Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 251
Filtrar
1.
Kidney Int Rep ; 9(8): 2498-2513, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39156165

RESUMO

Introduction: BK polyomavirus-associated nephropathy (BKPyVAN) is a significant complication in kidney transplant recipients (KTRs), associated with a higher level of plasmatic BK polyomavirus (BKPyV) replication and leading to poor graft survival. Methods: We prospectively followed-up with 100 KTRs with various degrees of BKPyV reactivation (no BKPyV reactivation, BKPyV-DNAuria, BKPyV-DNAemia, and biopsy-proven BKPyVAN [bp-BKPyVAN], 25 patients per group) and evaluated BKPyV-specific T cell functionality and phenotype. Results: We demonstrate that bp-BKPyVAN is associated with a loss of BKPyV-specific T cell proliferation, cytokine secretion, and cytotoxic capacities. This severe functional impairment is associated with an overexpression of lymphocyte inhibitory receptors (programmed cell death 1 [PD1], cytotoxic T lymphocyte-associated protein 4, T cell immunoreceptor with Ig and ITIM domains, and T cell immunoglobulin and mucin domain-containing-3), highlighting an exhausted-like phenotype of BKPyV-specific CD4 and CD8 T cells in bp-BKPyVAN. This T cell dysfunction is associated with low class II donor-recipient human leukocyte antigen (HLA) divergence. In contrast, in the context of higher class II donor-recipient HLA (D/R-HLA) divergence, allogeneic CD4 T cells can provide help that sustains BKPyV-specific CD8 T cell responses. In vitro, allogeneic HLA-mismatched CD4 T cells rescue BKPyV-specific CD8 T cell responses. Conclusion: Our findings suggest that in KTRs, allogeneic CD4 T cells can help to maintain an effective BKPyV-specific CD8 T cell response that better controls BKPyV replication in the kidney allograft and may protect against BKPyVAN.

2.
Persoonia ; 52: 119-160, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39161634

RESUMO

The genera Cephalotrichum and Microascus contain ecologically, morphologically and lifestyle diverse fungi in Microascaceae (Microascales, Sordariomycetes) with a world-wide distribution. Despite previous studies having elucidated that Cephalotrichum and Microascus are highly polyphyletic, the DNA phylogeny of many traditionally morphology-defined species is still poorly resolved, and a comprehensive taxonomic overview of the two genera is lacking. To resolve this issue, we integrate broad taxon sampling strategies and the most comprehensive multi-gene (ITS, LSU, tef1 and tub2) datasets to date, with fossil calibrations to address the phylogenetic relationships and divergence times among major lineages of Microascaceae. Two previously recognised main clades, Cephalotrichum (24 species) and Microascus (49 species), were re-affirmed based on our phylogenetic analyses, as well as the phylogenetic position of 15 genera within Microascaceae. In this study, we provide an up-to-date overview on the taxonomy and phylogeny of species belonging to Cephalotrichum and Microascus, as well as detailed descriptions and illustrations of 21 species of which eight are newly described. Furthermore, the divergence time estimates indicate that the crown age of Microascaceae was around 210.37 Mya (95 % HPD: 177.18-246.96 Mya) in the Late Triassic, and that Cephalotrichum and Microascus began to diversify approximately 27.07 Mya (95 % HPD: 20.47-34.37 Mya) and 70.46 Mya (95 % HPD: 56.96-86.24 Mya), respectively. Our results also demonstrate that multigene sequence data coupled with broad taxon sampling can help elucidate previously unresolved clade relationships. Citation: Wei TP, Wu YM, Zhang X, et al. 2024. A comprehensive molecular phylogeny of Cephalotrichum and Microascus provides novel insights into their systematics and evolutionary history. Persoonia 52: 119-160. https://doi.org/10.3767/persoonia.2024.52.05 .

3.
Mol Biol Evol ; 41(8)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39101592

RESUMO

The epithelial Na+ channel (ENaC) emerged early in vertebrates and has played a role in Na+ and fluid homeostasis throughout vertebrate evolution. We previously showed that proteolytic activation of the channel evolved at the water-to-land transition of vertebrates. Sensitivity to extracellular Na+, known as Na+ self-inhibition, reduces ENaC function when Na+ concentrations are high and is a distinctive feature of the channel. A fourth ENaC subunit, δ, emerged in jawed fishes from an α subunit gene duplication. Here, we analyzed 849 α and δ subunit sequences and found that a key Asp in a postulated Na+ binding site was nearly always present in the α subunit, but frequently lost in the δ subunit (e.g. human). Analysis of site evolution and codon substitution rates provide evidence that the ancestral α subunit had the site and that purifying selection for the site relaxed in the δ subunit after its divergence from the α subunit, coinciding with a loss of δ subunit expression in renal tissues. We also show that the proposed Na+ binding site in the α subunit is a bona fide site by conferring novel function to channels comprising human δ subunits. Together, our findings provide evidence that ENaC Na+ self-inhibition improves fitness through its role in Na+ homeostasis in vertebrates.


Assuntos
Canais Epiteliais de Sódio , Evolução Molecular , Homeostase , Seleção Genética , Sódio , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Animais , Sódio/metabolismo , Humanos , Sítios de Ligação , Vertebrados/genética , Subunidades Proteicas/metabolismo , Subunidades Proteicas/genética , Filogenia
4.
BMC Plant Biol ; 24(1): 784, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39160457

RESUMO

Various attributes are hypothesized to facilitate the dominance of an invasive species in non-native geographical and ecological regimes. To explore the characteristic invasive attributes of the family Asteraceae, a comparative study was conducted among nine species of this family, co-occurring in the western Himalayan region. Based on their nativity and invasion status, the species were categorized as "Invasive", "Naturalized", and "Native". Fifteen plant functional traits, strongly linked with invasion, were examined in the test species. The analyses revealed a strong dissimilarity between all the plant functional traits (except leaf carbon [Leaf C]) represented by "Invasive" and "Native" categories and most of the traits (except leaf area [LA], leaf nitrogen [Leaf N], Leaf C, and leaf carbon-nitrogen ratio [C: N]) represented by the "Naturalized" and "Native" categories. Similarly, "Invasive" and "Naturalized" categories also varied significantly for most of the traits (except Leaf N, Leaf C, capitula per m² population [Cm²], seeds per capitula [Scapitula], and seed mass). Invasive species are characterized by high LA, specific leaf area [SLA] and germination, and low C:N and leaf construction costs [LCC]. Most of the traits represented by native species justify their non-invasive behavior; whereas the naturalized species, despite having better size metrics (plant height), resource investment strategy (aboveground non-reproductive biomass [BNR], and aboveground reproductive biomass [BR]), and reproductive output (capitula per individual plant [Cplant], and seeds per individual plant [Splant]) failed to invade, which implies that the role of these functional aspects in imparting invasion potential to a species is not consistent in all the ecosystems and/or phylogenetic groups. Results of PCA revealed that trait divergence plays a more imperative role in invasion success than naturalization in the species of the family Asteraceae. The present study is intended to refine the pre-generalized invasion concepts associated with family Asteraceae to ensure more accurate identification of the potential invaders and better management of the existing ones.


Assuntos
Asteraceae , Espécies Introduzidas , Asteraceae/fisiologia , Asteraceae/genética , Folhas de Planta/fisiologia , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Carbono/metabolismo , Especificidade da Espécie
5.
J Appl Stat ; 51(11): 2157-2177, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39157274

RESUMO

The time-varying kernel density estimation relies on two free parameters: the bandwidth and the discount factor. We propose to select these parameters so as to minimize a criterion consistent with the traditional requirements of the validation of a probability density forecast. These requirements are both the uniformity and the independence of the so-called probability integral transforms, which are the forecast time-varying cumulated distributions applied to the observations. We thus build a new numerical criterion incorporating both the uniformity and independence properties by the mean of an adapted Kolmogorov-Smirnov statistic. We apply this method to financial markets during the onset of the COVID-19 crisis. We determine the time-varying density of daily price returns of several stock indices and, using various divergence statistics, we are able to describe the chronology of the crisis as well as regional disparities. For instance, we observe a more limited impact of COVID-19 on financial markets in China, a strong impact in the US, and a slow recovery in Europe.

6.
Genes Genomics ; 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39126601

RESUMO

BACKGROUND: A new Liobagrus fish was reported from the Korean Peninsula, but research on this taxon is lacking. Moreover, existing research on the mitogenome of the genus Liobagrus in Korea is very limited, and no studies have been conducted on structural characteristics of transfer RNA (tRNA) or gene order comparisons between taxa; instead, research has been restricted to basic phylogeny. OBJECTIVE: The complete mitochondrial genome of Liobagrus geumgangensis was analyzed for the first time. We then aimed to reconstruct the phylogenetic relationships of the genus Liobagrus and estimate the divergence time of speciation events. METHODS: We used a dissected fin clip from an adult of Liobagrus geumgangensis. Genomic DNA was extracted and analyzed with whole genome sequencing (WGS) and assembled by the NOVOPlasty method. The mitogenome sequence was annotated, and a genome map, tRNA structure, and phylogenetic tree were constructed using maximum likelihood analysis. In addition, divergence time was estimated. RESULTS: The mitochondrial genome was 16,522 bp in length and comprised 37 genes. The overall base composition was 30.5% A, 25.5% T, 28.4% C, and 15.7% G. Most tRNAs exhibited the typical clover leaf shape, except trnS1. Phylogenetic analysis revealed that Liobagrus geumgangensis clustered within a clade with four other Liobagrus species exclusive to the southern region of the Korean Peninsula. Its divergence was estimated to have occurred during the late Miocene. CONCLUSION: Characteristics of Liobagrus geumgangensis mitogenome were consistent with those of other torrent catfish species. Time scale estimation revealed distinct groupings, with some distributed across mainland Asia and others in the southern region of the Korean Peninsula. Notably, the Korean Peninsula group was identified as its own lineage, comprising entirely endemic species.

7.
Ecol Evol ; 14(8): e70126, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39114168

RESUMO

To study the interspecific differentiation characteristics of species originating from recent radiation, the genotyping-by-sequencing (GBS) technique was used to explore the kinship, population structure, gene flow, genetic variability, genotype-environment association and selective sweeps of Picea asperata complex with similar phenotypes from a genome-wide perspective. The following results were obtained: 14 populations of P. asperata complex could be divided into 5 clades; P. wilsonii and P. neoveitchii diverged earlier and were more distantly related to the remaining 6 spruce species. Various geological events have promoted the species differentiation of P. asperata complex. There were four instances of gene flow among P. koraiensis, P. meyeri, P. asperata, P. crassifolia and P. mongolica. The population of P. mongolica had the highest level of nucleotide diversity, and P. neoveitchii may have experienced a bottleneck recently. Genotype-environment association found that a total of 20,808 genes were related to the environmental variables, which enhanced the adaptability of spruce in different environments. Genes that were selectively swept in the P. asperata complex were primarily associated with plant stress resistance. Among them were some genes involved in plant growth and development, heat stress, circadian rhythms and flowering. In addition to the commonly selected genes, different spruce species also displayed unique genes subjected to selective sweeps that improved their adaptability to different habitats. Understanding the interspecific gene flow and adaptive evolution of Picea species is beneficial to further understanding the species relationships of spruce and can provide a basis for studying spruce introgression and functional genomics.

8.
Front Plant Sci ; 15: 1410372, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39100082

RESUMO

Understanding the invasion of moso bamboo (Phyllostachys edulis) into adjacent evergreen broadleaf forest based on functional traits is crucial due to its significant influence on ecosystem processes. However, existing research has primarily focused on above- or below-ground traits in isolation, lacking a comprehensive integration of both. In this study, we conducted a trait-based analysis including 23 leaf traits and 11 root traits in three forest types - bamboo forest, mixed bamboo and broadleaf forest, and evergreen broadleaf forest - to investigate trait differences, phenotypic integration, and above- and below-ground resource strategies in bamboo and broadleaf species. Our findings demonstrated significant differences in leaf and root key traits between bamboo and broadleaf species, strongly supporting the "phenotypic divergence hypothesis". Bamboo exhibited stronger trait correlations compared to broadleaf species, indicating higher phenotypic integration. Above- and below-ground strategies were characterized by trade-offs rather than coordination, resulting in a multi-dimensional trait syndrome. Specifically, a unidimensional leaf economics spectrum revealed that bamboo with higher leaf N concentrations (LNC), P concentrations (LPC), and specific leaf area (SLA) adopted a "fast acquisitive" above-ground strategy, while broadleaf species with thicker leaves employed a "slow conservative" above-ground strategy. A two-dimensional root trait syndrome indicated a "conservation" gradient with bamboo adopting a "slow conservative" below-ground strategy associated with higher root tissue density (RTD), and broadleaf species exhibiting a "fast acquisitive" below-ground strategy linked to higher root N concentrations (RNC) and P concentrations (RPC), and a "collaboration" gradient probably ranging from broadleaf species with a "do-it-yourself" strategy characterized by high specific root length (SRL), to bamboo adopting an "outsourcing" strategy with thicker roots. In conclusion, key trait divergence from coexisting broadleaf species, higher phenotypic integration, and multi-dimensional opposite above- and below-ground resource strategies confer competitive advantages to moso bamboo, shedding light on the mechanistic understanding of its invasion into subtropical evergreen broadleaf forest and providing theoretical guidance for maintaining the stability of subtropical forest ecosystem.

9.
Ecol Evol ; 14(8): e70105, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39100205

RESUMO

This study explores how climate variables influenced the evolution and diversification of Neurergus newts within the Irano-Anatolian biodiversity hotspot. We use a dated phylogenetic tree and climatic niche models to analyze their evolutionary history and ecological preferences. Using genetic data from nuclear (KIAA) and mitochondrial (16s and 12s) genes, we estimate divergence times and identify four major Neurergus clades. The initial speciation event occurred approximately 11.3 million years ago, coinciding with the uplift of the Zagros and Anatolian mountains. This geological transformation isolated newt populations, likely triggering the first speciation event. By integrating potential geographic distribution with climate variables, we reconstruct ancestral niche occupancy profiles. This highlights the critical roles of temperature and precipitation in shaping Neurergus habitat preferences and distribution. We observe both phylogenetic niche conservatism and divergence, with niche divergence playing a dominant role in diversification. This research emphasizes the complex interplay of geography, climate, and ecology in speciation and the vulnerability of isolated mountain newt populations to environmental changes.

10.
Zoolog Sci ; 41(4): 385-391, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39093284

RESUMO

The Japanese Archipelago hosts a rich butterfly fauna, and elucidating the genetic structures of multiple species is necessary to clarify their formation processes. This study aimed to reveal the genetic structure and distribution formation process of Parnassius citrinarius, which is widely distributed across the Japanese Archipelago from Hokkaido to Shikoku, through phylogeographic analysis based on the mitochondrial cytochrome c oxidase subunit I (COI) gene sequence. Thirty haplotypes were revealed from 311 individuals from 47 sites, indicating significant differences in the genetic structures between the eastern and western parts of the Japanese Archipelago. In Eastern Japan, multiple genetic clusters were found, with some sites harboring two clusters. The divergence times among populations in Eastern Japan were relatively recent, and no genetic differentiation was observed between regions, including between Hokkaido and Honshu, which are separated by a narrow strait. In contrast, in Western Japan, including Shikoku, unique genetic clusters were observed in each region. The phylogenetic relationships among populations were regionally clustered, and the divergence times were relatively ancient. The distribution and genetic structure of P. citrinarius in the Japanese Archipelago have been significantly influenced by temperature fluctuations and the presence of geographical barriers during the Pleistocene glacial-interglacial cycles, including the potential formation of refugia in Western Japan.


Assuntos
Borboletas , DNA Mitocondrial , Variação Genética , Filogeografia , Animais , Japão , DNA Mitocondrial/genética , Borboletas/genética , Filogenia , Distribuição Animal , Complexo IV da Cadeia de Transporte de Elétrons/genética
11.
BMC Ecol Evol ; 24(1): 93, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969976

RESUMO

The Persian fallow deer or Mesopotamian fallow Deer (Dama mesopotamica, Brook 1875), a species of significant ecological importance, had faced the threat of extinction in Iran. One conservation strategy involved the translocation of Persian deer to enclosed areas across Iran, where they were afforded protection from external threats and provided with essential care by human caretakers. While human caretakers diligently attend to their needs and mitigate external threats, climate variables may now become critical factors affecting population dynamics in enclosed areas. This study aims to assess the similarity in climate niches between the original area (Dez and Karkheh) of the Persian deer species and 11 newly enclosed areas. To achieve this, we employed climate data and ecological niche modeling (ENM) techniques to assess the variations in climate among 12 areas. We utilized the environmental equivalency test to determine whether the environmental spaces of area pairs exhibit significant differences and whether these spaces are interchangeable. Extrapolation analyses were also constructed in the next steps to explore climatic conditions in original fallow deer habitats that are non-analogous to those in other parts of Iran. Our results reveal significant disparities in climate conditions between the original and all translocated areas. Based on observations of population growth in specific enclosed areas where translocated deer populations have thrived, we hypothesize that the species may demonstrate a non-equilibrium distribution in Iran. Consequently, these new areas could potentially be regarded as part of the species' potential climate niche. Extrapolation analysis showed that for a significant portion of Iran, extrapolation predictions are highly uncertain and potentially unreliable for the translocation of Persian fallow deer. However, the primary objective of translocation efforts remains the establishment of self-sustaining populations of Persian deer capable of thriving in natural areas beyond enclosed areas, thus ensuring their long-term survival and contributing to preservation efforts. Evaluating the success of newly translocated species requires additional time, with varying levels of success observed. In cases where the growth rate of the species in certain enclosed areas falls below expectations, it is prudent to consider climate variables that may contribute to population declines. Furthermore, for future translocations, we recommend selecting areas with climate similarities to regions where the species has demonstrated growth rates.


Assuntos
Clima , Cervos , Ecossistema , Animais , Irã (Geográfico) , Cervos/fisiologia , Conservação dos Recursos Naturais , Dinâmica Populacional
12.
Artigo em Inglês | MEDLINE | ID: mdl-39027082

RESUMO

Haematobosca is a genus of biting fly within the subfamily Stomoxyinae of the family Muscidae. It is currently recognized to include 16 species worldwide. These species, acting as ectoparasites, are considered to have significant importance in the veterinary and medical fields. To address the color polymorphism related to the genus Haematobosca in Thailand, herein, we focused on the normal (legs mainly black) and yellow (legs mainly yellow) morphs of Haematobosca sanguinolenta and examined them for genetic differences using three molecular markers: the cytochrome c oxidase subunit 1 (cox1) and cytochrome b (cytb) genes from the mitochondrial genome as well as the internal transcribed spacer 2 (ITS2) region from the nuclear ribosomal DNA. In addition, we analyzed wing differences between the two morphs using geometric morphometrics (GM). The genetic divergences between the two morphs showed that cytb gene showed the greatest divergence, for which the average distance was 5.6%. This was followed by the combination of cox1-cytb-ITS2, exhibiting an average divergence of 4.5%, ITS2 with a divergence of 4.1%, and finally cox1, showing the lowest divergence of 3.5%. Phylogenetic analyses distinctly separated the two morphs of H. sanguinolenta; this separation was supported by high bootstrap values (97-100%). These results were further corroborated by three species delimitation methods, i.e. assemble species by automatic partitioning (ASAP), automated barcode gap discovery (ABGD), and Poisson tree processes (PTP), all of which suggested that the two morphs likely represent separate species. In addition, a GM study identified a statistically significant difference in wing shape between the two morphs of H. sanguinolenta (P < 0.05). This combination of genetic and morphometric results strongly supports the existence of two distinct species within H. sanguinolenta in Thailand.

13.
Angew Chem Int Ed Engl ; : e202412179, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990010

RESUMO

Here, we report a strategy enabling triple switchable chemo-, regio-, and stereodivergence in newly developed palladium-catalyzed cycloadditions of allenes. An asymmetric pseudo-stereodivergent cycloaddition of allenes bearing a primary leaving group at the α-position, where a dynamic kinetic asymmetric hydroalkoxylation of racemic unactivated allenes was the enantio-determining step, is realized, providing four stereoisomers [(Z,R), (Z,S), (E,S), and (E,R)] containing a di-substituted alkene scaffold and a stereogenic center. By tuning reaction conditions, a mechanistically distinctive cycloaddition is uncovered selectively with the same set of substrates. By switching the position of the leaving group of allenes, a cycloaddition involving an intermolecular O-attack is disclosed. Diverse mechanisms of the cycloaddition reactions of allenes enable rapid access to structurally and stereochemically diverse 3,4-dihydro-2H-1,4-benzoxazines in high efficiency and selectivity.

14.
Mar Environ Res ; 199: 106627, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38968803

RESUMO

DNA metabarcoding and stable isotope analysis have significantly advanced our understanding of marine trophic ecology, aiding systematic research on foraging habits and species conservation. In this study, we employed these methods to analyse faecal and blood samples, respectively, to compare the trophic ecology of two Red-billed Tropicbird (Phaethonaethereus; Linnaeus, 1758) colonies on Mexican islands in the Pacific. Trophic patterns among different breeding stages were also examined at both colonies. Dietary analysis reveals a preference for epipelagic fish, cephalopods, and small crustaceans, with variations between colonies and breeding stages. Isotopic values (δ15N and δ13C) align with DNA metabarcoding results, with wider niches during incubation stages. Differences in diet are linked to environmental conditions and trophic plasticity among breeding stages, influenced by changing physiological requirements and prey availability. Variations in dietary profiles reflect contrasting environmental conditions affecting local prey availability.


Assuntos
Código de Barras de DNA Taxonômico , Cadeia Alimentar , Animais , Isótopos de Carbono/análise , Dieta , Isótopos de Nitrogênio/análise , Aves/fisiologia , México
15.
Ecol Evol ; 14(7): e70013, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39011133

RESUMO

Amaranthaceae s.l. is a widely distributed family consisting of over 170 genera and 2000 species. Previous molecular phylogenetic studies have shown that Amaranthaceae s.s. and traditional Chenopodiaceae form a monophyletic group (Amaranthaceae s.l.), however, the relationships within this evolutionary branch have yet to be fully resolved. In this study, we assembled the complete plastomes and full-length ITS of 21 Amaranthaceae s.l. individuals and compared them with 38 species of Amaranthaceae s.l. Through plastome structure and sequence alignment analysis, we identified a reverse complementary region approximately 5200 bp long in the genera Atriplex and Chenopodium. Adaptive evolution analysis revealed significant positive selection in eight genes, which likely played a driving role in the evolution of Amaranthaceae s.l., as demonstrated by partitioned evolutionary analysis. Furthermore, we found that about two-thirds of the examined species lack the ycf15 gene, potentially associated with natural selection pressures from their adapted habitats. The phylogenetic tree indicated that some genera (Chenopodium, Halogeton, and Subtr. Salsolinae) are paraphyletic lineages. Our results strongly support the clustering of Amaranthaceae s.l. with monophyletic traditional Chenopodiaceae (Clades I and II) and Amaranthaceae s.s. After a comprehensive analysis, we determined that cytonuclear conflict, gene selection by adapted habitats, and incomplete lineage sorting (ILS) events were the primary reasons for the inconsistent phylogeny of Amaranthaceae s.l. During the last glacial period, certain species within Amaranthaceae s.l. underwent adaptations to different environments and began to differentiate rapidly. Since then, these species may have experienced morphological and genetic changes distinct from those of other genera due to intense selection pressure.

16.
Int Orthod ; 22(3): 100894, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38991250

RESUMO

BACKGROUND: Facial divergence during growth and development affects both the anterior and posterior alveolar bone dimensions in the maxilla and mandible, and the dentoalveolar compensation mechanism in severe vertical skeletal discrepancies remains unclear. AIMS: To evaluate the: (1) difference in dentoalveolar heights among subjects with different vertical facial patterns; (2) association between the dentoalveolar bone height and other cephalometric variables; (3) effect of sex on dentoalveolar height measurements. MATERIAL AND METHODS: Non-growing subjects with skeletal Class I (0°

Assuntos
Processo Alveolar , Cefalometria , Má Oclusão Classe I de Angle , Mandíbula , Maxila , Dimensão Vertical , Humanos , Masculino , Cefalometria/métodos , Feminino , Estudos Transversais , Maxila/anatomia & histologia , Processo Alveolar/anatomia & histologia , Processo Alveolar/diagnóstico por imagem , Adulto , Má Oclusão Classe I de Angle/patologia , Má Oclusão Classe I de Angle/diagnóstico por imagem , Mandíbula/anatomia & histologia , Adulto Jovem , Fatores Sexuais , Incisivo/anatomia & histologia , Adolescente , Dente Molar/anatomia & histologia , Dente Pré-Molar/anatomia & histologia , Dente Canino/anatomia & histologia , Dente Canino/diagnóstico por imagem
17.
Am J Bot ; 111(8): e16378, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39039654

RESUMO

PREMISE: The history of angiosperms is marked by repeated rounds of ancient whole-genome duplications (WGDs). Here we used state-of-the-art methods to provide an up-to-date view of the distribution of WGDs in the history of angiosperms that considers both uncertainty introduced by different WGD inference methods and different underlying species-tree hypotheses. METHODS: We used the distribution synonymous divergences (Ks) of paralogs and orthologs from transcriptomic and genomic data to infer and place WGDs across two hypothesized angiosperm phylogenies. We further tested these WGD hypotheses with syntenic inferences and Bayesian models of duplicate gene gain and loss. RESULTS: The predicted number of WGDs in the history of angiosperms (~170) based on the current taxon sampling is largely similar across different inference methods, but varies in the precise placement of WGDs on the phylogeny. Ks-based methods often yield alternative hypothesized WGD placements due to variation in substitution rates among lineages. Phylogenetic models of duplicate gene gain and loss are more robust to topological variation. However, errors in species-tree inference can still produce spurious WGD hypotheses, regardless of method used. CONCLUSIONS: Here we showed that different WGD inference methods largely agree on an average of 3.5 WGD in the history of individual angiosperm species. However, the precise placement of WGDs on the phylogeny is subject to the WGD inference method and tree topology. As researchers continue to test hypotheses regarding the impacts ancient WGDs have on angiosperm evolution, it is important to consider the uncertainty of the phylogeny as well as WGD inference methods.


Assuntos
Duplicação Gênica , Genoma de Planta , Magnoliopsida , Filogenia , Magnoliopsida/genética , Teorema de Bayes , Evolução Molecular
18.
Genes (Basel) ; 15(7)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39062665

RESUMO

Megacarpaea megalocarpa, a perennial herbaceous species belonging to the Brassicaceae family, has potential medicinal value. We isolated and characterized the chloroplast (cp) genome of M. megalocarpa and compared it with closely related species. The chloroplast genome displayed a typical quadripartite structure, spanning 154,877 bp, with an overall guanine-cytosine (GC) content of 36.20%. Additionally, this genome contained 129 genes, 105 simple sequence repeats (SSRs), and 48 long repeat sequences. Significantly, the ycf1 gene exhibited a high degree of polymorphism at the small single copy (SSC) region and the inverted repeat a (IRa) boundary. Despite this polymorphism, relative synonymous codon usage (RSCU) values were found to be similar across species, and no large segment rearrangements or inversions were detected. The large single copy (LSC) and SSC regions showed higher sequence variations and nucleotide polymorphisms compared to the IR region. Thirteen distinct hotspot regions were identified as potential molecular markers. Our selection pressure analysis revealed that the protein-coding gene rpl20 is subjected to different selection pressures in various species. Phylogenetic analysis positioned M. megalocarpa within the expanded lineage II of the Brassicaceae family. The estimated divergence time suggests that M. megalocarpa diverged approximately 4.97 million years ago. In summary, this study provides crucial baseline information for the molecular identification, phylogenetic relationships, conservation efforts, and utilization of wild resources in Megacarpaea.


Assuntos
Brassicaceae , Genoma de Cloroplastos , Repetições de Microssatélites , Filogenia , Genoma de Cloroplastos/genética , Brassicaceae/genética , Brassicaceae/classificação , Repetições de Microssatélites/genética , Evolução Molecular
19.
Genes (Basel) ; 15(7)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39062672

RESUMO

In the present study, the mitochondrial genomic characteristics of Acanthopsetta nadeshnyi have been reported and have depicted the phylogenetic relationship among Pleuronectidae. Combined with a comparative analysis of 13 PCGs, the TN93 model was used to review the neutral evolution and habitat evolution catalysis of the mitogenome to verify the distancing and purification selectivity of the mitogenome in Pleuronectidae. At the same time, a species differentiation and classification model based on mitogenome analysis data was established. This study is expected to provide a new perspective on the phylogenetic relationship and taxonomic status of A. nadeshnyi and lay a foundation for further exploration of environmental and biological evolutionary mechanisms.


Assuntos
Evolução Molecular , Genoma Mitocondrial , Filogenia , Animais , Linguados/genética , Linguados/classificação
20.
Planta ; 260(3): 58, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039384

RESUMO

MAIN CONCLUSION: A genome-wide analysis had identified 642 ABA core component genes from 20 plant species, which were further categorized into three distinct subfamilies. The gene structures and evolutionary relationships of these genes had been characterized. PP2C_1, PP2C_2, and SnRK2_1 had emerged as key players in mediating the ABA signaling transduction pathway, specifically in rice, in response to abiotic stresses. The plant hormone abscisic acid (ABA) is essential for growth, development, and stress response, relying on its core components, pyrabactin resistance, pyrabactin resistance-like, and the regulatory component of ABA receptor (PYR/PYL/RCAR), 2C protein phosphatase (PP2C), sucrose non-fermenting-1-related protein kinase 2 (SnRK2). However, there's a lack of research on their structural evolution and functional differentiation across plants. Our study analyzed the phylogenetic, gene structure, homology, and duplication evolution of this complex in 20 plant species. We found conserved patterns in copy number and homology across subfamilies. Segmental and tandem duplications drove the evolution of these genes, while whole-genome duplication (WGD) expanded PYR/PYL/RCAR and PP2C subfamilies, enhancing environmental adaptation. In rice and Arabidopsis, the PYR/PYL/RCAR, PP2C, and SnRK2 genes showed distinct tissue-specific expression and responded to various stresses. Notably, PP2C_1 and PP2C_2 interacted with SnRK2_1 and were crucial for ABA signaling in rice. These findings offered new insights into ABA signaling evolution, interactions, and integration in green plants, benefiting future research in agriculture, evolutionary biology, ecology, and environmental science.


Assuntos
Ácido Abscísico , Evolução Molecular , Genoma de Planta , Oryza , Filogenia , Transdução de Sinais , Oryza/genética , Oryza/metabolismo , Oryza/fisiologia , Ácido Abscísico/metabolismo , Transdução de Sinais/genética , Genoma de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Duplicação Gênica , Estresse Fisiológico/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteína Fosfatase 2C/genética , Proteína Fosfatase 2C/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA