Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.963
Filtrar
1.
J Maxillofac Oral Surg ; 23(5): 1163-1165, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39376779

RESUMO

Purpose: To propose a novel technique of fixation and stabilization of the nasoendotracheal tube for maxillary osteotomies. Method: The technique utilizes a flexible Portex north pole endotracheal tube size 6, elastic adhesive tape, a catheter mount and a head cap made of cloth in the fixation and stabilization of the nasoendotracheal tube for maxillary osteotomies. Result: It is a simple method of fixation and stabilization of the nasoendotracheal tube, particularly for maxillary osteotomies that essentially eliminates distortion of the nasal, labial and perinasal areas and facilitates good nasolabial control during maxillary osteotomies. Conclusion: This technique is simple, safe and versatile and may be employed for maxillary osteotomies.

2.
Eur J Radiol ; 181: 111752, 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39357288

RESUMO

PURPOSE: To evaluate the impact of application acquisition and reconstruction with motion suppression (ARMS) technology on improving the image quality of diffusion-weighted Imaging (DWI) for nasopharyngeal carcinoma (NPC), compared to single-shot echo-planar imaging (SS-EPI). METHODS: A total of 90 patients with NPC underwent MR examination, including ARMS DWI and SS-EPI DWI sequences. Both DWI sequences were acquired with b-values 0 and 800 s/mm2. Two radiologists evaluated the visibility of the lesion, geometric distortion, and overall image quality of the two DWI sequences. Signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), geometric distortion degree, and apparent diffusion coefficient (ADC) values of the nasopharyngeal lesions were assessed and compared for two sequences. The Wilcoxon signed-rank test was used to compare the quantitative and qualitative parameters of the two sequences. RESULTS: The lesion visibility, geometric distortion, and overall image quality scores were significantly higher in ARMS DWI (all P<0.001). Four small-sized lesions were not visible and four lesions were partially visible in the SS-EPI DWI sequence. Lesion detection rate of ARMS DWI is 100 %, while that of SS-EPI is 95.56 %, P<0.043. The mismatch distance between the fusion images of ARMS DWI and T2WI was smaller than that of SS-EPI DWI and T2WI (all P<0.001). The SNR and CNR of ARMS DWI were lower than that of SS-EPI DWI (114.48 ± 37.89 vs. 202.61 ± 78.84, P<0.001 and 1.81 ± 1.84 vs. 3.29 ± 3.71, P<0.003) while the ADC value was higher (839.19 ± 138.44 × 10-6 mm2/s vs. 788.82 ± 110.96 × 10-6 mm2/s, P<0.002). CONCLUSION: ARMS DWI improves the image quality by reducing geometric distortion and magnetic susceptibility artifacts. ARMS DWI is superior to SS-EPI DWI for diagnosing small-sized nasopharyngeal lesions, although it has lower SNR and CNR.

3.
3D Print Addit Manuf ; 11(4): e1616-e1628, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39360611

RESUMO

This research is devoted to numerical and experimental analysis on deformation of completely removed component induced by wire arc additive manufacturing (WAAM). The component has the form of a hollow and rectangular thin wall made of deposition layer of stainless steel SS316L on top of substrate plate of mild steel S235. In this research, thermomechanical finite element analysis was applied with Goldak's double ellipsoid as heat-source model and isotropic hardening rule based on von-Mises yield criterion. A specialized numerical simulation software Simufact.Welding 2021 (SW) was utilized in developing the numerical model and the simulation of process enhanced with separation and deposition algorithm to predict the component deformation after removal of substrate. On determining the best possible mesh size, a sensitivity analysis was conducted before the advanced stage of model development. An advanced material modeling, the data of which were obtained based on the chemical composition of the evolved SS316L sample, was developed using an advanced material modeling software JMATPRO. For verification purpose, a series of WAAM experiments using robotic GMAW with synergic power source were conducted followed by the removal of substrate from component using machining process. Furthermore, component distortion was measured using industrial noncontact 3D scanner with structured blue light to fully capture the upper section deformation and compared with result of numerical computation. It can be concluded that this novel distortion analysis method using thermomechanical numerical computation with evolved material property and modified algorithms for substrate removal exhibits a surface deviation in vertical direction between 0.05 and 2.16 mm with acceptable pointwise and average error percentage of up to 3%.

4.
J Colloid Interface Sci ; 678(Pt B): 1135-1147, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39278039

RESUMO

The serious combination of abundant electrons/holes in bulk primarily hinders the efficiency in the photocatalytic reaction. It is crucial to control the spatial charge dynamics through delicately designing the crystal configuration of photocatalyst. In this work, a modified tungsten trioxide nanosheet colloid (M-WO3) was synthesized by an ion exchange method. Compared to pristine WO3 (P-WO3), the crystal lattice vibration frequency of M-WO3 increases from 2.8 meV to 4.3 meV, which effectively prohibits electron-phonon coupling and powerfully accelerates the separation and transfer of photoinduced charge carriers. Irradiated by visible-light, M-WO3 shows much higher photocatalytic bacterial inactivation performance than P-WO3. In addition, this regulation method increases the surface charges of the WO3 colloid to improve its stability, which endows this colloid photocatalyst with broad prospects in practical photocatalytic antibacterial applications. This work offers guidance to construct efficiently separated photoinduced electron/hole pairs of the colloid photocatalyst by designing its crystal structure.

5.
Artigo em Inglês | MEDLINE | ID: mdl-39219981

RESUMO

Gradient nonlinearities not only induce spatial distortion in magnetic resonance imaging (MRI), but also introduce discrepancies between intended and acquired diffusion sensitization in diffusion weighted (DW) MRI. Advances in scanner performance have increased the importance of correcting gradient nonlinearities. The most common approaches for gradient nonlinear field estimations rely on phantom calibration field maps which are not always feasible, especially on retrospective data. Here, we derive a quadratic minimization problem for the complete gradient nonlinear field (L(r)). This approach starts with corrupt diffusion signal and estimates the L(r) in two scenarios: (1) the true diffusion tensor known and (2) the true diffusion tensor unknown (i.e., diffusion tensor is estimated). We show the validity of this mathematical approach, both theoretically and through tensor simulation. The estimated field is assessed through diffusion tensor metrics: mean diffusivity (MD), fractional anisotropy (FA), and principal eigenvector (V1). In simulation with 300 diffusion tensors, the study shows the mathematical model is not ill-posed and remains stable. We find when the true diffusion tensor is known (1) the change in determinant of the estimated L(r) field and the true field is near zero and (2) the median difference in estimated L(r) corrected diffusion metrics to true values is near zero. We find the results of L(r) estimation are dependent on the level of L(r) corruption. This work provides an approach to estimate gradient field without the need for additional calibration scans. To the best of our knowledge, the mathematical derivation presented here is novel.

6.
IEEE Trans Power Electron ; 39(3): 3289-3299, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39281019

RESUMO

Multilevel converters have enabled various applications that are not possible with conventional two-level converters. Many of these applications, however, need a high output bandwidth, often approaching the switching rate limit of the transistors, with high quality, e.g., to actively stabilize and dampen a DC grid or specifically excite certain molecules or neural circuits in medical applications. A high bandwidth approaching the switching rate challenges existing modulation methods: carrier-based switching modulation is fine at low frequencies but experiences interaction between the carrier and the signal at the upper end of the spectrum; fundamental-frequency switching, such as nearest-level modulation (NLM), perform well at high frequencies but cause intolerable distortion for low frequency contents. We propose a hybrid modulation concept that can combine any methods from these two classes. It passes the error of a fundamental frequency method through a filtered switching modulator to combine the high output quality of the latter with the high bandwidth of the former. We optimize the filter to avoid under-modulation of the signal with the carrier of the modulator and to achieve the minimum overall distortion throughout a wide output bandwidth. We demonstrate the performance experimentally with a cascaded-bridge converter and compare it with the best prior arts. This technique ensures a usable output bandwidth up to 100% of the switching rate and maintains a total distortion level below 3%.

7.
Heliyon ; 10(17): e36425, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39281471

RESUMO

The Gazelle Optimization Algorithm (GOA) is an innovative nature-inspired metaheuristic algorithm, designed to mimic the agile and efficient hunting strategies of gazelles. Despite its promising performance in solving complex optimization problems, there is still a significant scope for enhancing its efficiency and robustness. This paper introduces several novel variants of GOA, integrating adaptive strategy, Levy flight strategy, Roulette wheel selection strategy, and random walk strategy. These enhancements aim to address the limitations of the original GOA and improve its performance in diverse optimization scenarios. The proposed algorithms are rigorously tested on CEC 2014 and CEC 2017 benchmark functions, five engineering problems, and a Total Harmonic Distortion (THD) minimization problem. The results demonstrate the superior performance of the proposed variants compared to the original GOA, providing valuable insights into their applicability and effectiveness.

8.
Sci Rep ; 14(1): 20954, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251598

RESUMO

The power factor correction converter is the function of the front-end converter, followed by the DC-DC converter of the electric vehicle charger. It improves the power factor and regulates the output voltage and current. This research article proposes the Golden Eagle optimization for fractional order PI (FOPI) controller for Single Ended Primary Inductor Converter (SEPIC) power factor correction. The Golden eagle optimization is based on its knowledge of hunting tactics at various degrees of spiral trajectories to catch the prey. The FOPI controller has a broad range of controller parameters that provide better control and performance of the converter. The tuning of the parameters of the FOPI controller is optimized in Golden Eagle Optimization, and the Integral Absolute error with Integral Square error is used for the objective function. The optimized parameters of FOPI compare with the conventional PI controller performance. The SEPIC converter is designed and derived from the state space model by state space averaging, and the reduced model is obtained through the moment matching method. This system is tested under MATLAB/SIMULINK, and simulation results show improved settling time, fast dynamic response, reduction of inrush current, less harmonic distortion, and stability.

9.
J Mol Graph Model ; 133: 108866, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39303334

RESUMO

This study presents a computational investigation into the mechanistic pathway and the linker units involved in forming the zwitterionic 1,2-anti-addition product of non-conjugated diacetylenes, di(propargyl)ether (DPE), di(prop-2yn-1yl)sulfane (DPS) and 1,6-Heptadiyne (HD) catalyzed by the inter-molecular phosphine/borane frustrated Lewis pairs (FLPs), i.e., PPh2[C6H3(CF3)2](P-CF)/[B(C6F5)3]([B]) and P(o-tolyl)3(P-tol)/[B(C6F5)3]([B]). The potential energy surface (PES) calculations reveal that the anti-addition of P-CF to the internal C-atoms of acetylene units is energetically more favored than that of the addition of P-tol in DPE, DPS, and HD by ∼10.0, ∼9.2, and ∼6.0 kcal/mol, respectively. The calculations performed with DPE contain "-O-," linker unit exhibits superior reactivity than DPS and HD, which suggests the electronegativity of linkers plays a significant role and facilitates the addition of Lewis bases. The higher electronegativity of linker units enables the 1,2-addition reaction by lowering the free energy activation barriers, as observed in the DFT calculations. The Molecular Electrostatic Potential (MESP) study shows that the electrostatic interactions favor the addition of P-CF to the active acetylene positions (C5/C4/C4) of [B]-DPE/DPS/HD-π complexes than the P-tol. The Distortion/Interaction (D/I) analysis reveals that transition states involving P-CF (TS1, TS3, and TS5) exhibit more interaction energy (ΔEInt) and less distortion energies (ΔEd) than that of the P-tol (TS2, TS4, and TS6). Further, the Energy Decomposition Analysis (EDA) also rationalizes the preferential approach of the electron-deficient Lewis base over the electron-rich one on the basis of the significant contribution of orbital interaction energies (ΔEorbital) in the cases of P-CF; TS1, TS3, and TS5. This study suggests that the electronic effects of substrates and the FLPs are crucial to facilitate the desired products formed with non-conjugated terminal alkynes.

10.
Diagnostics (Basel) ; 14(17)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39272695

RESUMO

In electrocardiograms (ECGs), multiple forms of encryption and preservation formats create difficulties for data sharing and retrospective disease analysis. Additionally, photography and storage using mobile devices are convenient, but the images acquired contain different noise interferences. To address this problem, a suite of novel methodologies was proposed for converting paper-recorded ECGs into digital data. Firstly, this study ingeniously removed gridlines by utilizing the Hue Saturation Value (HSV) spatial properties of ECGs. Moreover, this study introduced an innovative adaptive local thresholding method with high robustness for foreground-background separation. Subsequently, an algorithm for the automatic recognition of calibration square waves was proposed to ensure consistency in amplitude, rather than solely in shape, for digital signals. The original signal reconstruction algorithm was validated with the MIT-BIH and PTB databases by comparing the difference between the reconstructed and the original signals. Moreover, the mean of the Pearson correlation coefficient was 0.97 and 0.98, respectively, while the mean absolute errors were 0.324 and 0.241, respectively. The method proposed in this study converts paper-recorded ECGs into a digital format, enabling direct analysis using software. Automated techniques for acquiring and restoring ECG reference voltages enhance the reconstruction accuracy. This innovative approach facilitates data storage, medical communication, and remote ECG analysis, and minimizes errors in remote diagnosis.

11.
Cureus ; 16(8): e67157, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39295683

RESUMO

BACKGROUND: Magnetic resonance imaging (MRI) of the head and neck region is notably challenging due to the complex anatomy and the critical need for high-resolution imaging to accurately diagnose various pathologies. The two prominent MRI techniques used in this context are turbo spin echo (TSE) and echo-planar diffusion-weighted imaging (EP-DWI). TSE is recognized for providing high-resolution anatomical images, whereas EP-DWI offers functional imaging that highlights the diffusion of water molecules, essential for detecting early pathological changes. This study aims to compare the image quality of TSE and EP-DWI in the head and neck region to assess their diagnostic efficacy and clinical utility. METHODS: This retrospective study was conducted at Saveetha Medical College and Hospital over six months. A total of 100 patients (50 males and 50 females, aged 18-65 years) with various head and neck pathologies were included. Patients underwent both TSE and EP-DWI sequences using a Philips MULTIVA 1.5 T scanner. Image quality was assessed based on signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), artifact presence, and lesion detection. Two experienced radiologists independently reviewed the images, with inter-observer agreement calculated using Cohen's kappa coefficient. RESULTS: The mean SNR for TSE was significantly higher than EP-DWI (45.2 vs. 28.7, p<0.01), indicating superior image clarity and detail in TSE images. TSE demonstrated a higher mean CNR compared to EP-DWI (25.4 vs. 15.8, p<0.01), suggesting better differentiation between different tissue types and pathologies. Artifacts were more frequent in EP-DWI images (45% vs. 15%), with motion artifacts being the most common. TSE detected more lesions (120 vs. 95), with more precise delineation of lesions. The inter-observer agreement was excellent for both TSE and EP-DWI, with kappa values of 0.85 and 0.80, respectively. CONCLUSION: TSE MRI provides superior image quality compared to EP-DWI for evaluating the head and neck region. The enhanced SNR and CNR in TSE images result in clearer and more detailed visualizations of anatomical structures and pathological changes, with fewer artifacts. While EP-DWI is valuable for functional imaging, its role should be complementary to TSE. The study suggests that TSE should be the preferred modality for detailed anatomical assessment in the head and neck region. Further studies with larger sample sizes and advanced imaging techniques may provide additional insights into optimizing MRI protocols for head and neck imaging.

12.
J Imaging Inform Med ; 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39322814

RESUMO

Acute leukemia is characterized by the swift proliferation of immature white blood cells (WBC) in the blood and bone marrow. It is categorized into acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML), depending on whether the cell-line origin is lymphoid or myeloid, respectively. Deep learning (DL) and artificial intelligence (AI) are revolutionizing medical sciences by assisting clinicians with rapid illness identification, reducing workload, and enhancing diagnostic accuracy. This paper proposes a DL-based novel BSNEU-net framework to detect acute leukemia. It comprises 4 Union Blocks (UB) and incorporates block feature map distortion (BFMD) with switchable normalization (SN) in each UB. The UB employs union convolution to extract more discriminant features. The BFMD is adapted to acquire more generalized patterns to minimize overfitting, whereas SN layers are appended to improve the model's convergence and generalization capabilities. The uniform utilization of batch normalization across convolution layers is sensitive to the mini-batch dimension changes, which is effectively remedied by incorporating an SN layer. Here, a new dataset comprising 2400 blood smear images of ALL, AML, and healthy cases is proposed, as DL methodologies necessitate a sizeable and well-annotated dataset to combat overfitting issues. Further, a heterogeneous dataset comprising 2700 smear images is created by combining four publicly accessible benchmark datasets of ALL, AML, and healthy cases. The BSNEU-net model achieved excellent performance with 99.37% accuracy on the novel dataset and 99.44% accuracy on the heterogeneous dataset. The comparative analysis signifies the superiority of the proposed methodology with comparing schemes.

13.
Adv Mater ; : e2404839, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39285798

RESUMO

The oxygen reduction reaction (ORR) is a critical process that limits the efficiency of fuel cells and metal-air batteries due to its slow kinetics, even when catalyzed by platinum (Pt). To reduce Pt usage, enhancing both the specific activity and electrochemically active surface area (ECSA) of Pt catalysts is essential. Here, ultrafine, grain boundary (GB)-rich Pt nanoparticle assemblies are proposed as efficient ORR catalysts. These nanowires offer a large ECSA and a high density of concave GB sites, which improve specific activity. Atoms at these GB sites exhibit increased coordination and lattice distortion, leading to a favorable reduction in oxygen binding energy and enhanced ORR performance. Furthermore, boron segregation stabilizes these GBs, preserving active sites during catalysis. The resulting boron-stabilized Pt nanoassemblies demonstrate ORR specific and mass activities of 9.18 mA cm-2 and 6.40 A mg-1 Pt (at 0.9 V vs. RHE), surpassing commercial Pt/C catalysts by over 35-fold, with minimal degradation after 60 000 potential cycles. This approach offers a versatile platform for optimizing the catalytic performance of a wide range of nanoparticle systems.

14.
ACS Appl Mater Interfaces ; 16(38): 50071-50095, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39258709

RESUMO

The field of photocatalysis has demonstrated numerous advantages in the domains of environmental protection, energy, and materials science. However, conventional modification methods fail to simultaneously enhance carrier separation efficiency, redox capacity, and visible light absorption solely through light activation due to the intrinsic band structure limitations of photocatalysts. In addition to modification methods, the introduction of an external field, such as a piezoelectric field, can effectively address deficiencies in each step of the photocatalytic process and enhance the overall performance. The assistance of a piezoelectric field overcomes the limitations inherent in traditional photocatalytic systems. Hence, this review provides a comprehensive overview of recent advancements in piezoelectric-assisted photocatalysis and thoroughly investigates the interaction between the alternating piezoelectric field and photocatalytic processes. Various ideas for synergistic enhancement of the piezoelectric and photocatalytic properties are also explored. This multifield catalytic system shows remarkable performance in stability, pollutant degradation, and energy conversion, distinguishing it from single catalytic systems. Finally, an in-depth analysis is conducted to address the challenges and prospects associated with piezoelectric photocatalysis technology.

15.
ACS Nano ; 18(39): 26503-26513, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39285511

RESUMO

Block copolymers are recognized as a valuable platform for creating nanostructured materials. Morphologies formed by block copolymer self-assembly can be transferred into a wide range of inorganic materials, enabling applications including energy storage and metamaterials. However, imaging of the underlying, often complex, nanostructures in large volumes has remained a challenge, limiting progress in materials development. Taking advantage of recent advances in X-ray nanotomography, we noninvasively imaged exceptionally large volumes of nanostructured hybrid materials at high resolution, revealing a single-diamond morphology in a triblock terpolymer-gold composite network. This morphology, which is ubiquitous in nature, has so far remained elusive in block copolymer-derived materials, despite its potential to create materials with large photonic bandgaps. The discovery was made possible by the precise analysis of distortions in a large volume of the self-assembled diamond network, which are difficult to unambiguously assess using traditional characterization tools. We anticipate that high-resolution X-ray nanotomography, which allows imaging of much larger sample volumes than electron-based tomography, will become a powerful tool for the quantitative analysis of complex nanostructures and that structures such as the triblock terpolymer-directed single diamond will enable the generation of advanced multicomponent composites with hitherto unknown property profiles.

16.
Indian J Radiol Imaging ; 34(4): 677-687, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39318554

RESUMO

Nonmass lesions in breast ultrasound (US) are areas of altered echogenicity without definite margins or mass effect. However, these lesions may show calcifications, associated architectural distortion, or shadowing just like masses. They vary in their echogenicity, distribution, ductal or nonductal appearance and the associated features that can be seen in variety of benign and malignant pathologies. With no uniform definition or classification system, there is no standardized approach in further risk categorization and management strategies of these lesions. Malignant nonmass lesions are not uncommon and few sonographic features can help in differentiating benign and malignant pathologies. US-guided tissue sampling or lesion localization can be preferred in the nonmass lesions identified on second look US after magnetic resonance imaging or mammography. This article aims to describe various imaging patterns and attempts to provide an algorithmic approach to nonmass findings on breast US.

17.
Hear Res ; 453: 109121, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39332208

RESUMO

Previous reports have suggested that intracochlear pressures (PIC) measured at the base of the cochlea increase directly proportionally with stapes displacement (DStap) in response to moderately high (<130 dB SPL) level sounds. Consistent with this assumption, we have reported that for low frequency sounds (<1 kHz), stapes displacement and intracochlear pressures increase linearly with sound pressure level (SPL) for moderately high levels (<130 dB SPL), but saturate at higher exposure levels (>130 dB SPL). However, the magnitudes of each response were found to be frequency dependent, thus the relationship between DStap and PIC may vary at higher frequencies or higher levels. In order to further examine this frequency and level dependence, measurements of DStap and PIC were made in cadaveric human temporal bones prepared with a mastoidectomy and extended facial recess to expose the ossicular chain. PIC was measured in scala vestibuli (PSV) and scala tympani (PST) simultaneously with SPL in the external auditory canal (PEAC) and laser Doppler vibrometry (LDV) measurements of stapes velocity (VStap). Consistent with prior reports, DStap and PSV increased proportionally with sound pressure level in the ear canal up to a frequency-dependent saturation point, above which both DStap and PSV showed a distinct deviation from proportionality with PEAC, suggesting that their relationship may remain constant at these high frequencies. Likewise, while the asymptotic value, and SPL at which saturation occurred were frequency dependent in both DStap and PSV, the reduction in gain with increasing SPL above this level was constant above this level at all frequencies, and the magnitude of responses at harmonics of the driving frequency increased with increasing level, consistent with harmonic distortion via peak clipping. Importantly, this nonlinear distortion shifts the energy arriving at the inner ear to higher frequencies than are present in incident stimulus, thus exposing the high frequency sensitive components of the auditory system to more noise than would be expected from measurement of that stimulus on its own. Overall, responses suggest that the cochlear representation of very high-level air conducted stimuli is limited by nonlinearities in the middle ear, and that this peak limiting leads to increased high frequency cochlear exposures than are present in the driving stimulus.

18.
Sci Rep ; 14(1): 22359, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333587

RESUMO

This paper provides a new, less complex multilevel inverter topology that can be used for industrial loads and renewable energy sources. The arrangement consists of eight switches to produce an 11-level output voltage with two uneven input sources. Moreover, it can be connected in a cascade to increase the output voltage and number of levels even further. Due to its control mechanism, which is based on the Rotating Trapezoidal Sinusoidal Pulse Width Modulation control method for creating a high-quality output voltage, the inverter's key characteristic is its very low harmonic distortion of 3.45% at the output voltage when compared to the advanced triangular carrier-based PWM techniques of phase disposition sinusoidal pulse width modulation (PD-SPWM) it produces harmonic distortion of 11.38% at the output voltage, phase opposition disposition sinusoidal pulse width modulation (POD-SPWM) it produces harmonic distortion of 6.43% at the output voltage, alternative phase opposition disposition sinusoidal pulse width modulation (APOD-SPWM) it produces harmonic distortion of 6.69% at the output voltage, IN-Shift sinusoidal pulse width modulation (IN-shift SPWM) it produces harmonic distortion of 3.93% at the output voltage. This inverter is commonly used in wind turbines and solar cells. The schemes are implemented in MATLAB/SIMULINK and are validated with single-phase 11-level inverter implemented by using digital signal controller (DSC).

19.
Vision Res ; 224: 108492, 2024 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-39348745

RESUMO

Viewing a rapid sequence of face images shown in the periphery can lead to large caricature-like distortions in the perceived images, a phenomenon known as the Flashed Face Distortion Effect (FFDE). The mechanisms underlying FFDE are poorly understood. Here we examined the timing and sites of the adaptation processes giving rise to the FFDE. To investigate the effects of presentation rate, we maintained consistent trial lengths while assessing how variations in the temporal frequencies of face presentation influenced the magnitude of face distortion and the averaging of facial expressions. Over a wide range of temporal frequencies (1.2-60 Hz) tested, we observed a decrease in FFDE strength as the presentation rate increased. To probe the neural sites of FFDE, we varied whether successive faces were presented to the same or different eyes using a dichoptic display. Distortion effects were comparable for monocular, binocular, and interocular conditions, yet much larger than a control condition where faces were presented with a temporal interval between successive images, suggesting a cortical locus for FFDE.

20.
Psychol Rep ; : 332941241287429, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39312517

RESUMO

Excessive engagement in online activities, also known as Internet addiction can have detrimental impacts on the mental, social, and physical well-being of individuals. This research work aims to contribute to the existing body of knowledge on internet addiction and alexithymia to provide insights that may inform the development of targeted interventions to support university students at risk of internet addiction. With emotional intelligence as the moderator and cognitive distortion as the mediator, the study investigated the effect of alexithymia on internet addiction. The approach of this cross-sectional design allowed researchers to investigate intricate interactions among several elements influencing internet addiction among university students in northern Indian areas. For data collection, the study created a thorough English 53-item questionnaire. Initially, 600 surveys were distributed, and 508 useable surveys were used. All the study hypotheses have received adequate support from empirical evidence, thus offering significant insights. This study supported a direct positive correlation between alexithymia and internet addiction. Also, the findings revealed a positive relationship between alexithymia and cognitive distortions which further leads to internet addiction. Moreover, moderation results show that emotional intelligence acts as a significant moderator in this relationship between alexithymia and internet addiction. The study has added a unique antecedent of cognitive distortion of internet addiction, which is currently under-researched in previous works. This research adds to the knowledge of alexithymia as not only a personality characteristic but also a variable that should be taken into account regarding constituent processes of the regulation of emotions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA