Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 444
Filtrar
1.
Chemosphere ; 365: 143377, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39306100

RESUMO

Understanding the relationship between sludge yield stress (σy) and dewatering performance is essential for optimizing sludge conditioning processes. This study systematically investigates the effects of various conditioning methods-including thermal hydrolysis (TH), freezing/thawing (FT), anaerobic digestion (AD), polyaluminum chloride (PAC), polyacrylamide (PAM), and Fenton treatment (Fenton)-on sludge yield stress and its correlation with dewatering efficiency. Using linear regression, partial least squares regression (PLSR), and correlation heatmap analyses, we reveal significant variations in the correlation between σy and dewatering indexes, including moisture content (Mc), capillary suction time (CST), and bound water proportion (Wb/Wt), depending on the conditioning method and intensity. Under FT and PAM conditioning, σy shows a strong negative linear correlation with dewatering performance, with Pearson's r values exceeding -0.880, indicating that a decrease in σy corresponds to improved dewatering efficiency. Conversely, AD conditioning exhibits a positive linear correlation, with r values up to 0.993, suggesting that an increase in σy correlates with reduced dewatering efficiency. For TH, PAC, and Fenton treatments, the correlation between σy and dewatering metrics is highly sensitive to changes in treatment intensity. In the PLSR analysis, the VIP values, which quantify the importance of each predictor variable, indicate that Wb/Wt in TH conditioning (VIP = 1.649) and CST in PAC (VIP = 1.309) and Fenton (VIP = 1.299) conditioning strongly influence σy. This study highlights the significant impact of conditioning methods and intensities on the correlation between σy and dewatering performance. While σy provides valuable insights as a predictive indicator, its predictive power is limited in more complex conditioning scenarios. Therefore, optimizing conditioning intensity and incorporating multiple rheological parameters are essential for achieving superior sludge dewatering outcomes.

2.
Water Res ; 266: 122386, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39243460

RESUMO

The solid pore characteristics are commonly considered as the important influential factors on waste-activated sludge (WAS) dewaterability, and should be related to the cohesive force of bio-flocs dominated by cation-organic interactions at solid-water interface. This study aimed to establish an approach for regulating the solid pore structure of WAS by cationic regulation. The influential mechanism of WAS dewaterability was accordingly explored from the perspective of the pore characteristics dominated by cation-organic interactions. Primarily, with the gradient removal or addition of bivalent cations, the varying pore structure of WAS flocs was tracked by in-situ synchrotron X-ray computed microtomography imaging technique (CMT). The three-dimensional visual model was established to quantify the pore structure parameters of WAS flocs. Following the visualization analysis, the artificial intelligence means, the gradient-weighted class activation mapping (Grad CAM) of three-dimensional convolutional neural network (3D-CNN), was applied for the first time to explore the linkages among solid surface properties, solid pore structure, water occurrence states and sludge dewaterability. It was found that the number and volume of isolated pores jointly determined the mobility and the fractions of vicinal water and interstitial water (p-value ≤ 0.02); also, the decreasing polar or acid-based interfacial free energy with the cationic addition was accompanied with the decreasing isolated pore mean-volume (Pearson coefficient=-0.77, p-value < 0.01). These results indicated that the pore structure characteristics determined the water occurrence states, but the solid porosity strongly depended on the interfacial properties. Accordingly, the molecular docking was applied to explore the interfacial reaction mechanism between Ca2+/Mg2+ and solid compositions in terms of complexation sites, molecular dynamics and free energy calculations. As a result, how the cation-organic interactions affected the pore characteristics through solid surface modification could be clarified, which is expected to serve as theoretical foundation for the development of novel sludge conditioning technologies, i.e., more efforts should be devoted to increasing the dense degree of sludge particles through weakening the hydration repulsion of solid surface.

3.
J Environ Manage ; 370: 122395, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39243652

RESUMO

The land application of biosolids as a management practice is considered a beneficial use for improving crop yield and reducing the need for other fertilizers. PFAS enter wastewater treatment plants through collection networks, including industrial discharges, the use of PFAS-containing products, and runoff. Therefore, PFAS may be present in biosolids derived from sewage sludge. The objectives of this study were to evaluate PFAS levels in biosolids samples collected at two wastewater treatment plants operated by the Miami Dade Water and Sewer Department (MDWASD): (1) the South District Wastewater Treatment Plant (SDWWTP) which received landfill leachate and (2) the Central District Wastewater Treatment Plant (CDWWTP). Sludge samples were collected after thickening, anaerobic digestion, and dewatering processes. The samples were subjected to batch leaching tests for 30 days. After the leaching tests, the PFAS levels in the liquid and solid fractions were analyzed for 40 PFAS. The findings show that during the aeration process (i.e., activated sludge process), PFAS are removed from the wastewater and accumulate on the solids. When the thickened sludge is digested, some PFAS are released to the liquid phase as the volatile solids decompose. During the dewatering process by centrifugation, PFAS that are partitioned to the liquid phase are removed, reducing PFAS content in the dewatered biosolids. Of the 40 PFAS analyzed, 24 were detected in leachate or solid residue samples. Samples from the SDWWTP had higher levels of PFAS due to the contribution from landfill leachate discharged to this facility. The partitioning of PFAS between the liquid phase and solid residue after 30 days of mixing indicates that the majority of PFAS in the biosolids are highly soluble and have a high tendency to be mobilized (by runoff, irrigation, precipitation) after land application. The fate profiles of PFAS biosolids were evaluated in terms of their solubility and retardation characteristics.

4.
Water Res ; 266: 122395, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39255567

RESUMO

Dewatering is an indispensable link in sludge treatment, but its effect on the microplastics (MPs) remains inadequately understood. This study investigated the physicochemical changes and leaching behavior of MPs during the mechanical dewatering of sludge, as well as the impact of MP leachates on activated sludge (AS). After sludge dewatering, MPs exhibit rougher surfaces, decreased sizes and altered functional groups due to the addition of dewatering agents and the application of mechanical force. Meanwhile, plastic additives, depolymerization products, and derivatives of their interactions are leached from MPs during sludge dewatering process. The concentration of MP-based leachates in sludge is 2-25 times higher than that in water. The enhancement of pH and ionic strength caused by dewatering agents induces the release of MP leachates enriched with protein-like, fulvic acid-like, and soluble microbial by-product-like substances. The reflux of MP leachates in sludge dewatering liquor to the wastewater treatment system negatively impacts AS, leading to a decrease in COD removal rate and inhibition of the extracellular polymeric substances secretion. More importantly, MP leachates cause oxidative stress to microbial cells and alter the microbial community structure of AS at the phylum and genus levels. These findings confirm that MPs undergo aging and leaching during sludge dewatering process, and MP leachates may negatively affect the wastewater treatment system.

5.
Bioresour Technol ; 411: 131290, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39153690

RESUMO

Extracellular soluble algal organic matter (AOM) significantly interferes with microalgae flocculation. This study investigated the effects of various AOM fractions on Chlorella sp. flocculation using ferric chloride (FeCl3), sodium hydroxide (NaOH), and chitosan. All flocculants achieved high separation efficiency (87-99 %), but higher dosages were required in the presence of AOM. High molecular weight (>50 kDa) AOM fraction was identified as the primary inhibitor of flocculation across different pH levels, whereas low/medium molecular weight (<3 and <50 kDa) AOM had minimal impact. Compositional analysis revealed that the inhibitory AOM fraction is a glycoprotein rich in carbohydrates, including neutral, amino, and acidic sugars. The significance of this study is in identifying carboxyl groups (-COOH) from acidic monomers in >50 kDa AOM that inhibit flocculation. Understanding AOM composition and the interaction dynamics between AOM, cells, and flocculants is crucial for enhancing the techno-economics and sustainability of flocculation-based microalgae harvesting.


Assuntos
Chlorella , Floculação , Solubilidade , Chlorella/metabolismo , Floculação/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Compostos Orgânicos/farmacologia , Microalgas/metabolismo , Espaço Extracelular/química , Peso Molecular , Quitosana/química , Quitosana/farmacologia
6.
Sci Total Environ ; 951: 175653, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39181267

RESUMO

The pyrolysis characteristics of four different types of conditioned sludge were ascertained, and PAM, CaO, K2FeO4, and K2FeO4-CaO-PAM (KCP) conditioners were employed as sludge dewatering conditioners. The sludge pyrolysis reaction's activation energy (E) dropped with the addition of four conditioners. CaO, PAM, KCP, and K2FeO4 were the sequences of E needed for the pyrolysis of four different types of conditioned sludge. The addition of K2FeO4, CaO, and KCP resulted in an increase in the yields of H2 and CO. Except for the K2FeO4 conditioning sludge carbon, the pyrolytic carbon of the other three groups of samples showed an increase in S contents, while the pyrolytic carbon of the four groups of samples treated with conditioners clearly showed lower C and N contents compared to the raw sludge carbon. Protein-N made up the majority of N in sludge pyrolytic carbon. After adding conditioner, the level of organic sulfur decreased. Organic sulfur could then be broken down by K2FeO4 and CaO. The four conditioners efficiently mitigated the ecological and environmental risks posed by heavy metals. Alkynes were the most abundant result in pyrolytic volatiles of sludge pyrolysis; the other products included acids, alcohols, lipids, furans, ketones, phenols, hydrocarbons, N-components, and so on. All samples' acids, alcohols, and ketones from pyrolysis were decreased once the conditioner was added. The acid reduction rate reached 66.7 %, and the alkynes clearly increased during the KCP conditioned sludge's pyrolysis. The sulfur level of the bio-oil was decreased by all four conditioners. Everything mentioned above indicated that the KCP aided in the subsequent pyrolysis of the sludge, leading to the production of an advantageous pyrolysis bio-oil.

7.
Environ Sci Pollut Res Int ; 31(39): 51551-51567, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39112902

RESUMO

Sludge treatment reed bed planted (STRB) with Phragmites australis (P.australis) and Arundo donax (A.donax) was assessed in the presence of Eisenia fetida under control condition during the dry season. Worm-planted units were fed with mixed sewage sludge (dry and volatile solids of 29.44 g DS.L-1 and 24.23 g VS.L-1). Sludge loading rates (SLR) of 50, 60, and 70 kg DS m-2 year-1 were examined to assess dewatering efficiency. Surface layers in units with P.australis and A.donax achieved DS of 80 and 81% at a loading rate of 50 kg DS m-2 year-1, while their subsurface DS were 41 and 25%, respectively. Units with A.donax experienced plant loss when subjected to SLR exceeding 60 kg DS m-2 year-1. More than 10 cm of residual sludge accumulated on the top of units after a 2-month final rest. Evapotranspiration was greater in the unit with P.australis (5.23 mm day-1) compared to the unit with A.donax (4.24 mm day-1) while both were fed with 70 kg DS m-2 year-1. Water loss contributions from residual sludge layer, drained water, and evapotranspiration were 3, 46, and 51%, respectively. Units with P.australis indicated 20% higher water loss compared to units with A.donax. Although the drained water quality improved over time, it did not meet standard limits. The residual sludge layer contained macro and micronutrients, and heavy metals with a significant elemental order of N > Ca > P > S > mg > K (N:P:K = 31:8:1), Fe > Na > B > Mn > Mo and Zn > Cr > Cu > Pb > Ni > Cd. Overall, STRB could be a sustainable alternative technology to conventional sewage sludge management techniques.


Assuntos
Poaceae , Esgotos , Animais , Região do Mediterrâneo , Oligoquetos , Eliminação de Resíduos Líquidos/métodos , Biodegradação Ambiental
8.
Bioresour Technol ; 412: 131367, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39216705

RESUMO

The bioleaching utilizing indigenous microbial inoculation can continuously improve the dewaterability of sludge. In this study, metagenomic analysis was innovative employed to identify the key microorganisms and functional genes that affect the dewatering performance of sludge in the bioleaching conditioning process. The results demonstrated that long-term repeated inoculation of acidified sludge resulted in increased abundance of many functional genes associated with the transport of carbohydrate and amino acid. Additionally, genes encoding key iron transport proteins (such as afuA, fhuC, and fhuD) and genes related to electron transfer carriers in ferrous iron oxidation process (such as rus and cyc2) were significantly enriched, thereby promoting the improvement of sludge dewatering performance through enhanced iron oxidation. Notably, Acidithiobacillus, Betaproteobacteria, and Hyphomicrobium were the major sources of functional genes. This study reveals the microscopic mechanisms underlying the improvement of sludge dewaterability through bioleaching based on mixed culture from a novel perspective of gene metabolism.


Assuntos
Metagenômica , Oxirredução , Esgotos , Esgotos/microbiologia , Metagenômica/métodos , Transporte de Elétrons , Compostos Ferrosos/metabolismo , Ferro/metabolismo , Água/química
9.
Water Res ; 263: 122180, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39106620

RESUMO

Water occurrence states in sewage sludge, influenced by sludge physicochemical properties, are crucial for sludge dewaterability and have recently been regarded as a research hotspot. Here, the multifold characteristics of sludge flocs during hydrothermal treatment, including rheological properties, solid-water interfacial interactions, and the polarity distribution and molecular structure of extracellular polymeric substances (EPS), were systematically investigated, and the impact of these characteristics on sludge dewaterability was explored in depth. Hydrothermal treatment at 80 °C and 100 °C induced the conversion of free water into bound water, while an increase in temperature to 180 °C resulted in a significant decrease in bound water content, approximately 4-fold lower than at 100 °C. In addition to the conventional view of decreased sludge surface hydrophilicity at high temperatures, the decline in bound water was associated with the reduction in sludge apparent viscosity. XAD resin fractionation identified the hydrophobic/hydrophilic EPS (HPO-/HPI) ratio as an important factor determining water occurrence states. Especially, hydrolysis of HPI-related hydrophilic proteins and subsequent increase in HPO-related tryptophan-like substances played a dominant role in reducing sludge viscosity and facilitating the release of bound water. Protein conformational analysis revealed that the disruption of α-helix structures and disulfide bonds significantly reduced EPS water-holding capacity, providing strong evidence for the potential of targeting these dense structure units to enhance sludge dewaterability. These findings provide a holistic understanding of multidimensional drivers of water occurrence states in sludge, and guide directions for optimizing sludge treatment efficiency through EPS modification.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Esgotos , Esgotos/química , Matriz Extracelular de Substâncias Poliméricas/química , Água/química , Interações Hidrofóbicas e Hidrofílicas , Eliminação de Resíduos Líquidos , Viscosidade
10.
J Environ Manage ; 367: 122089, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39102785

RESUMO

Bioleaching and Fenton technology are commonly used preconditioning techniques for sludge dewatering. This study compared the dewatering mechanisms of different conditioning technologies. The results showed that bound water, specific resistance to filtration (SRF), and capillary suction time decreased from 3.95 g/g, 6.16 × 1012 m/kg, and 130.6 s to 3.15 g/g, 2.81 × 1011 m/kg, and 33 s, respectively, under combined treatment condition. Moreover, the free radicals, including ·OH, O2-·and Fe (Ⅳ), further damaged the cell structure, thus increasing the concentration of DNA in the S-EPS layer. This intense degradation sludge particle size decreased by 15.6% and significantly increased zeta potential. Under the combined technology, the α-helix and ß-sheet decreased by 42.2% and 56.5%, respectively, destabilizing the spatial structure of proteins and promoting the release of bound water. In addition, the combined technology decreased (Ala/Lys) ratio in the TB-EPS layer by 67.6%, indicating the weakening of protein water-holding capacity. Moreover, the conversion of oxygen-containing compounds to nonpolar hydrocarbons increased the hydrophobicity of the sludge under a combined treatment, thus enhancing dewatering performance.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Esgotos , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Tamanho da Partícula , Ferro/química , Filtração , Água/química
11.
Environ Sci Pollut Res Int ; 31(38): 50359-50371, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39093396

RESUMO

In this work, the Fenton preoxidation and composite coagulant method was used to carry out the rapid dewatering experiment of Chaohu Lake (China) dredging slurry. The changes in extracellular polymeric substances (EPS), particle size distribution, zeta potential, specific resistance to filtration (SRF), and capillary suction time (CST) of the dredging slurry were characterized. The results showed that the molar ratio of H2O2 and Fe2+ had the greatest effect on the dewatering of dredging slurry by Fenton preoxidation. The coagulant selected through the coagulation test was polyaluminum ferric chloride. The model simulated by the response surface method exhibited significant adaptability and high accuracy (p < 0.01, R2 = 0.9461, accuracy is 12.115). Fenton preoxidation resulted in the transformation of tightly bound EPS to soluble EPS. After preoxidation-coagulation treatment, the dewatering performance of the slurry improved significantly. The EPS quantity rose by 20.3%, while the SRF (3.65 × 109 s2/g), CST (71.25 s), and zeta potential (- 28.0 mV) shifted to 0.33 × 109 s2/g, 27.60 s, and - 14.9 mV, respectively. The disintegration of EPS by Fenton peroxidation and the subsequent adsorption bridging and charge neutralization through coagulation were the key mechanism for improving the dewatering performance of the dredging slurry.


Assuntos
Peróxido de Hidrogênio , Oxirredução , Peróxido de Hidrogênio/química , Ferro/química , China , Compostos Férricos/química , Lagos/química
12.
Front Microbiol ; 15: 1386557, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952447

RESUMO

The aerobic granular sludge(AGS) technology draw scientific researchers attention, and more and more scientific research focuses on it, due to its superior advantages, such as good settling performance, high biological phase, high toxicity resistance and multiple biological effects. With the rapid development of AGS technology, a considerable amount of residual AGS will be produced, and dehydration is the biggest bottleneck of sludge reduction. This study investigated the dewatering process and method of residual AGS cultured by continuous flow experiment. Experiments were conducted using centrifugal dewatering technology with a dosing scheme to analyze the granular sludge dewatering process, and investigate the release process of EPS component in AGS dewatering. Our results implied the specific resistance of AGS has a very low value ((1.82 ± 0.03) × 109 m/kg) and it was not obvious for the conditioning effect of chemical conditioner on AGS dewatering. However, the moisture content can be reduced to 63.5% after dewatering with the presence of inorganic substances. The addition of drinking water treatment plant sludge (Alum sludge) can improve the efficiency of the dewatering of AGS. A possible dewatering process of AGS dewatering was proposed which was divided into two stages: First, a considerable amount of free water in the sludge was quickly removed under the action of gravity without pressure filtration. Second, the bound water release required cooperation between applying centrifugal or pressing force to grind granular cells and separate protein-like substances with the inorganic matter inside the granular sludge. The possible mechanism of AGS dewatering and hypothesis dewatering process are useful to optimize the AGS dewatering process.

13.
Environ Sci Pollut Res Int ; 31(32): 44885-44899, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38954344

RESUMO

The activated sludge process plays a crucial role in modern wastewater treatment plants. During the treatment of daily sewage, a large amount of residual sludge is generated, which, if improperly managed, can pose burdens on the environment and human health. Additionally, the highly hydrated colloidal structure of biopolymers limits the rate and degree of dewatering, making mechanical dewatering challenging. This study investigates the impact and mechanism of microwave irradiation (MW) in conjunction with peracetic acid (PAA) on the dewatering efficiency of sludge. Sludge dewatering effectiveness was assessed through capillary suction time (CST) and specific resistance to filtration (SRF). Examination of the impact of MW-PAA treatment on sludge dewatering performance involved assessing the levels of extracellular polymeric substances (EPS), employing three-dimensional excitation-emission matrix (3D-EEM), Fourier transform-infrared spectroscopy (FT-IR), and scanning electron microscopy. Findings reveal that optimal dewatering performance, with respective reductions of 91.22% for SRF and 84.22% for CST, was attained under the following conditions: microwave power of 600 W, reaction time of 120 s, and PAA dosage of 0.25 g/g MLSS. Additionally, alterations in both sludge EPS composition and floc morphology pre- and post-MW-PAA treatment underwent examination. The findings demonstrate that microwaves additionally boost the breakdown of PAA into •OH radicals, suggesting a synergistic effect upon combining MW-PAA treatment. These pertinent research findings offer insights into employing MW-PAA technology for residual sludge treatment.


Assuntos
Micro-Ondas , Ácido Peracético , Esgotos , Eliminação de Resíduos Líquidos , Esgotos/química , Ácido Peracético/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Espectroscopia de Infravermelho com Transformada de Fourier
14.
J Environ Manage ; 365: 121638, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38959766

RESUMO

In the sludge dewatering process, a formidable challenge arises due to the robust interactions between extracellular polymeric substances (EPS) and bound water. This study introduces a novel, synergistic conditioning method that combines iron (Fe2+)/peroxymonosulfate (PMS) and polyacrylamide (PAM) to significantly enhance sludge dewatering efficiency. The application of the Fe2+/PMS-PAM conditioning method led to a substantial reduction in specific filtration resistance (SFR) by 82.75% and capillary suction time (CST) by 80.44%, marking a considerable improvement in dewatering performance. Comprehensive analyses revealed that pre-oxidation with Fe2+/PMS in the Fe2+/PMS-PAM process effectively degraded EPS, facilitating the release of bound water. Subsequently, PAM enhanced the flocculation of fine sludge particles resulting from the advanced oxidation processes (AOPs). Furthermore, analysis based on the Extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory demonstrated shifts in interaction energies, highlighting the breakdown of energy barriers within the sludge and a transition in surface characteristics from hydrophilic (3.79 mJ m-2) to hydrophobic (-61.86 mJ m-2). This shift promoted the spontaneous aggregation of sludge particles. The innovative use of the Flory-Huggins theory provided insights into the sludge filtration mechanism from a chemical potential perspective, linking these changes to SFR. The introduction of Fe2+/PMS-PAM conditioning disrupted the uniformity of the EPS-formed gel layer, significantly reducing the chemical potential difference between the permeate and the water in the gel layer, leading to a lower SFR and enhanced dewatering performance. This thermodynamic approach significantly enhances our understanding of sludge dewatering and conditioning. These findings represent a paradigm shift, offering innovative strategies for sludge treatment and expanding our comprehension of dewatering and conditioning techniques.


Assuntos
Resinas Acrílicas , Ferro , Esgotos , Eliminação de Resíduos Líquidos , Esgotos/química , Ferro/química , Resinas Acrílicas/química , Eliminação de Resíduos Líquidos/métodos , Floculação , Peróxidos/química , Oxirredução , Filtração
15.
Materials (Basel) ; 17(14)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39063897

RESUMO

As an industrial waste residue, Electrolytic Manganese Residue (EMR) can greatly promote sludge dewatering and further particle-size optimization can significantly strengthen sludge dewaterability. In this study, the effects of ammonium sulfate, calcium sulphate dihydrate, and manganese carbonate in EMR on sludge dewatering performance were investigated using the response surface optimization method. It was found that the optimized ratio of three components in EMR was 1.0:1.6:2.2 based on capillary suction time (CST), specific resistance of filtration (SRF), and zeta potential of dewatered sludge. The composition ratio of particle-size optimized EMR was modified based on the above optimization, resulting in a significant increase in sludge dewatering performance (CST and SRF reduced by 8.7% and 11.2%, respectively). Compared with those in original sludge, the content of bound extracellular polymeric substances in the conditioned sludge with optimized ratio was drastically reduced while that of soluble extracellular polymeric substances was slightly increased, which was in accordance with the decline of fluorescence intensity. These findings indicated the disintegration of extracellular polymeric substances, the enhancement of hydrophobicity, and dewatering properties of the sludge. In summary, optimized EMR can effectively intensify the dewaterability of sludge, providing a competitive solution for dewatering and further disposal of sludge.

16.
Environ Technol ; : 1-18, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39010782

RESUMO

Flocculation is one of the most significant conditioning methods for sludge dewatering. In the study, a novel flocculant CS-TA, prepared through free radical-mediated conjugation of tannic acid (TA) and chitosan (CS), was proposed to improve sludge dewatering. The characterisation using Fourier transform infra-red spectroscopy and X-ray diffraction analysis shows that the CS chain was the backbone of CS-TA, and the presence of CS-TA aromatic rings confirmed the conjugation of CS with TA. Moreover, the conditioning of CS-TA yielded the best dewatering performance at 30 mg g TS-1 with the water content of sludge cake by press filtration (Wsc) of 59.78% ± 0.3% and capillary suction time (CST) of 11.8s ± 0.35 s, compared to 98.2% ± 0.15% and 56.2 s ± 0.16 in raw sludge. The results of different influencing factors (e.g. pH and temperature) on flocculation efficiency indicated that CS-TA possessed the capacity for enhancing sludge dewaterability over a wide range of pH, and the optimal temperature was observed to be 35 °C. Furthermore, the increase of particle size and zeta potential implied the addition of CS-TA favoured the formation of larger particles charge neutralisation and adsorption bridging effect. In addition, extracellular polymer substances (EPS) analysis indicated that the decrease in the polysaccharide and protein contents in EPS after CS-TA addition could increase the relative hydrophobicity of sludge. Moreover, the contents of heavy metals in sludge and their leaching toxicity and environmental risk were reduced. This study provides comprehensive insights into the exploration of CS-TA for sludge dewatering and the maintenance of ecological security in an eco-friendly.

17.
Water Sci Technol ; 90(1): 287-302, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39007320

RESUMO

Extracellular polymeric substances (EPS) are a critical influencing factor in sludge dewatering. Disrupting such EPS contributes to the release of bound water in sludge, enhancing the sludge dewatering performance. In This study, quaternized straw fibers that are destructive to the EPS structure and components in active sludge were prepared useing heterogeneous free radical graft polymerization. Straw fibers, dimethyl diallyl ammonium chloride (DMDAAC), ammonium persulfate (APS), and acrylamide (AM) were taken as the substrate, grafting monomer, catalyst, and cross-linking agent, respectively.The optimal processing conditions determined for the DMDAAC-based quaternization and graft modification of straw fibers were as follows: reaction temperature of 60 °C, reaction time of 5 h, 0.100 g of catalyst APS dosage per gram of straw, and 3.000 ml of DMDAAC dosage per gram of straw. The optimal processing conditions yielded 1.335 g of modified straw fibers per gram of straw, 33.67% grafting rate, and 31.70% substitution of the quaternary ammonium groups. The capillary suction time (CST) was conditioned from 243.3 ± 22.6 s in the original sludge to 134.5 ± 34.45 s. The specific resistance to filtration (SRF) was reduced from 8.82 ± 0.51 × 1012 m/kg in the original sludge to 4.59 ± 0.23 × 1012 m/kg.


Assuntos
Esgotos , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Compostos de Amônio Quaternário/química , Compostos Alílicos/química
18.
J Environ Manage ; 366: 121748, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38991352

RESUMO

This study was based on an industrial sludge landfill with a scale of 1 million cubic meters, which had been filled for more than 10 years. It focused on the secondary dewatering of industrial textile landfill sludge (LS) with a total organic carbon (TOC) content greater than 50% and a volatile suspended solids to suspended solids (VSS/SS) ratio of 0.59. A response surface methodology (RSM) model was established using the coagulant ferrous sulfate (FeSO4) and conditioning agents such as hydrated magnesium oxide (MgO), blast furnace slag (BFS), and calcium oxide (CaO). By solving the RSM equations for the respective indicators, the optimal dosages of FeSO4, MgO, and BFS were determined to be 90 mg/g of dry sludge (DS), and for CaO 174.85 mg/g DS. Further examinations of the dewatering performance, apparent properties, extracellular polymeric substances (EPS) components, rheological characteristics, moisture distribution, and pollutant content variation led to the development of a green waste-based dewatering agent composed of FeSO4 and BFS. In small-scale diaphragm plate and frame filter press tests, the optimal water content (WC) was 69.11%. In the final production-scale experiments, it was 65.72%, with the actual application cost being only 13.07 $/ton DS. Additionally, when FeSO4 and BFS were used together, the combined action of Fe and Si could significantly reduce the biotoxicity of heavy metals (HMs), cut down 75.2% of the LS's TOC, and effectively reduced the leaching of organic substances from the leachate, which was beneficial for subsequent disposal. In conclusion, the combined use of FeSO4 and BFS for the secondary dewatering of industrial textile LS was economically efficient, effective in dewatering, and had significant harm reduction effects, making it a worthwhile for waste treatment.


Assuntos
Compostos Ferrosos , Esgotos , Compostos Ferrosos/química , Esgotos/química , Têxteis , Eliminação de Resíduos Líquidos/métodos , Resíduos Industriais/análise
19.
J Environ Manage ; 367: 121946, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39079495

RESUMO

In this research, the effects of peracetic acid (PAA), polymeric flocculants, and their combined conditioning on improving the dewatering performance were comprehensively evaluated. The results showed that sludge cake moisture content, capillary suction time (CST), and specific resistance to filtration (SRF) were 70.6%, 48.1 s, and 3.42 × 1012 m/kg after adding 0.10 g/gMLSS PAA for 50 min, representing reductions of 12.60%, 40.32%, and 33.98%, respectively. Additionally, conditioning of sludge with polyferric sulfate (PFS), polyaluminum chloride (PAC), and cationic polyacrylamide (CPAM) enhanced sludge properties in the following order: CPAM > PAC > PFS. After the PAA oxidation and re-flocculation process, the optimal dosages of PFS, PAC, and CPAM were reduced to 1.5 g/L, 0.9 g/L, and 0.04 g/L, respectively. The sludge dewatering performance significantly improved, with sludge cake moisture content measuring 65.8%, 66.3%, and 61.7%, respectively. Moreover, the spatial multi-porous skeleton structures were formed via re-flocculation to improve the sludge dewatering. Furthermore, economic evaluation validated that the pre-oxidation and re-flocculation process could be considered an economically viable option. These research findings could serve as a valuable reference for practical engineering applications.


Assuntos
Floculação , Ácido Peracético , Esgotos , Esgotos/química , Ácido Peracético/química , Oxirredução , Polímeros/química , Filtração , Eliminação de Resíduos Líquidos/métodos , Porosidade , Resinas Acrílicas/química
20.
Chemosphere ; 362: 142727, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38964722

RESUMO

Efficient dewatering of sewage sludge is an energy- and carbon-saving procedure for sludge treatment in wastewater treatment facilities. The ultrasound-coupled divalent iron ion activated persulfate process can effectively promote sludge dewatering and improve organic substance content. Under the action of ultrasound (US 50 w/L), divalent iron ions (Fe2+) 200 mg/g (TS), and persulfate (PDS) 200 mg/g (TS) for 60 min, the capillary suction time (CST) was reduced by 79.74%, and the moisture content of the dewatered sludge cake reached 56.51 wt%. The organic carbon content of treated sludge was also four times higher than the original sludge and types were richer in short-chain volatile species in US/Fe2+/PDS. Moreover, the correlation analysis found that the relationship of between CST and SV30, Zeta and lactate dehydrogenase (LDH) were positive correlation, and the relationship of SCOD and TC were positively correlated with the PN (SB-EPS). Mechanistic studies showed that the US/Fe2+/PDS system could produce oxygen activators by US coupling Fe2+ to strengthen the effect of activated PDS strongly, while the sulfate radicals (SO4·-) radical was a dominant role. The cracking mechanism is divided into two pathways effectively degraded the macromolecule EPS into a small-molecule acid and further reduced the water-holding interfacial affinity as follow: (1) the radical path dominated by hydroxyl radicals (·OH), SO4·-, and superoxide radical (O2·-); (2) the non-radicals dominated by monoclinic oxygen (1O2). Afterwards, the electrostatic force and interfacial free energy were reduced, resulting in enhanced self-flocculation and mobility to enhanced dewaterability. These findings demonstrated the US/Fe2+/PDS system had significant advantages in sludge cracking and provided theoretical support for its practical application.


Assuntos
Ferro , Esgotos , Compostos de Sódio , Sulfatos , Eliminação de Resíduos Líquidos , Águas Residuárias , Sulfatos/química , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Ferro/química , Compostos de Sódio/química , Águas Residuárias/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA