RESUMO
OBJECTIVE: Dissolving microneedles (DMNs) have shown great potential for transdermal drug delivery due to their excellent skin-penetrating ability and combination with nanocarriers (NCs) can realize targeted drug delivery. The objective of this study was to investigate the impact of microneedle dissolving rate on the in vivo fate of NC-loaded DMNs, which would facilitate the clinical translation of such systems. METHODS: Solid lipid nanoparticles (SLNs) were selected as the model NC for loading in DMNs, which were labeled by P4 probes with aggregation-quenching properties. Sodium hyaluronate acid (HA) and chitosan (CS), with different aqueous dissolving rates, were chosen as model tip materials. The effects of needle dissolving rate on the in vivo fate of NC-loaded DMNs was investigated by tracking the distribution of fluorescence signals after transdermal exposure. RESULTS: P4 SLNs achieved a deeper diffusion depth of 180 µm in DMN-HA with a faster dissolution rate, while the diffusion depth in DMN-CS with a slower dissolution rate was lower (140 µm). The in vivo experiments demonstrated that P4 SLNs had a T1/2 value of 12.14 h in DMN-HA, whilst a longer retention time was found in DMN-CS, with a T1/2 of 13.12 h. CONCLUSIONS: This study confirmed that the in vivo diffusion rate of NC-loaded DMNs was determined by the dissolving rate of DMNs materials and provided valuable guidance for the design and development of NC-loaded DMNs in the future.
Assuntos
Administração Cutânea , Quitosana , Sistemas de Liberação de Medicamentos , Ácido Hialurônico , Nanopartículas , Agulhas , Animais , Ácido Hialurônico/química , Ácido Hialurônico/administração & dosagem , Quitosana/química , Portadores de Fármacos/química , Solubilidade , Lipídeos/química , Microinjeções , Absorção Cutânea , Pele/metabolismo , Masculino , Ratos Sprague-Dawley , Ratos , LipossomosRESUMO
Lithium, is the most ideal anode material for lithium-based batteries. However, the overgrowth of lithium dendrites and the low lithium-ion diffusion rate at low temperatures limit the further application of lithium metal anodes. Here, the applied magnetic field is introduced inside the lithium metal anode by using a novel magnetic metal-organic framework as a current collector. The magnetic field can improve the conductivity of this novel current collector, thus accelerating the diffusion of lithium ions in the battery, an advantage that is particularly prominent at low temperatures. In addition, the current collector can stabilize the solid electrolyte interface and inhibit the growth of lithium dendrites, resulting in excellent electrochemical performance. The symmetrical cell at room temperature can exceed 4600 h with a hysteresis voltage of only 9 mV. After 300 cycles at room temperature, the capacity of full cell is still 142 mA h g-1 , and it remains stable for 380 cycles at 5 °C (capacity above 120 mA h g-1 ). The strategy of constructing novel current collector with magnetic field can promote the further application of lithium batteries in extreme conditions such as low temperatures.
RESUMO
Improving the technical functionality to adapt to the application of complex food systems is an important challenge for the development of plant protein ingredients. Herein, the correlation between the physicochemical properties and interfacial adsorption behavior of rapeseed protein isolate (RPI) at the air-water interface after transglutaminase (TG) treatment was investigated. The results of cross-linking degree, Fourier transform infrared spectroscopy (FTIR) and sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) showed that the TG enzyme was able to catalyse cross-linking between lysine and glutamine residues of RPI. The foaming capacity of RPI was enhanced from 120 % to 150 % after TG cross-linking 5 h, whereas the average size (210-219 nm) of the RPI determined by dynamic light scattering did not change significantly. Besides, the hydrophobicity tended to increase overall under the enzyme treatment, while the surface electrostatic potential decreased. The former indicates the unfolding of the protein and reduces the kinetic barriers to protein adsorption at the air-water interface, with a consequent increase in disulfide bonding and surface pressure. Furthermore, as the enzyme treatment time increased, a significant increase in protein content of foam by 33.86 %. These findings provide novel insight into the foaming mechanism of TG cross-linking RPI.
Assuntos
Brassica napus , Brassica rapa , Brassica napus/metabolismo , Água , Adsorção , Transglutaminases/metabolismo , Proteínas de Plantas/química , Brassica rapa/químicaRESUMO
The beginning of a pandemic is a crucial stage for policymakers. Proper management at this stage can reduce overall health and economical damage. However, knowledge about the pandemic is insufficient. Thus, the use of complex and sophisticated models is challenging. In this study, we propose analytical and stochastic heat spread-based boundaries for the pandemic spread as indicated by the Susceptible-Infected-Recovered (SIR) model. We study the spread of a pandemic on an interaction (social) graph as a diffusion and compared it with the stochastic SIR model. The proposed boundaries are not requiring accurate biological knowledge such as the SIR model does.
RESUMO
Oxidative aging is an inevitable environmental factor that accelerates asphalt pavement deterioration. This study employed a molecular dynamics simulation to investigate the impact of aging on asphalt cement from the perspectives of thermodynamic properties, and diffusion and adhesion characteristics. Results indicate that aging increased bulk density from 1.008 to 1.081 g/cm3 and cohesive energy density by 15.6%, which was attributed to the promoted molecular polarity and intermolecular attractiveness. The enhanced molecular interactions also reduced molecular mobility, which led to an increase in the glass transition temperature by 30 K, suggesting that aging diminished the resistance of asphalt to thermal cracking. Simulations of the diffusion behaviors across different temperatures demonstrated that the Arrhenius relationship described well the temperature dependence of the diffusion coefficient, and that aging considerably slowed down the diffusion process as represented by Arrhenius prefactor D0, which dropped by 38.2%. The asphalt-aggregate adhesion was assessed using layered models with and without a water interlayer of different thicknesses. The adhesion was enhanced upon aging due to the significantly improved electrostatic interactions at the interface. Evaluation of the residual adhesion with the presence of interfacial water suggested that aging would raise the moisture susceptibility of asphalt pavement. The increase in molecular polarity was considered to be highly responsible for these aging consequences, and was thus further investigated via the electrostatic potential surface and dipole moment.
RESUMO
The diffusion of sulfate (SO42-) and chloride (Cl-) ions from rivers, salt lakes and saline soil into reinforced concrete is one of the main factors that contributes to the corrosion of steel reinforcing bars, thus reducing their mechanical properties. This work experimentally investigated the corrosion process involving various concentrations of NaCl-Na2SO4 leading to the coupled erosion of concrete. The appearance, weight, and mechanical properties of the concrete were measured throughout the erosion process, and the Cl- and SO42- contents in concrete were determined using Cl- rapid testing and spectrophotometry, respectively. Scanning electron microscopy, energy spectrometry, X-ray diffractometry, and mercury porosimetry were also employed to analyze microstructural changes and complex mineral combinations in these samples. The results showed that with higher Na2SO4 concentration and longer exposure time, the mass, compressive strength, and relative dynamic elastic modulus gradually increased and large pores gradually transitioned to medium and small pores. When the Na2SO4 mass fraction in the salt solution was ≥10 wt%, there was a downward trend in the mechanical properties after exposure for a certain period of time. The Cl- diffusion rate was thus related to Na2SO4 concentration. When the Na2SO4 mass fraction in solution was ≤5 wt% and exposure time short, SO42- and cement hydration/corrosion products hindered Cl- migration. In a concentrated Na2SO4 environment (≥10 wt%), the Cl- diffusion rate was accelerated in the later stages of exposure. These experiments further revealed that the Cl- migration rate was higher than that of SO42-.
RESUMO
N-vinylpyrrolidone (NVP) has a large molecular structure, so it is difficult to diffuse during holographic recording, especially at low spatial frequencies. We used glycerol to promote the diffusion of NVP, and successfully improved the holographic performance of the photopolymer at low spatial frequencies. As the concentration of glycerol increases, the holographic performance first increases and then remains stable. The optimal concentration of glycerol is 0.21 mol/L. At this concentration, the maximum diffraction efficiency of the photopolymer is 84%, the refractive index modulation is 1.95 × 10-3, and the photosensitive sensitivity is 7.91 × 10-4 cm2/mJ. Compared with the control group, the maximum diffraction efficiency, maximum refractive index modulation and photosensitivity at low spatial frequencies (800 lp/mm) have increased by 11.19 times, 4.69 times and 1.71 times, respectively. Using the optimized photopolymer for transmission holographic recording and reproduction, we have obtained a clear and bright transmission hologram. The photopolymer modified with glycerol is expected to be applied to the fields of holography, diffractive optics, and so on.
RESUMO
Nature has gifted us many organic molecules which have remarkable influence in our daily life. Amongst many organic molecules, heterocyclic organic molecules have gained potential applications in the advanced field of biomedicine, pharmaceutical, electronics and many more. In the present work fluorescence quenching of biologically active fluorescent probe 8EMOHCC by aniline in different solvents have been studied at room temperature. To understand the molecular behaviour in different media, solvents of different refractive index and dielectric constant have been used. Spectroscopic measurement techniques such as UV/Vis spectroscopy and time related single photon counting are employed to characterise the molecule at room temperature. The fluorescence quenching study shows linear dependence of SV-plot in solvents of different dielectric constants. It reveals that quenching reactions are dynamic in nature. Various parameters of quenching have been determined and identified the type of quenching involved in the quenching reaction. Further, kq is found to be greater than [Formula: see text] in ACN, methanol, propanol and dioxane. Activation energy of quenching (Ea) is found to be greater than energy of diffusion (Ed) in ACN, methanol, propanol, THF solvents and Ed > Ea in dioxane, indicating that quenching reaction is not solely controlled by material diffusion but also activation process.
Assuntos
Cumarínicos/análise , Fluorescência , Corantes Fluorescentes/análise , Acetonitrilas/química , Estrutura Molecular , Espectrometria de FluorescênciaRESUMO
In order to improve the stability of air bubbles in fresh concrete, it is of great significance to have a better understanding of the mechanisms and main influencing factors of bubble stability. In the present review, the formation and collapse process of air bubbles in fresh concrete are essentially detailed; and the advances of major influencing factors of bubble stability are summarized. The results show that the surface tension of air-liquid interface exerts a huge impact on bubble stability by reducing surface free energy and Plateau drainage, as well as increasing the Gibbs surface elasticity. However, surface tension may not be the only determinant of bubble stability. Both the strength of bubble film and the diffusion rate of air through the membrane may also dominate bubble stability. The application of nano-silica is a current trend and plays a key role in ameliorating bubble stability. The foam stability could be increased by 6 times when the mass fraction of nano-particle reached 1.5%.
RESUMO
In this paper, the process of the infectious diseases among cities is studied in metapopulation networks. Based on the heterogeneous diffusion rate, the epidemic model in metapopulation networks is established. The factors affecting diffusion rate are discussed, and the relationship among diffusion rate, connectivity of cities and the heterogeneity parameter of traffic flow is obtained. The existence and stability of the disease-free equilibrium and the endemic equilibrium are analyzed, and epidemic threshold is also obtained. It is shown that the more developed traffic of the city, the greater the diffusion rate, which resulting in the large number of infected individuals; the stronger the heterogeneity of the traffic flow, the greater the threshold of the disease outbreak. Finally, numerical simulations are performed to illustrate the analytical results.
Assuntos
Controle de Doenças Transmissíveis/métodos , Doenças Transmissíveis/epidemiologia , Doenças Transmissíveis/transmissão , Epidemias , Cidades , Simulação por Computador , Surtos de Doenças , Suscetibilidade a Doenças , Humanos , Modelos Biológicos , Modelos Estatísticos , Densidade Demográfica , Dinâmica PopulacionalRESUMO
Mechanistic understanding of lithium electrodeposition and morphology evolution is critical for lithium metal anodes. In this study, we deduce that Li deposition morphology evolution is determined by the mesoscale complexations that underlie due to local electrochemical reaction, Li surface self-diffusion, and Li-ion transport in the electrolyte. Li-ion depletion at the reaction front for higher reaction rates primarily accounts for dendritic growth with needlelike or fractal morphology. Large Li self-diffusion barrier, on the other hand, may lead to the formation of porous Li film for lower reaction rates. Enhanced ion transport in the electrolyte contributes to homogeneous deposition, thereby avoiding nucleation for Li dendrite formation. This study also demonstrates that the substrate surface roughness strongly affects dendritic growth localization over the protrusive surface features. A nondimensional electrochemical Damkohler number is further proposed, which correlates surface diffusion rate and reaction rate and allows constructing a comprehensive phase map for lithium electrodeposition morphology evolution.
RESUMO
The morphology and stability of amorphous nanoparticles of glibenclamide (GLB) prepared by the antisolvent method using different methods of adding hypromellose (HPMC) were evaluated. Nano-A was prepared by the injection of a dimethyl sulfoxide (DMSO) solution of GLB into the HPMC solution, whereas nano-B was obtained by the injection of a DMSO solution of GLB and HPMC into water. Cryogenic transmission electron microscopy, field-emission scanning electron microscopy, and field-emission transmission electron microscopy, including energy dispersive X-ray spectrometry, revealed that the particles of the nano-A and nano-B samples are hollow spheres and nonspherical nanoparticles, respectively. Powder X-ray diffraction and solid-state NMR measurements showed that GLB is present in an amorphous state in both nano-A and nano-B. The weight ratios of HPMC in the GLB/HPMC nanoparticles were 11 and 16% for nano-A and nano-B, respectively, as determined by solution-state NMR. The glass transition temperatures ( Tg) of nano-A and nano-B evaluated using differential scanning calorimetry were lower by about 10 °C compared to that of amorphous GLB, presumably because of a Tg confinement effect and the surface coverage and mixing of HPMC, as suggested by the inverse gas chromatography experiment. GLB crystallization during storage was suppressed more strongly in nano-B than nano-A, owing to the higher amount of HPMC and the higher miscibility between GLB and HPMC. It is suggested that the diffusion rate of the solvent during nanoprecipitation determined the nanoparticle properties. In nano-A, the precipitation of GLB first occurred at the outer interface because of the rapid diffusion of the solvent. Thus, hollow spherical particles with HPMC preferentially located near the surface were formed. On the other hand, the diffusion of the solvent in nano-B was suppressed because of the presence of HPMC, yielding small nonspherical nanoparticles with a high miscibility of GLB and HPMC.
Assuntos
Glibureto/química , Derivados da Hipromelose/química , Nanopartículas/química , Solventes/química , Varredura Diferencial de Calorimetria/métodos , Cristalização/métodos , Dimetil Sulfóxido/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Microscopia Eletrônica de Varredura/métodos , Pós/química , Solubilidade , Água/química , Difração de Raios X/métodosRESUMO
In the last decade, single molecule tracking (SMT) techniques have emerged as a versatile tool for molecular cell biology research. This approach allows researchers to monitor the real-time behavior of individual molecules in living cells with nanometer and millisecond resolution. As a result, it is possible to visualize biological processes as they occur at a molecular level in real time. Here we describe a method for the real-time visualization of SH2 domain membrane recruitment from the cytoplasm to epidermal growth factor (EGF) induced phosphotyrosine sites on the EGF receptor. Further, we describe methods that utilize SMT data to define SH2 domain membrane dynamics parameters such as binding (τ), dissociation (k d), and diffusion (D) rates. Together these methods may allow us to gain greater understanding of signal transduction dynamics and the molecular basis of disease-related aberrant pathways.
Assuntos
Membrana Celular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas/química , Proteínas/metabolismo , Imagem Individual de Molécula/métodos , Domínios de Homologia de src , Linhagem Celular Tumoral , Expressão Gênica , Vetores Genéticos/genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Microscopia de Fluorescência/métodos , Ligação Proteica , Transporte Proteico , Proteínas/genética , TransfecçãoRESUMO
To visually trace the diffusion and biodistribution of amphiphilic cation micelles after vitreous injection, various triblock copolymers of monomethoxy poly(ethylene glycol)-poly(ε-caprolactone)-polyethylenimine were synthesized with different structures of hydrophilic and hydrophobic segments, followed by labeling with near-infrared fluorescent dye Cyanine5 or Cyanine7. The micellar size, polydispersity index, and surface charge were measured by dynamic light scattering. The diffusion was monitored using photoacoustic imaging in real time after intravitreal injections. Moreover, the labeled nanoparticle distribution in the posterior segment of the eye was imaged histologically by confocal microscopy. The results showed that the hydrophilic segment increased vitreous diffusion, while a positive charge on the particle surface hindered diffusion. In addition, the particles diffused through the retinal layers and were enriched in the retinal pigment epithelial layer. This work tried to study the diffusion rate via a simple method by using visible images, and then provided basic data for the development of intraocular drug carriers.
Assuntos
Cátions , Nanopartículas/administração & dosagem , Nanopartículas/metabolismo , Reconhecimento Visual de Modelos , Técnicas Fotoacústicas/métodos , Polímeros/química , Epitélio Pigmentado da Retina/metabolismo , Animais , Difusão , Portadores de Fármacos/química , Feminino , Corantes Fluorescentes/química , Interações Hidrofóbicas e Hidrofílicas , Processamento de Imagem Assistida por Computador , Injeções Intravítreas , Micelas , Nanopartículas/química , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley , Distribuição TecidualRESUMO
This work reports on water desorption from cassava starch in relation with the structure and conditioning of granules in suspensions or after equilibration in desiccators. The experimental work is performed by thermogravimetric analysis with isothermal and non-isothermal protocols and interpreted to derive the activation energies and desorption frequencies according to the humidity range with no adjustable parameter. The analysis points out the different types of water interacting with the starch granules and relates the drying coefficients to their microscopic structure. The work helps clarifying contradictory and partial results from the literature.
Assuntos
Amido/química , Água/química , Dessecação , Manihot/química , Modelos Químicos , PósRESUMO
The classical mechanism of crystal growth for architecting different nanomaterials in solution, although widely studied, is mainly restricted to binary semiconductor systems. However, this method is not applicable to multinary nanomaterials, which have multivalent cations possessing different reactivity under identical reaction conditions. Hence, the shape architectures of these nanostructures, which require a more sophisticated approach, remain relatively unexplored compared to those of binary semiconductors. Owing to the importance of the multinary materials, which are emerging as excellent green materials for both light harvesting and light emission, we investigated the diffusion-rate-controlled formation of ternary AgGaSe2 nanostructures and studied their heterostructures with noble metals. Controlling the changes in the rate of diffusion of the Ag ions resulted in the formation of tadpole-shaped AgGaSe2 ternary nanostructures. In situ study by collecting a sequential collection of samples has been carried out, and the conversion of amorphous Ga-selenide to crystalline AgGaSe2 has been monitored. In addition, heterostructures of tadpole AgGaSe2 with noble metals, Au and Pt, were designed, and their photocatalytic behaviors were studied.