Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biom J ; 66(6): e202400014, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39162087

RESUMO

Random survival forests (RSF) can be applied to many time-to-event research questions and are particularly useful in situations where the relationship between the independent variables and the event of interest is rather complex. However, in many clinical settings, the occurrence of the event of interest is affected by competing events, which means that a patient can experience an outcome other than the event of interest. Neglecting the competing event (i.e., regarding competing events as censoring) will typically result in biased estimates of the cumulative incidence function (CIF). A popular approach for competing events is Fine and Gray's subdistribution hazard model, which directly estimates the CIF by fitting a single-event model defined on a subdistribution timescale. Here, we integrate concepts from the subdistribution hazard modeling approach into the RSF. We develop several imputation strategies that use weights as in a discrete-time subdistribution hazard model to impute censoring times in cases where a competing event is observed. Our simulations show that the CIF is well estimated if the imputation already takes place outside the forest on the overall dataset. Especially in settings with a low rate of the event of interest or a high censoring rate, competing events must not be neglected, that is, treated as censoring. When applied to a real-world epidemiological dataset on chronic kidney disease, the imputation approach resulted in highly plausible predictor-response relationships and CIF estimates of renal events.


Assuntos
Biometria , Humanos , Biometria/métodos , Análise de Sobrevida , Modelos Estatísticos , Modelos de Riscos Proporcionais
2.
Biometrics ; 80(3)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39136277

RESUMO

Time-to-event data are often recorded on a discrete scale with multiple, competing risks as potential causes for the event. In this context, application of continuous survival analysis methods with a single risk suffers from biased estimation. Therefore, we propose the multivariate Bernoulli detector for competing risks with discrete times involving a multivariate change point model on the cause-specific baseline hazards. Through the prior on the number of change points and their location, we impose dependence between change points across risks, as well as allowing for data-driven learning of their number. Then, conditionally on these change points, a multivariate Bernoulli prior is used to infer which risks are involved. Focus of posterior inference is cause-specific hazard rates and dependence across risks. Such dependence is often present due to subject-specific changes across time that affect all risks. Full posterior inference is performed through a tailored local-global Markov chain Monte Carlo (MCMC) algorithm, which exploits a data augmentation trick and MCMC updates from nonconjugate Bayesian nonparametric methods. We illustrate our model in simulations and on ICU data, comparing its performance with existing approaches.


Assuntos
Algoritmos , Teorema de Bayes , Simulação por Computador , Cadeias de Markov , Método de Monte Carlo , Humanos , Análise de Sobrevida , Modelos Estatísticos , Análise Multivariada , Biometria/métodos
3.
Biostatistics ; 21(3): 449-466, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30418529

RESUMO

A popular modeling approach for competing risks analysis in longitudinal studies is the proportional subdistribution hazards model by Fine and Gray (1999. A proportional hazards model for the subdistribution of a competing risk. Journal of the American Statistical Association94, 496-509). This model is widely used for the analysis of continuous event times in clinical and epidemiological studies. However, it does not apply when event times are measured on a discrete time scale, which is a likely scenario when events occur between pairs of consecutive points in time (e.g., between two follow-up visits of an epidemiological study) and when the exact lengths of the continuous time spans are not known. To adapt the Fine and Gray approach to this situation, we propose a technique for modeling subdistribution hazards in discrete time. Our method, which results in consistent and asymptotically normal estimators of the model parameters, is based on a weighted ML estimation scheme for binary regression. We illustrate the modeling approach by an analysis of nosocomial pneumonia in patients treated in hospitals.


Assuntos
Pesquisa Biomédica/métodos , Bioestatística/métodos , Modelos Estatísticos , Pneumonia Associada a Assistência à Saúde/epidemiologia , Humanos , Unidades de Terapia Intensiva/estatística & dados numéricos , Modelos de Riscos Proporcionais
4.
Lifetime Data Anal ; 26(3): 545-572, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31709472

RESUMO

Hazard models are popular tools for the modeling of discrete time-to-event data. In particular two approaches for modeling time dependent effects are in common use. The more traditional one assumes a linear predictor with effects of explanatory variables being constant over time. The more flexible approach uses the class of semiparametric models that allow the effects of the explanatory variables to vary smoothly over time. The approach considered here is in between these modeling strategies. It assumes that the effects of the explanatory variables are piecewise constant. It allows, in particular, to evaluate at which time points the effect strength changes and is able to approximate quite complex variations of the change of effects in a simple way. A tree-based method is proposed for modeling the piecewise constant time-varying coefficients, which is embedded into the framework of varying-coefficient models. One important feature of the approach is that it automatically selects the relevant explanatory variables and no separate variable selection procedure is needed. The properties of the method are investigated in several simulation studies and its usefulness is demonstrated by considering two real-world applications.


Assuntos
Algoritmos , Modelos de Riscos Proporcionais , Simulação por Computador , Humanos , Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA