Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 593
Filtrar
1.
Expert Opin Drug Discov ; : 1-18, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39360759

RESUMO

INTRODUCTION: The autoimmune hair loss condition alopecia areata (AA) exacts a substantial psychological and socioeconomic toll on patients. Biotechnology companies, dermatology clinics, and research institutions are dedicated to understanding AA pathogenesis and developing new therapeutic approaches. Despite recent efforts, many knowledge gaps persist, and multiple treatment development avenues remain unexplored. AREAS COVERED: This review summarizes key AA disease mechanisms, current therapeutic methods, and emerging treatments, including Janus Kinase (JAK) inhibitors. The authors determine that innovative drug discovery strategies for AA are still needed due to continued unmet medical needs and the limited efficacy of current and emerging therapeutics. For prospective AA treatment developers, the authors identify the pre-clinical disease models available, their advantages, and limitations. Further, they outline treatment development opportunities that remain largely unmapped. EXPERT OPINION: While recent advancements in AA therapeutics are promising, challenges remain, including the lack of consistent treatment efficacy, long-term use and safety issues, drug costs, and patient compliance. Future drug development research should focus on patient stratification utilizing robust biomarkers of AA disease activity and improved quantification of treatment response. Investigating superior modes of drug application and developing combination therapies may further improve outcomes. Spirited innovation will be needed to advance more effective treatments for AA.


Alopecia areata (AA) is an autoimmune condition that causes hair loss. It significantly affects a patient's emotional well-being and quality of life. Companies, clinics, and researchers are working hard to understand AA and create better treatments. Despite these efforts, there are still many unanswered questions, and new treatment methods still need to be explored.This review summarizes how AA develops, current treatment options, and new therapies like Janus Kinase (JAK) inhibitor drugs. JAK inhibitors show promise, but they are not fully effective for everyone. We emphasize that there is still a need for new and innovative drug discovery strategies to meet the medical needs of AA patients, as current treatments often fall short.For researchers and developers of AA treatments, we discuss the available pre-clinical models used to test new drugs, highlighting their strengths and weaknesses. We also point out new areas for treatment development that have not been thoroughly investigated.Although recent advancements in AA treatments are encouraging, several challenges remain. These include inconsistent effectiveness of treatments, safety concerns with long-term use, high drug costs, and issues with patient adherence to treatment programs. We believe future research should focus on identifying biomarkers that can help tailor treatments to individual patients and improving measurements of treatment success. Additionally, exploring better ways to apply drugs and combining different therapies together may enhance treatment outcomes.Ultimately, innovative approaches and spirited efforts will be required to develop more effective treatments for AA to improve the lives of those affected by this challenging condition.

2.
Stat Methods Med Res ; 33(8): 1473-1494, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39360928

RESUMO

A useful parametric specification for the expected value of an epidemiological process is revived, and its statistical and empirical efficacy are explored. The Richards' curve is flexible enough to adapt to several growth phenomena, including recent epidemics and outbreaks. Here, two different estimation methods are described. The first, based on likelihood maximisation, is particularly useful when the outbreak is still ongoing and the main goal is to obtain sufficiently accurate estimates in negligible computational run-time. The second is fully Bayesian and allows for more ambitious modelling attempts such as the inclusion of spatial and temporal dependence, but it requires more data and computational resources. Regardless of the estimation approach, the Richards' specification properly characterises the main features of any growth process (e.g. growth rate, peak phase etc.), leading to a reasonable fit and providing good short- to medium-term predictions. To demonstrate such flexibility, we show different applications using publicly available data on recent epidemics where the data collection processes and transmission patterns are extremely heterogeneous, as well as benchmark datasets widely used in the literature as illustrative.


Assuntos
Teorema de Bayes , Humanos , Funções Verossimilhança , Modelos Estatísticos , Epidemias/estatística & dados numéricos , Surtos de Doenças/estatística & dados numéricos , Modelos Epidemiológicos , Métodos Epidemiológicos
3.
Front Pharmacol ; 15: 1465872, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39263569

RESUMO

Niemann-Pick disease type C1 (NP-C1) is a rare and devastating recessive inherited lysosomal lipid and cholesterol storage disorder caused by mutations in the NPC1 or NPC2 gene. These two proteins bind to cholesterol and cooperate in endosomal cholesterol transport. Characteristic clinical manifestations of NP-C1 include hepatosplenomegaly, progressive neurodegeneration, and ataxia. While the rarity of NP-C1 presents a significant obstacle to progress, researchers have developed numerous potential therapeutic approaches over the past two decades to address this condition. Various methods have been proposed and continuously improved to slow the progression of NP-C1, although they are currently at an animal or clinical experimental stage. This overview of NP-C1 therapy will delve into different theoretical treatment strategies, such as small molecule therapies, cell-based approaches, and gene therapy, highlighting the complex therapeutic challenges associated with this disorder.

4.
Med Decis Making ; : 272989X241280611, 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39305116

RESUMO

BACKGROUND: Infectious disease (ID) models have been the backbone of policy decisions during the COVID-19 pandemic. However, models often overlook variation in disease risk, health burden, and policy impact across social groups. Nonetheless, social determinants are becoming increasingly recognized as fundamental to the success of control strategies overall and to the mitigation of disparities. METHODS: To underscore the importance of considering social heterogeneity in epidemiological modeling, we systematically reviewed ID modeling guidelines to identify reasons and recommendations for incorporating social determinants of health into models in relation to the conceptualization, implementation, and interpretations of models. RESULTS: After identifying 1,372 citations, we found 19 guidelines, of which 14 directly referenced at least 1 social determinant. Age (n = 11), sex and gender (n = 5), and socioeconomic status (n = 5) were the most commonly discussed social determinants. Specific recommendations were identified to consider social determinants to 1) improve the predictive accuracy of models, 2) understand heterogeneity of disease burden and policy impact, 3) contextualize decision making, 4) address inequalities, and 5) assess implementation challenges. CONCLUSION: This study can support modelers and policy makers in taking into account social heterogeneity, to consider the distributional impact of infectious disease outbreaks across social groups as well as to tailor approaches to improve equitable access to prevention, diagnostics, and therapeutics. HIGHLIGHTS: Infectious disease (ID) models often overlook the role of social determinants of health (SDH) in understanding variation in disease risk, health burden, and policy impact across social groups.In this study, we systematically review ID guidelines and identify key areas to consider SDH in relation to the conceptualization, implementation, and interpretations of models.We identify specific recommendations to consider SDH to improve model accuracy, understand heterogeneity, estimate policy impact, address inequalities, and assess implementation challenges.

5.
Front Immunol ; 15: 1408501, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39324139

RESUMO

Rheumatoid arthritis (RA) affects millions of people worldwide, but there are limited drugs available to treat it, so acquiring a more comprehensive comprehension of the underlying reasons and mechanisms behind inflammation is crucial, as well as developing novel therapeutic approaches to manage it and mitigate or forestall associated harm. It is evident that current in vitro models cannot faithfully replicate all aspects of joint diseases, which makes them ineffective as tools for disease research and drug testing. Organ-on-a-chip (OoC) technology is an innovative platform that can mimic the microenvironment and physiological state of living tissues more realistically than traditional methods by simulating the spatial arrangement of cells and interorgan communication. This technology allows for the precise control of fluid flow, nutrient exchange, and the transmission of physicochemical signals, such as bioelectrical, mechanical stimulation and shear force. In addition, the integration of cutting-edge technologies like sensors, 3D printing, and artificial intelligence enhances the capabilities of these models. Here, we delve into OoC models with a particular focus on Synovial Joints-on-a-Chip, where we outline their structure and function, highlighting the potential of the model to advance our understanding of RA. We integrate the actual evidence regarding various OoC models and their possible integration for multisystem disease study in RA research for the first time and introduce the prospects and opportunities of the chip in RA etiology and pathological mechanism research, drug research, disease prevention and human precision medicine. Although many challenges remain, OoC holds great promise as an in vitro model that approaches physiology and dynamics.


Assuntos
Artrite Reumatoide , Dispositivos Lab-On-A-Chip , Membrana Sinovial , Humanos , Membrana Sinovial/patologia , Animais
6.
Dev Dyn ; 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39320016

RESUMO

BACKGROUND: Embryonic craniofacial development involves several cellular and molecular events that are evolutionarily conserved among vertebrates. Vertebrate models such as mice and zebrafish have been used to investigate the molecular and cellular etiologies underlying human craniofacial disorders, including orofacial clefts. However, the molecular mechanisms underlying embryonic development in these two species are unknown. Therefore, elucidating the shared mechanisms of craniofacial development between disease models is crucial to understanding the underlying mechanisms of phenotypes in individual species. RESULTS: We selected mice and zebrafish as model organisms to compare various events during embryonic craniofacial development. We identified genes (Sox9, Zfhx3 and 4, Cjun, and Six1) exhibiting similar temporal expression patterns between these species through comprehensive and stage-matched gene expression analyses. Expression analysis revealed similar gene expression in hypothetically corresponding tissues, such as the mice palate and zebrafish ethmoid plate. Furthermore, loss-of-function analysis of Zfhx4/zfhx4, a causative gene of human craniofacial anomalies including orofacial cleft, in both species resulted in deformed skeletal elements such as the palatine and ethmoid plate in mice and zebrafish, respectively. CONCLUSIONS: These results demonstrate that these disease models share common molecular mechanisms, highlighting their usefulness in modeling craniofacial defects in humans.

7.
J Transl Med ; 22(1): 762, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143486

RESUMO

BACKGROUND: Personalized disease models are crucial for evaluating how diseased cells respond to treatments, especially in case of innovative biological therapeutics. Extracellular vesicles (EVs), nanosized vesicles released by cells for intercellular communication, have gained therapeutic interest due to their ability to reprogram target cells. We here utilized urinary podocytes obtained from children affected by steroid-resistant nephrotic syndrome with characterized genetic mutations as a model to test the therapeutic potential of EVs derived from kidney progenitor cells (nKPCs). METHODS: EVs were isolated from nKPCs derived from the urine of a preterm neonate. Three lines of urinary podocytes obtained from nephrotic patients' urine and a line of Alport syndrome patient podocytes were characterized and used to assess albumin permeability in response to nKPC-EVs or various drugs. RNA sequencing was conducted to identify commonly modulated pathways after nKPC-EV treatment. siRNA transfection was used to demonstrate the involvement of SUMO1 and SENP2 in the modulation of permeability. RESULTS: Treatment with the nKPC-EVs significantly reduced permeability across all the steroid-resistant patients-derived and Alport syndrome-derived podocytes. At variance, podocytes appeared unresponsive to standard pharmacological treatments, with the exception of one line, in alignment with the patient's clinical response at 48 months. By RNA sequencing, only two genes were commonly upregulated in nKPC-EV-treated genetically altered podocytes: small ubiquitin-related modifier 1 (SUMO1) and Sentrin-specific protease 2 (SENP2). SUMO1 and SENP2 downregulation increased podocyte permeability confirming the role of the SUMOylation pathway. CONCLUSIONS: nKPCs emerge as a promising non-invasive source of EVs with potential therapeutic effects on podocytes with genetic dysfunction, through modulation of SUMOylation, an important pathway for the stability of podocyte slit diaphragm proteins. Our findings also suggest the feasibility of developing a non-invasive in vitro model for screening regenerative compounds on patient-derived podocytes.


Assuntos
Vesículas Extracelulares , Síndrome Nefrótica , Podócitos , Podócitos/metabolismo , Podócitos/efeitos dos fármacos , Podócitos/patologia , Humanos , Síndrome Nefrótica/patologia , Síndrome Nefrótica/tratamento farmacológico , Síndrome Nefrótica/metabolismo , Vesículas Extracelulares/metabolismo , Avaliação Pré-Clínica de Medicamentos , Modelos Biológicos , Células-Tronco/metabolismo , Esteroides/farmacologia , Rim/patologia , Rim/metabolismo , Resistência a Medicamentos , Recém-Nascido , Masculino
8.
Mol Cell ; 84(16): 3128-3140.e4, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39096898

RESUMO

The IscB proteins, as the ancestors of Cas9 endonuclease, hold great promise due to their small size and potential for diverse genome editing. However, their activity in mammalian cells is unsatisfactory. By introducing three residual substitutions in IscB, we observed an average 7.5-fold increase in activity. Through fusing a sequence-non-specific DNA-binding protein domain, the eIscB-D variant achieved higher editing efficiency, with a maximum of 91.3%. Moreover, engineered ωRNA was generated with a 20% reduction in length and slightly increased efficiency. The engineered eIscB-D/eωRNA system showed an average 20.2-fold increase in activity compared with the original IscB. Furthermore, we successfully adapted eIscB-D for highly efficient cytosine and adenine base editing. Notably, eIscB-D is highly active in mouse cell lines and embryos, enabling the efficient generation of disease models through mRNA/ωRNA injection. Our study suggests that these miniature genome-editing tools have great potential for diverse applications.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Edição de Genes/métodos , Camundongos , Humanos , Embrião de Mamíferos/metabolismo , Células HEK293 , Engenharia de Proteínas/métodos
9.
Int J Mol Sci ; 25(16)2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39201792

RESUMO

In the human body, the vascular system plays an indispensable role in maintaining homeostasis by supplying oxygen and nutrients to cells and organs and facilitating the removal of metabolic waste and toxins. Blood vessels-the key constituents of the vascular system-are composed of a layer of endothelial cells on their luminal surface. In most organs, tightly packed endothelial cells serve as a barrier separating blood and lymph from surrounding tissues. Intriguingly, endothelial cells in some tissues and organs (e.g., choroid plexus, liver sinusoids, small intestines, and kidney glomerulus) form transcellular pores called fenestrations that facilitate molecular and ionic transport across the vasculature and mediate immune responses through leukocyte transmigration. However, the development and unique functions of endothelial cell fenestrations across organs are yet to be fully uncovered. This review article provides an overview of fenestrated endothelial cells in multiple organs. We describe their development and organ-specific roles, with expanded discussions on their contributions to glomerular health and disease. We extend these discussions to highlight the dynamic changes in endothelial cell fenestrations in diabetic nephropathy, focal segmental glomerulosclerosis, Alport syndrome, and preeclampsia, and how these unique cellular features could be targeted for therapeutic development. Finally, we discuss emerging technologies for in vitro modeling of biological systems, and their relevance for advancing the current understanding of endothelial cell fenestrations in health and disease.


Assuntos
Células Endoteliais , Nefropatias , Rim , Humanos , Células Endoteliais/metabolismo , Animais , Rim/metabolismo , Rim/patologia , Nefropatias/metabolismo , Nefropatias/patologia
10.
Lab Anim ; : 236772241247104, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39118535

RESUMO

UK Health Security Agency is required to investigate the pathogenesis of emerging or re-emerging infections and to test novel interventions, such as vaccines and therapeutics against these and other diseases, such as tuberculosis and Ebola, that have a significant impact on human health world-wide. Research into the causative agents (mainly BSL 3 and 4) using a wide range of animal species as pre-clinical models brings a number of challenges in terms of effective biocontainment to address human safety whilst optimising delivery of scientific objectives and the welfare of the animals. Here we describe the strategies used for high containment of species that include mice, ferrets, hamsters, rabbits and macaques that have been infected with high consequence pathogens. To ensure relevance of these models we frequently challenge by the aerosol route and monitor the development of disease and protective or therapeutic efficacy by methodologies similar to those used in the clinic. We have devised methods of sampling that can inform on pathogenesis and immune function that include lung lavage and medical imaging such as computed tomography and positron emission tomography-computed tomography. Imaging assists our assessment of progression to disease whilst providing refinement in application of early humane endpoints. We have developed directional flow containment systems that provide quantifiable operator protection whilst allowing group housing and a wide range of enrichment strategies appropriate for each species. Furthermore, we have demonstrated our improvements in animal welfare through use of a software-based Animal Welfare Assessment Grid that was developed with help of NC3Rs funding and enables us to quantify the lifetime experience of animals.

12.
J Invest Dermatol ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39127929

RESUMO

Skin in vitro models offer much promise for research, testing drugs, cosmetics, and medical devices, reducing animal testing and extensive clinical trials. There are several in vitro approaches to mimicking human skin behavior, ranging from simple cell monolayer to complex organotypic and bioengineered 3-dimensional models. Some have been approved for preclinical studies in cosmetics, pharmaceuticals, and chemicals. However, development of physiologically reliable in vitro human skin models remains in its infancy. This review reports on advances in in vitro complex skin models to study skin homeostasis, aging, and skin disease.

13.
Clin Ophthalmol ; 18: 2193-2203, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39131543

RESUMO

Purpose: The absence of a standardized diagnostic method for clinical signs of Dry Eye Disease (DED) complicates clinical trials for future treatments. This paper evaluated Lissamine Green (LG) conjunctival staining as a valid, stable and modifiable endpoint for both clinical practice and clinical trials. Methods: Screening and pre-randomization data from two identically designed clinical trials for DED resulted in a pooled dataset of 494 subjects. Inclusion was based on reported symptoms, lissamine green (LG) conjunctival staining, Fluorescein (Fl) corneal and conjunctival staining, and Schirmer's Test (ST). Outcome measures were assessed based on the modifiability of LG staining to exposure to a Controlled Adverse Environment (CAE®), correlation of LG to Fl staining, relative variation of LG staining scores and Schirmer test scores, and the correlation of LG staining with symptom scores. Results: The modifiability of LG conjunctival staining to environmental exposure was demonstrated, with nasal LG and FL staining displaying the most similar percent change. Nasal LG conjunctival staining scores for subjects with ST scores of less than 8mm were significantly higher than for subjects with ST greater than 8mm. LG staining scores were more consistent (25% change from baseline threshold) than ST scores. Finally, statistically significant correlations were found between LG staining and a number of symptom scores. Conclusion: This evaluation demonstrates the superiority of the utilization of a clinical endpoint focused on ocular surface damage. The reproducibility and modifiability of LG conjunctival staining to controlled adverse environment, coupled with its significant correlation with symptoms, positions it as an exemplary clinical sign endpoint for clinical management and in clinical trials. Our findings advocate for the adoption of LG conjunctival staining as a primary endpoint in both clinical research and drug development, offering a more effective means of identifying and addressing ocular surface damage in the realm of DED.

14.
Pharmaceuticals (Basel) ; 17(8)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39204134

RESUMO

Variants (pathogenic) of the LMNA gene are a common cause of familial dilated cardiomyopathy (DCM), which is characterised by early-onset atrioventricular (AV) block, atrial fibrillation and ventricular tachyarrhythmias (VTs), and progressive heart failure. The unstable internal nuclear lamina observed in LMNA-related DCM is a consequence of the disassembly of lamins A and C. This suggests that LMNA variants produce truncated or alternative forms of protein that alter the nuclear structure and the signalling pathway related to cardiac muscle diseases. To date, the pathogenic mechanisms and phenotypes of LMNA-related DCM have been studied using different platforms, such as patient-specific induced pluripotent stem-cell-derived cardiomyocytes (iPSC-CMs) and transgenic mice. In this review, point variants in the LMNA gene that cause autosomal dominantly inherited forms of LMNA-related DCM are summarised. In addition, potential therapeutic targets based on preclinical studies of LMNA variants using transgenic mice and human iPSC-CMs are discussed. They include mitochondria deficiency, variants in nuclear deformation, chromatin remodelling, altered platelet-derived growth factor and ERK1/2-related pathways, and abnormal calcium handling.

15.
Emerg Infect Dis ; 30(9): 1967-1969, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39174027

RESUMO

On the basis of historical influenza and COVID-19 forecasts, we found that more than 3 forecast models are needed to ensure robust ensemble accuracy. Additional models can improve ensemble performance, but with diminishing accuracy returns. This understanding will assist with the design of current and future collaborative infectious disease forecasting efforts.


Assuntos
COVID-19 , Surtos de Doenças , Previsões , Influenza Humana , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , Influenza Humana/epidemiologia , Influenza Humana/história , Modelos Estatísticos , Modelos Epidemiológicos
16.
Yi Chuan ; 46(8): 603-626, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39140142

RESUMO

Uterine leiomyosarcoma (uLMS) is a type of malignant soft-tissue tumor, which is developed from myometrium in the female reproductive system. This disease is difficult to be distinguished from benign uterine leiomyoma in the early stages, but it progresses aggressively and relentlessly. Hence, uLMS has a dismal prognosis and high rates of both misdiagnosis and missed diagnosis. Unfortunately, current studies of uLMS pathogenesis and disease biology are inadequate. uLMS disease models are also very limited, hindering the development of effective therapeutics. In this review, we focus on the pathological molecular biology of uLMS, and systematically review the molecular genetic features, epigenetic variants, experimental models, and clinical research progress of uLMS. We further discuss the development direction and potential needs of uLMS in the fields of tumor evolution, tumor microenvironment, and tumor therapy, with the aim of providing a better understanding of the pathobiological mechanism of uLMS and providing a reference for the development of potential diagnostic and therapeutic strategies.


Assuntos
Leiomiossarcoma , Neoplasias Uterinas , Leiomiossarcoma/genética , Leiomiossarcoma/diagnóstico , Humanos , Feminino , Neoplasias Uterinas/genética , Neoplasias Uterinas/diagnóstico , Animais , Microambiente Tumoral/genética
17.
Int J Mol Sci ; 25(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39062993

RESUMO

Since the emergence of the first cerebral organoid (CO) in 2013, advancements have transformed central nervous system (CNS) research. Initial efforts focused on studying the morphogenesis of COs and creating reproducible models. Numerous methodologies have been proposed, enabling the design of the brain organoid to represent specific regions and spinal cord structures. CNS organoids now facilitate the study of a wide range of CNS diseases, from infections to tumors, which were previously difficult to investigate. We summarize the major advancements in CNS organoids, concerning morphogenetic designs and disease models. We examine the development of fabrication procedures and how these advancements have enabled the generation of region-specific brain organoids and spinal cord models. We highlight the application of these organoids in studying various CNS diseases, demonstrating the versatility and potential of organoid models in advancing our understanding of complex conditions. We discuss the current challenges in the field, including issues related to reproducibility, scalability, and the accurate recapitulation of the in vivo environment. We provide an outlook on prospective studies and future directions. This review aims to provide a comprehensive overview of the state-of-the-art CNS organoid research, highlighting key developments, current challenges, and prospects in the field.


Assuntos
Sistema Nervoso Central , Organoides , Humanos , Animais , Doenças do Sistema Nervoso Central/patologia , Morfogênese , Modelos Biológicos
18.
Int J Pharm ; 661: 124398, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38964491

RESUMO

Despite the continuous research on understanding how topical drugs and the skin interact, the development of a topical generic product remains a challenge. Due to their local action effect rather than systemic, establishing suitable frameworks for documenting bioequivalence between reference and test formulations is anything but straightforward. In previous years, clinical endpoint trials were considered the gold standard method to demonstrate bioequivalence between topical products. Nevertheless, significant financial and time resources were required to be allocated owing to the inherent complexity of these studies. To address this problem, regulatory authorities have begun to accept alternative approaches that could lead to a biowaiver, avoiding the need for clinical endpoint trials. These alternatives encompass various in vitro and/or in vivo techniques that have been analysed and the benefits and drawbacks of each method have been considered. Furthermore, other factors like the integration of a quality by design framework to ensure a comprehensive understanding of the product and process quality attributes have also been taken into account. This review delves into international regulatory recommendations for semisolid topical products, with a focus on those established by the European Medicines Agency, as well as the Food and Drug Administration. Both approaches were carefully examined, discussing aspects such as acceptance criteria, sample size, and microstructure evaluation. Additionally, novel and innovative therapeutic-driven approaches based on in vitro disease models for the rapid and effective development of topical generic products are presented.


Assuntos
Administração Tópica , Medicamentos Genéricos , Equivalência Terapêutica , Medicamentos Genéricos/farmacocinética , Medicamentos Genéricos/administração & dosagem , Humanos , Animais , United States Food and Drug Administration , Estados Unidos
19.
Mol Ther ; 32(8): 2505-2518, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38822525

RESUMO

Single monoclonal antibodies (mAbs) can be expressed in vivo through gene delivery of their mRNA formulated with lipid nanoparticles (LNPs). However, delivery of a mAb combination could be challenging due to the risk of heavy and light variable chain mispairing. We evaluated the pharmacokinetics of a three mAb combination against Staphylococcus aureus first in single chain variable fragment scFv-Fc and then in immunoglobulin G 1 (IgG1) format in mice. Intravenous delivery of each mRNA/LNP or the trio (1 mg/kg each) induced functional antibody expression after 24 h (10-100 µg/mL) with 64%-78% cognate-chain paired IgG expression after 3 days, and an absence of non-cognate chain pairing for scFv-Fc. We did not observe reduced neutralizing activity for each mAb compared with the level of expression of chain-paired mAbs. Delivery of the trio mRNA protected mice in an S. aureus-induced dermonecrosis model. Intravenous administration of the three mRNA in non-human primates achieved peak serum IgG levels ranging between 2.9 and 13.7 µg/mL with a half-life of 11.8-15.4 days. These results suggest nucleic acid delivery of mAb combinations holds promise and may be a viable option to streamline the development of therapeutic antibodies.


Assuntos
Anticorpos Monoclonais , Imunoglobulina G , RNA Mensageiro , Infecções Estafilocócicas , Staphylococcus aureus , Animais , Camundongos , Staphylococcus aureus/imunologia , RNA Mensageiro/genética , Infecções Estafilocócicas/prevenção & controle , Imunoglobulina G/imunologia , Nanopartículas/química , Modelos Animais de Doenças , Feminino , Anticorpos de Cadeia Única/genética , Humanos , Lipossomos
20.
Spat Spatiotemporal Epidemiol ; 49: 100645, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38876555

RESUMO

Bayesian inference in modelling infectious diseases using Bayesian inference using Gibbs Sampling (BUGS) is notable in the last two decades in parallel with the advancements in computing and model development. The ability of BUGS to easily implement the Markov chain Monte Carlo (MCMC) method brought Bayesian analysis to the mainstream of infectious disease modelling. However, with the existing software that runs MCMC to make Bayesian inferences, it is challenging, especially in terms of computational complexity, when infectious disease models become more complex with spatial and temporal components, in addition to the increasing number of parameters and large datasets. This study investigates two alternative subscripting strategies for creating models in Just Another Gibbs Sampler (JAGS) environment and their performance in terms of run times. Our results are useful for practitioners to ensure the efficiency and timely implementation of Bayesian spatiotemporal infectious disease modelling.


Assuntos
Teorema de Bayes , Cadeias de Markov , Análise Espaço-Temporal , Humanos , Modelos Epidemiológicos , Método de Monte Carlo , Software , Doenças Transmissíveis/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA