during a longitudinal intervention with repetitive TMS followed by VR-BCI training. From the EEG, the event related desynchronization (ERD) and individual alpha frequency (IAF) were extracted, evaluated over time and correlated with clinical outcome.Main results.Every patient's clinical outcome improved after treatment, and ERD magnitude increased during simultaneous rTMS and VR-BCI. Additionally, IAF values showed a significant correlation with clinical outcome, nonetheless, no relationship was found between differences in ERD pre- post- intervention with the clinical improvement.Significance.This study furnishes empirical evidence supporting the efficacy of the joint action of rTMS and VR-BCI in enhancing patient recovery. It also suggests a relationship between IAF and rehabilitation outcomes, that could potentially serve as a retrievable biomarker for stroke recovery.
Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Estimulação Magnética Transcraniana , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Estimulação Magnética Transcraniana/métodos , Reabilitação do Acidente Vascular Cerebral/métodos , Idoso , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/terapia , Eletroencefalografia/métodos , Realidade Virtual , Adulto , Doença Crônica , Neurorretroalimentação/métodos , Resultado do TratamentoRESUMO
BACKGROUND: Microglial activation is one hallmark of Alzheimer disease (AD) neuropathology but the impact of the regional interplay of microglia cells in the brain is poorly understood. We hypothesized that microglial activation is regionally synchronized in the healthy brain but experiences regional desynchronization with ongoing neurodegenerative disease. We addressed the existence of a microglia connectome and investigated microglial desynchronization as an AD biomarker. METHODS: To validate the concept, we performed microglia depletion in mice to test whether interregional correlation coefficients (ICCs) of 18 kDa translocator protein (TSPO)-PET change when microglia are cleared. Next, we evaluated the influence of dysfunctional microglia and AD pathophysiology on TSPO-PET ICCs in the mouse brain, followed by translation to a human AD-continuum dataset. We correlated a personalized microglia desynchronization index with cognitive performance. Finally, we performed single-cell radiotracing (scRadiotracing) in mice to ensure the microglial source of the measured desynchronization. RESULTS: Microglia-depleted mice showed a strong ICC reduction in all brain compartments, indicating microglia-specific desynchronization. AD mouse models demonstrated significant reductions of microglial synchronicity, associated with increasing variability of cellular radiotracer uptake in pathologically altered brain regions. Humans within the AD-continuum indicated a stage-depended reduction of microglia synchronicity associated with cognitive decline. scRadiotracing in mice showed that the increased TSPO signal was attributed to microglia. CONCLUSION: Using TSPO-PET imaging of mice with depleted microglia and scRadiotracing in an amyloid model, we provide first evidence that a microglia connectome can be assessed in the mouse brain. Microglia synchronicity is closely associated with cognitive decline in AD and could serve as an independent personalized biomarker for disease progression.
Assuntos
Doença de Alzheimer , Encéfalo , Disfunção Cognitiva , Microglia , Animais , Microglia/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Camundongos , Disfunção Cognitiva/metabolismo , Humanos , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Tomografia por Emissão de Pósitrons , Receptores de GABA/metabolismo , Masculino , Camundongos Transgênicos , Conectoma/métodos , FemininoRESUMO
OBJECTIVES: Motor symptoms of Parkinson's disease improve during REM sleep behavior disorder movement episodes. Our aim was to study cortical activity during these movement episodes, in patients with and without Parkinson's disease, in order to investigate the cortical involvement in the generation of its electromyographic activity and its potential relationship with Parkinson's disease. METHODS: We looked retrospectively in our polysomnography database for patients with REM sleep behavior disorder, analyzing fifteen patients in total, seven with idiopathic REM sleep behavior disorder and eight associated with Parkinson's disease. We selected segments of REM sleep with the presence of movements (evidenced by electromyographic activation), and studied movement-related changes in cortical activity by averaging the electroencephalographic signal (premotor potential) and by means of time/frequency transforms. RESULTS: We found a premotor potential and an energy decrease of alpha-beta oscillatory activity preceding the onset of electromyographic activity, together with an increase of gamma activity for the duration of the movement. All these changes were similarly present in REM sleep behavior disorder patients with and without Parkinson's disease. CONCLUSIONS: Movement-related changes in electroencephalographic activity observed in REM sleep behavior disorder are similar to those observed during voluntary movements, regardless of the presence of Parkinson's disease motor symptoms. SIGNIFICANCE: These results suggest a main involvement of the cortex in the generation of the movements during REM sleep.
Assuntos
Eletroencefalografia , Eletromiografia , Movimento , Doença de Parkinson , Transtorno do Comportamento do Sono REM , Humanos , Transtorno do Comportamento do Sono REM/fisiopatologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Eletroencefalografia/métodos , Movimento/fisiologia , Doença de Parkinson/fisiopatologia , Eletromiografia/métodos , Estudos Retrospectivos , Polissonografia/métodos , Córtex Cerebral/fisiopatologiaRESUMO
The act of recalling memories can paradoxically lead to the forgetting of other associated memories, a phenomenon known as retrieval-induced forgetting (RIF). Inhibitory control mechanisms, primarily mediated by the prefrontal cortex, are thought to contribute to RIF. In this study, we examined whether stimulating the medial prefrontal cortex (mPFC) with transcranial direct current stimulation modulates RIF and investigated the associated electrophysiological correlates. In a randomized study, 50 participants (27 males and 23 females) received either real or sham stimulation before performing retrieval practice on target memories. After retrieval practice, a final memory test to assess RIF was administered. We found that stimulation selectively increased the retrieval accuracy of competing memories, thereby decreasing RIF, while the retrieval accuracy of target memories remained unchanged. The reduction in RIF was associated with a more pronounced beta desynchronization within the left dorsolateral prefrontal cortex (left-DLPFC), in an early time window (<500â ms) after cue onset during retrieval practice. This led to a stronger beta desynchronization within the parietal cortex in a later time window, an established marker for successful memory retrieval. Together, our results establish the causal involvement of the mPFC in actively suppressing competing memories and demonstrate that while forgetting arises as a consequence of retrieving specific memories, these two processes are functionally independent. Our findings suggest that stimulation potentially disrupted inhibitory control processes, as evidenced by reduced RIF and stronger beta desynchronization in fronto-parietal brain regions during memory retrieval, although further research is needed to elucidate the specific mechanisms underlying this effect.
Assuntos
Rememoração Mental , Lobo Parietal , Córtex Pré-Frontal , Estimulação Transcraniana por Corrente Contínua , Humanos , Masculino , Feminino , Rememoração Mental/fisiologia , Córtex Pré-Frontal/fisiologia , Lobo Parietal/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Adulto Jovem , Adulto , Ritmo beta/fisiologia , Sincronização Cortical/fisiologiaRESUMO
BACKGROUND: Psychomotor retardation (PMR) is a core feature of major depressive disorder (MDD), which is characterized by abnormalities in motor control and cognitive processes. PMR in MDD can predict a poor antidepressant response, suggesting that PMR may serve as a marker of the antidepressant response. However, the neuropathological relationship between treatment outcomes and PMR remains uncertain. Thus, this study examined electrophysiological biomarkers associated with poor antidepressant response in MDD. METHODS: A total of 142 subjects were enrolled in this study, including 49 healthy controls (HCs) and 93 MDD patients. All participants performed a simple right-hand visuomotor task during magnetoencephalography (MEG) scanning. Patients who exhibited at least a 50 % reduction in disorder severity at the endpoint (>2 weeks) were considered to be responders. Motor-related beta desynchronization (MRBD) and inter- and intra-hemispheric functional connectivity were measured in the bilateral motor network. RESULTS: An increased MRBD and decreased inter- and intra-hemispheric functional connectivity in the motor network during movement were observed in non-responders, relative to responders and HCs. This dysregulation predicted the potential antidepressant response. CONCLUSION: Abnormal local activity and functional connectivity in the motor network indicate poor psychomotor function, which might cause insensitivity to antidepressant treatment. This could be regarded as a potential neural mechanism for the prediction of a patient's treatment response.
Assuntos
Antidepressivos , Transtorno Depressivo Maior , Magnetoencefalografia , Humanos , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/fisiopatologia , Masculino , Feminino , Antidepressivos/uso terapêutico , Antidepressivos/farmacologia , Adulto , Pessoa de Meia-Idade , Desempenho Psicomotor/efeitos dos fármacos , Desempenho Psicomotor/fisiologia , Resultado do Tratamento , Transtornos Psicomotores/fisiopatologia , Transtornos Psicomotores/tratamento farmacológico , Estudos de Casos e ControlesRESUMO
Virtual reality (VR)-guided motor imagery (MI) is a widely used approach for motor rehabilitation, especially for patients with severe motor impairments. Most approaches provide visual guidance from the first-person perspective (1PP). MI training with visual guidance from the third-person perspective (3PP) remains largely unexplored. We argue that 3PP MI training has its own advantages and can supplement 1PP MI. For some movements beyond the view of 1PP, such as shoulder shrugging and other axial movements, MI are suitable performed under 3PP. However, the efficiency of existing paradigms for 3PP MI is unsatisfactory. We speculate that the absence of sense of body ownership (SOO) from 3PP could be one possible factor and hypothesize that 3PP MI could be enhanced by eliciting SOO over a 3PP avatar. Based on our hypothesis, a novel paradigm was proposed to enhance 3PP MI by inducing full-body illusion (FBI) from 3PP, which is similar to the so-called out-of-body experience (OBE), using synchronous visuo-tactile stimulus with VR. The event-related Electroencephalograph (EEG) desynchronization (ERD) at motor-related regions from 31 healthy participants were calculated and compared with a control paradigm without "OBE" FBI induction. This study attempts to enhance 3PP MI with FBI induction. It offers an opportunity to perform MI guided by action observation from 3PP with elicited SOO to the observed avatar. We believe that 3PP MI could provide more possibilities for effective rehabilitation training, when SOO could be elicited to a virtual avatar and the present work demonstrates its viability and effectiveness.
Assuntos
Imaginação , Realidade Virtual , Humanos , Masculino , Feminino , Adulto , Imaginação/fisiologia , Adulto Jovem , Ilusões/fisiologia , Imagem Corporal , Eletroencefalografia/métodos , Movimento/fisiologiaRESUMO
Evidence suggests that chronic ankle instability (CAI) is not merely a peripheral musculoskeletal injury but should be recognized as a neurophysiological dysfunction. This reflects a paradigm shift from focusing on peripheral structural changes to emphasizing the central nervous system. However, changes in cortical activity during functional activities remain poorly understood. Thus, this study aimed to compare preparatory brain activity during gait initiation (GI) through movement-related cortical potentials (MRCPs) in individuals with CAI and healthy subjects. The proactive components of MRCPs, including contingent negative variation (CNV) and event-related desynchronization (ERD), were measured using electroencephalography. The primary outcomes were late CNV amplitude, CNV peak amplitude, CNV peak time, and alpha/beta ERD. The results indicated that the late CNV amplitude was significantly lower in the CAI group compared to the healthy group at the Fz and Cz electrodes (P < 0.001). The CAI group also demonstrated lower CNV peak amplitude at the Fz, Cz, and Pz electrodes (P < 0.0025). Additionally, in the CAI group, signals peaked earlier at the Cz electrode (P = 0.002). Furthermore, alpha ERD at Pz was significantly lower in the CAI group than in the healthy group (P = 0.003), suggesting diminished preparatory brain activity during GI in CAI subjects. Recognizing CAI as a condition involving both peripheral and central dysfunctions highlights the importance of a multidisciplinary approach in treatment and rehabilitation. This approach should target brain activity in addition to peripheral structures, potentially leading to improved long-term outcomes for patients.
Assuntos
Eletroencefalografia , Instabilidade Articular , Humanos , Masculino , Feminino , Adulto Jovem , Instabilidade Articular/fisiopatologia , Adulto , Eletroencefalografia/métodos , Marcha/fisiologia , Variação Contingente Negativa/fisiologia , Articulação do Tornozelo/fisiopatologia , Córtex Cerebral/fisiopatologia , Doença CrônicaRESUMO
The functional activities of the brain during any task like imaginary, motor, or cognitive are different in pattern as well as their area of activation in the brain is also different. This variation in pattern is also found in the brain's electrical variations that can be measured from the scalp of the brain using an electroencephalogram (EEG). This work exclusively studied a group of subjects' EEG data (available at: https://archive.physionet.org/physiobank/database/eegmat/) to unravel the activation pattern of the human brain during a mental arithmetic task. Since any cognitive task creates variations in EEG signal pattern, the relative changes in the signal power also occur which is also known as event-related desynchronization/synchronization (ERD/ERS). In this work, ERD/ERS have calculated the band-wise power spectral density (PSD) using Welch's method from the EEG signals. Besides, the coherence analysis was also performed to verify the results of ERD/ERS analysis from several randomly chosen subjects' EEG data. Here, subjects performing mental arithmetic tasks were grouped based on their performances: good (subtraction solved > 10 on average) and bad (subtraction solved ≤ 10 on average) to conduct group-specific ERD/ERS analysis regarding their performance in cognitive tasks. It was found that when the brain is on count condition, the variations found in the band power of theta and beta. The amounts of ERS in the left hemisphere are increased. When the task complexity increases, it contributes to an increase in relative ERD/ERS amounts and durations. The left and right hemispheres were asymmetrically distributed by both the pre-stimulus stages of the corresponding band power and relative ERD/ERS.
RESUMO
Introduction: Stroke leads to motor deficits, requiring rehabilitation therapy that targets mechanisms underlying movement generation. Cortical activity during the planning and execution of motor tasks can be studied using EEG, particularly via the Event Related Desynchronization (ERD). ERD is altered by stroke in a manner that varies with extent of motor deficits. Despite this consensus in the literature, defining precisely the temporality of these alterations during movement preparation and performance may be helpful to better understand motor system pathophysiology and might also inform development of novel therapies that benefit from temporal resolution. Methods: Patients with chronic hemiparetic post-stroke (n = 27; age 59 ± 14 years) and age-matched healthy right-handed control subjects (n = 23; 59 ± 12 years) were included. They performed a shoulder rotation task following the onset of a stimulus. Cortical activity was recorded using a 256-electrode EEG cap. ERD was calculated in the beta frequency band (15-30 Hz) in ipsilesional sensorimotor cortex, contralateral to movement. The ERD was compared over time between stroke and control subjects using permutation tests. The correlation between upper extremity motor deficits (assessed by the Fugl-Meyer scale) and ERD over time was studied in stroke patients using Spearman and permutation tests. Results: Patients with stroke showed on average less beta ERD amplitude than control subjects in the time window of -350 to 50 ms relative to movement onset (t(46) = 2.8, p = 0.007, Cohen's d = 0.31, 95% CI [0.22: 1.40]). Beta-ERD values correlated negatively with the Fugl-Meyer score during the time window -200 to 400 ms relative to movement onset (Spearman's r = -0.54, p = 0.003, 95% CI [-0.77 to -0.18]). Discussion: Our results provide new insights into the precise temporal changes of ERD after hemiparetic stroke and the associations they have with motor deficits. After stroke, the average amplitude of cortical activity is reduced as compared to age-matched controls, and the extent of this decrease is correlated with the severity of motor deficits; both were true during motor programming and during motor performance. Understanding how stroke affects the temporal dynamics of cortical preparation and execution of movement paves the way for more precise restorative therapies. Studying the temporal dynamics of the EEG also strengthens the promising interest of ERD as a biomarker of post-stroke motor function.
RESUMO
Non-invasive brain stimulation techniques offer therapeutic potential for neurological and psychiatric disorders. However, current methods are often limited in their stimulation depth. The novel transcranial temporal interference stimulation (tTIS) aims to overcome this limitation by non-invasively targeting deeper brain regions. In this study, we aimed to evaluate the efficacy of tTIS in modulating alpha activity during a mental rotation task. The effects of tTIS were compared with transcranial alternating current stimulation (tACS) and a sham control. Participants were randomly assigned to a tTIS, tACS, or sham group. They performed alternating blocks of resting and mental rotation tasks before, during, and after stimulation. During the stimulation blocks, participants received 20 min of stimulation adjusted to their individual alpha frequency (IAF). We assessed shifts in resting state alpha power, event-related desynchronization (ERD) of alpha activity during mental rotation, as well as resulting improvements in behavioral performance. Our results indicate tTIS and tACS to be effective in modulating cortical alpha activity during mental rotation, leading to an increase in ERD from pre- to poststimulation as well as compared to sham stimulation. However, this increase in ERD was not correlated with enhanced mental rotation performance, and resting state alpha power remained unchanged. Our findings underscore the complex nature of tTIS and tACS efficacy, indicating that stimulation effects are more observable during active cognitive tasks, while their impacts are less pronounced on resting neuronal systems.
Assuntos
Ritmo alfa , Estimulação Transcraniana por Corrente Contínua , Humanos , Masculino , Ritmo alfa/fisiologia , Feminino , Adulto , Adulto Jovem , Imaginação/fisiologia , Córtex Cerebral/fisiologia , Percepção Espacial/fisiologia , Rotação , Desempenho Psicomotor/fisiologiaRESUMO
The use of CRT-D devices with left ventricular (LV) sensing has created controversy about programming various parameters especially the left ventricular T wave protection (LVTP) designed to prevent the delivery of a pacing stimulus into the LV vulnerable period. Such devices are available from two manufacturers. This review focuses only on those provided by Biotronik. As the LVTP controls LV sensing, some investigators have advocated turning off the LVTP to prevent episodic desynchronization known a CRT pacing interrupt. However, LVTP off reduces but does not eliminate this type of desynchronization if triggering of an LV stimulus upon right ventricular sensing (RVs) is programmed on. Deactivation of the LVTP incurs loss of diagnostic data provided by CRT pacing interrupt itself. By choice, the occurrence of CRT pacing interrupt can be totally eliminated by appropriate programming of the LV upper rate interval, LVTP and triggering of an LV pacing event upon RVs. Various programmability options are available according to clinical circumstances. As a rule, clinical judgement must weigh the potential diagnostic benefit of preserving the LVTP capable of recording of episodic CRT pacing interrupt against the loss of diagnostic benefit when LVTP is programmed off (with or without triggering of an LV stimulus upon RVs).
RESUMO
Mirror Visual Feedback (MVF)-induced illusion of hand movements produces beneficial effects in patients with chronic pain. However, neurophysiological mechanisms underlying these effects are poorly known. In this preliminary study, we test the novel hypothesis that such an MVF-induced movement illusion may exert its effects by changing the activity in midline cortical areas associated with pain processing. Electrical stimuli with individually fixed intensity were applied to the left hand of healthy adults to produce painful and non-painful sensations during unilateral right-hand movements with such an MVF illusion and right and bilateral hand movements without MVF. During these events, electroencephalographic (EEG) activity was recorded from 64 scalp electrodes. Event-related desynchronization (ERD) of EEG alpha rhythms (8-12 Hz) indexed the neurophysiological oscillatory mechanisms inducing cortical activation. Compared to the painful sensations, the non-painful sensations were specifically characterized by (1) lower alpha ERD estimated in the cortical midline, angular gyrus, and lateral parietal regions during the experimental condition with MVF and (2) higher alpha ERD estimated in the lateral prefrontal and parietal regions during the control conditions without MVF. These preliminary results suggest that the MVF-induced movement illusion may affect nociception and neurophysiological oscillatory mechanisms, reducing the activation in cortical limbic and default mode regions.
RESUMO
This study aimed to investigate clinical and physiological predictors of brain oscillatory activity in patients with fibromyalgia (FM), assessing resting-state power, event-related desynchronization (ERD), and event-related synchronization (ERS) during tasks. We performed a cross-sectional analysis, including clinical and neurophysiological data from 78 subjects with FM. Multivariate regression models were built to explore predictors of electroencephalography bands. Our findings show a negative correlation between beta oscillations and pain intensity; fibromyalgia duration is positively associated with increased oscillatory power at low frequencies and in the beta band; ERS oscillations in the theta and alpha bands seem to be correlated with better symptoms of FM; fatigue has a signature in the alpha band-a positive relationship in resting-state and a negative relationship in ERS oscillations. Specific neural signatures lead to potential clusters of neural adaptation, in which beta oscillatory activity in the resting state represents a more adaptive activity when pain levels are low and stimulus-evoked oscillations at lower frequencies are likely brain compensatory mechanisms. These neurophysiological changes may help to understand the impact of long-term chronic pain in the central nervous system and the descending inhibitory system in fibromyalgia subjects.
RESUMO
INTRODUCTION: The motor system undergoes significant development throughout childhood and adolescence. The contingent negative variation (CNV), a brain response reflecting preparation for upcoming actions, offers valuable insights into these changes. However, previous CNV studies of motor preparation have primarily focused on adults, leaving a gap in our understanding of how cortical activity related to motor planning and execution matures in children and adolescents. METHODS: The study addresses this gap by investigating the maturation of motor preparation, pre-activation, and post-processing in 46 healthy, right-handed children and adolescents aged 5-16 years. To overcome the resolution limitations of previous studies, we combined 64-electrode high-density Electroencephalography (EEG) and advanced analysis techniques, such as event-related potentials (ERPs), mu-rhythm desynchronization as well as source localization approaches. The combined analyses provided an in-depth understanding of cortical activity during motor control. RESULTS: Our data showed that children exhibited prolonged reaction times, increased errors, and a distinct pattern of cortical activation compared to adolescents. The findings suggest that the supplementary motor area (SMA) plays a progressively stronger role in motor planning and response evaluation as children age. Additionally, we observe a decrease in sensory processing and post-movement activity with development, potentially reflecting increased efficiency. Interestingly, adolescent subjects, unlike young adults in previous studies, did not yet show contralateral activation of motor areas during the motor preparation phase (late CNV). CONCLUSION: The progressive increase in SMA activation and distinct cortical activation patterns in younger participants suggest immature motor areas. These immature regions might be a primary cause underlying the age-related increase in motor action control efficiency. Additionally, the study demonstrates a prolonged maturation of cortical motor areas, extending well into early adulthood, challenging the assumption that motor control is fully developed by late adolescence. This research, extending fundamental knowledge of motor control development, offers valuable insights that lay the foundation for understanding and treating motor control difficulties.
Assuntos
Eletroencefalografia , Humanos , Adolescente , Criança , Masculino , Feminino , Eletroencefalografia/métodos , Pré-Escolar , Potenciais Evocados/fisiologia , Córtex Motor/fisiologia , Sinais (Psicologia) , Tempo de Reação/fisiologia , Córtex Cerebral/fisiologia , Variação Contingente Negativa/fisiologia , Desempenho Psicomotor/fisiologia , Atividade Motora/fisiologiaRESUMO
PURPOSE: The purpose of the current study was to explore the immediate effect of motor imagery (MI) involving finger movement of a given limb on cortical response and muscle activity in healthy subjects. METHODS: Twenty healthy right-handed adults (7 females and 13 males) with a mean + SD age of 22.05 + 6.08 years participated in the study. The beta-band event-related desynchronization (ERD) at the sensorimotor cortex and muscle activity during finger movement tasks using either the index, middle, or thumb digits on the non-dominant left hand were compared before and after an MI training session. Subjects underwent a pre-MI, MI training, and finally a post-MI session where they either performed or imagined performing a button-pushing action 50 times per session with each of the three digits. RESULTS: The ERD power in the beta frequency band was lower in pre-MI compared to post-MI and was significantly different between the pre- and post-MI sessions for both the index and middle fingers, but not the thumb. A significant decrease was seen in the mean muscle activity during post-MI compared to pre-MI for all the digits except the thumb. CONCLUSIONS: The results from the current study suggest that complex MI can result in motor learning and improvement in motor performance, thereby requiring less effort during motion.
Assuntos
Dedos , Imaginação , Movimento , Músculo Esquelético , Humanos , Masculino , Feminino , Dedos/fisiologia , Adulto , Imaginação/fisiologia , Adulto Jovem , Músculo Esquelético/fisiologia , Movimento/fisiologia , Eletromiografia , Córtex Sensório-Motor/fisiologia , Ritmo beta/fisiologia , Desempenho Psicomotor/fisiologia , Eletroencefalografia , Atividade Motora/fisiologiaRESUMO
BACKGROUND: The high prevalence of desynchronized biological rhythms is becoming a primary public health concern. We assess complex and diverse inter-modulations among multi-frequency rhythms present in blood pressure (BP) and heart rate (HR). SUBJECTS: and Methods: We performed 7-day/24-hour Ambulatory BP Monitoring in 220 (133 women) residents (23 to 74 years) of a rural Japanese town in Kochi Prefecture under everyday life conditions. RESULTS: A symphony of biological clocks contributes to the preservation of a synchronized circadian system. (1) Citizens with an average 12.02-h period had fewer vascular variability disorders than those with shorter (11.37-h) or longer (12.88-h) periods (P<0.05), suggesting that the circasemidian rhythm is potentially important for human health. (2) An appropriate BP-HR coupling promoted healthier circadian profiles than a phase-advanced BP: lower 7-day nighttime SBP (106.8 vs. 112.9 mmHg, P=0.0469), deeper nocturnal SBP dip (20.5% vs. 16.8%, P=0.0101), and less frequent incidence of masked non-dipping (0.53 vs. 0.86, P=0.0378), identifying the night as an important time window. CONCLUSION: Adaptation to irregular schedules in everyday life occurs unconsciously at night, probably initiated from the brain default mode network, in coordination with the biological clock system, including a reinforced about 12-hour clock, as "a biological clock-guided core integration system".
RESUMO
Electroencephalogram (EEG) studies have suggested compensatory brain overactivation in cognitively healthy (CH) older adults with pathological beta-amyloid(Aß42)/tau ratios during working memory and interference processing. However, the association between glutamatergic metabolites and brain activation proxied by EEG signals has not been thoroughly investigated. We aim to determine the involvement of these metabolites in EEG signaling. We focused on CH older adults classified under (1) normal CSF Aß42/tau ratios (CH-NATs) and (2) pathological Aß42/tau ratios (CH-PATs). We measured plasma glutamine, glutamate, pyroglutamate, and γ-aminobutyric acid concentrations using tandem mass spectrometry and conducted a correlational analysis with alpha frequency event-related desynchronization (ERD). Under the N-back working memory paradigm, CH-NATs presented negative correlations (r = ~-0.74--0.96, p = 0.0001-0.0414) between pyroglutamate and alpha ERD but positive correlations (r = ~0.82-0.95, p = 0.0003-0.0119) between glutamine and alpha ERD. Under Stroop interference testing, CH-NATs generated negative correlations between glutamine and left temporal alpha ERD (r = -0.96, p = 0.037 and r = -0.97, p = 0.027). Our study demonstrated that glutamine and pyroglutamate levels were associated with EEG activity only in CH-NATs. These results suggest cognitively healthy adults with amyloid/tau pathology experience subtle metabolic dysfunction that may influence EEG signaling during cognitive challenge. A longitudinal follow-up study with a larger sample size is needed to validate these pilot studies.
Assuntos
Doença de Alzheimer , Cognição , Ácido Glutâmico , Memória de Curto Prazo , Humanos , Doença de Alzheimer/sangue , Doença de Alzheimer/fisiopatologia , Memória de Curto Prazo/fisiologia , Feminino , Masculino , Idoso , Cognição/fisiologia , Ácido Glutâmico/sangue , Ácido Glutâmico/metabolismo , Eletroencefalografia , Pessoa de Meia-Idade , Peptídeos beta-Amiloides/sangue , Peptídeos beta-Amiloides/metabolismo , Proteínas tau/sangue , Proteínas tau/metabolismoRESUMO
Administration or consumption of classic psychedelics (CPs) leads to profound changes in experience which are often described as highly novel and meaningful. They have shown substantial promise in treating depressive symptoms and may be therapeutic in other situations. Although research suggests that the therapeutic response is correlated with the intensity of the experience, the neural circuit basis for the alterations in experience caused by CPs requires further study. The medial prefrontal cortex (mPFC), where CPs have been shown to induce rapid, 5-HT2A receptor-dependent structural and neurophysiological changes, is believed to be a key site of action. To investigate the acute neural circuit changes induced by CPs, we recorded single neurons and local field potentials in the mPFC of freely behaving male mice after administration of the 5-HT2A/2C receptor-selective CP, 2,5-Dimethoxy-4-iodoamphetamine (DOI). We segregated recordings into active and rest periods in order to examine cortical activity during desynchronized (active) and synchronized (rest) states. We found that DOI induced a robust decrease in low frequency power when animals were at rest, attenuating the usual synchronization that occurs during less active behavioral states. DOI also increased broadband gamma power and suppressed activity in fast-spiking neurons in both active and rest periods. Together, these results suggest that the CP DOI induces persistent desynchronization in mPFC, including during rest when mPFC typically exhibits more synchronized activity. This shift in cortical dynamics may in part underlie the longer-lasting effects of CPs on plasticity, and may be critical to their therapeutic properties.