Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 650
Filtrar
1.
Bioorg Chem ; 151: 107681, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39106711

RESUMO

Aberrant activation of the Hedgehog (Hh) signalling pathway has been associated with the development and progression of pancreatic cancer. For this reason, blockade of Hh pathway by inhibitors targeting the G protein-coupled receptor Smoothened (SMO) has been considered as a therapeutic target for the treatment of this cancer. In our previous work, we obtained a new SMO ligand based on a purine scaffold (compound I), which showed interesting antitumor activity in several cancer cell lines. In this work, we report the design and synthesis of 17 new purine derivatives, some of which showed high cytotoxic effect on Mia-PaCa-2 (Hh-dependent pancreatic cancer cell lines) and low toxicity on non-neoplastic HEK-293 cells compared with gemcitabine, such as 8f, 8g and 8h (IC50 = 4.56, 4.11 and 3.08 µM, respectively). Two of these purines also showed their ability to bind to SMO through NanoBRET assays (pKi = 5.17 for 8f and 5.01 for 8h), with higher affinities to compound I (pKi = 1.51). In addition, docking studies provided insight the purine substitution pattern is related to the affinity on SMO. Finally, studies of Hh inhibition for selected purines, using a transcriptional functional assay based on luciferase activity in NIH3T3 Shh-Light II cells, demonstrated that 8g reduced GLI activity with a IC50 = 6.4 µM as well as diminished the expression of Hh target genes in two specific Hh-dependent cell models, Med1 cells and Ptch1-/- mouse embryonic fibroblasts. Therefore, our results provide a platform for the design of SMO ligands that could be potential selective cytotoxic agents for the treatment of pancreatic cancer.

2.
Sci Rep ; 14(1): 15436, 2024 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965280

RESUMO

Alzheimer disease (AD) is the cause of dementia and accounts for 60-80% cases. Tumor Necrosis Factor-alpha (TNF-α) is a multifunctional cytokine that provides resistance to infections, inflammation, and cancer. It developed as a prospective therapeutic target against multiple autoimmune and inflammatory disorders. Cholinergic insufficiency is linked to Alzheimer's disease, and several cholinesterase inhibitors have been created to treat it, including naturally produced inhibitors, synthetic analogs, and hybrids. In the current study, we tried to prepared compounds may also support the discovery and development of novel therapeutic and preventative drugs for Alzheimer's using manganese tetroxide nanoparticles (Mn3O4-NPs) as a catalyst to generate compounds with excellent reaction conditions. The Biginelli synthesis yields 4-(4-cyanophenyl)-6-oxo-2-thioxohexahydropyrimidine-5-carbonitrile when the 4-cyanobenzaldehyde, ethyl cyanoacetate, and thiourea were coupled with Mn3O4-NPs to produce compound 1. This multi-component method is non-toxic, safe, and environmentally friendly. The new approach reduced the amount of chemicals used and preserved time. Compound 1 underwent reactions with methyl iodide, acrylonitrile, chloroacetone, ethyl chloroacetate, and chloroacetic acid/benzaldehyde, each of the synthetized compounds was docked with TNF-α converting enzyme. These compounds may also support the discovery and development of novel therapeutic and preventative drugs for Alzheimer's disease. The majority of the produced compounds demonstrated pharmacokinetic features, making them potentially attractive therapeutic candidates for Alzheimer's disease treatment.


Assuntos
Doença de Alzheimer , Compostos de Manganês , Simulação de Acoplamento Molecular , Nanopartículas , Óxidos , Pirimidinas , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Pirimidinas/química , Pirimidinas/farmacologia , Pirimidinas/farmacocinética , Compostos de Manganês/química , Compostos de Manganês/farmacologia , Animais , Nanopartículas/química , Óxidos/química , Óxidos/farmacologia , Humanos , Ratos , Masculino
3.
Plant Methods ; 20(1): 111, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39054477

RESUMO

Clematis graveolens Lindl., an indigenous climbing plant found in the Himalayan areas, is used by local communities for the treatment of neck tumors. The objective of this work is to examine the comprehensive metabolomic profile, antioxidant capability, in vitro and in silico anti-glioma effects on U-87 human glioma cell lines of the crude extract and fractions from C. graveolens. Liquid chromatography coupled with mass spectroscopy (LC-MS/MS) was used to establish detailed metabolite profiling of C. graveolens. The assessment of cell cytotoxicity was conducted using MTT cell viability assay on U-87 and BHK-21. Through molecular docking studies, the mode of inhibition and binding interaction between identified compounds and target proteins were also determined to evaluate the in vitro results. The use of LC-MS/MS-based global natural products social (GNPS) molecular networking analysis resulted in the identification of 27 compounds. The crude extract, ethyl acetate fraction, and chloroform fraction exhibited significant inhibitory activity against the U-87 cell lines, with IC50 values of 112.0, 138.1, and 142.7 µg/mL, respectively. The ethyl acetate fraction exhibited significant inhibitory concentration for 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) activity, 2,2-diphenyl-1-picrylhydrazyl (DPPH) activity and the metal chelation activity with IC50 value of 39.50 µg/mL, 32.27 µg/mL, and 53.46 µg/mL, respectively. The crude extract showed maximum total phenolic, and total flavonoid concentration measuring 338.7 µg GAE/mg, and 177.04 µg QE/mg, respectively. The findings of this study indicate that C. graveolens consists of a diverse range of active phytoconstituents that possess antioxidant and anti-glioma properties.

4.
Nat Prod Res ; : 1-11, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39049514

RESUMO

Inflammation is an immune system response triggered by pathogens, damaged cells, or stimuli. Some regulatory enzymes, such as phosphodiesterase, hyaluronidase, collagenase, and lipoxygenase, play an essential role in the inflammatory process. Polyphenolic compounds, such as flavonoids, are active suppressors of inflammatory cytokines, modulators of transcription factors, and inflammation-related pathways. A set of flavonoid structures was screened and docked against inflammation pathway enzymes. Amentoflavone has been shown to cause interactions with phosphodiesterase enzymes, while Bilobetin and Silibinin demonstrated an increase in binding energy with collagenase enzymes. The retrieved compounds from the docking study were subjected to DFT theory. The results showed that the LUMO orbital is located on the flavonoid part. The thermochemical parameters indicated that Silibinin is more stable than other compounds. The ADMET profile predicted that Silibinin can be used orally among the compounds. Silibinin can be introduced as a promising anti-inflammatory agent demonstrating phosphodiesterase and collagenase inhibitory properties.

5.
Mol Divers ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060857

RESUMO

Inspired from the important applications of spirocyclic compounds in medicinal chemistry, a new series of pyrazoline Spiro-oxindole tethered 1,2,3-triazole hybrids was reported via Cu(I)-catalyzed click reaction from isatin-pyrazoline linked terminal alkynes with in situ derived benzyl azides. Antimicrobial evaluation data showed that all hybrids exhibited promising efficacy towards the tested microbial strains. Antimicrobial screening as well as docking studies suggested that hybrid 6a was found to be most potent towards Aspergillus niger (MIC = 0.0122 µmol/mL) and Escherichia coli (MIC = 0.0061 µmol/mL). Molecular docking studies of 6a within the binding pockets of antibacterial and antifungal targets revealed good interactions with the binding energies of - 144.544 kcal/mol and - 154.364 kcal/mol against 1KZN (E. coli) and 3D3Z (A. niger), respectively. Further, MD simulations were performed to study the stability of the complexes formed at 300 K. Based on the RMSD trajectories, it is evident that 3D3Z-6a complex exhibits minimal deviation, whereas the 1KZN-6a complex displayed little more deviation compared to the protein but, both are in acceptable range. Moreover, 3D3Z-6a and 1KZN-6a showed maximum number of hydrogen bonds at 50 ns and 70 ns, respectively, thereby complementing the stability of these complexes.

6.
Arch Pharm (Weinheim) ; : e2300721, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39041665

RESUMO

A new series of benzimidazole-oxindole hybrids 8a-x was discovered as dual cyclin-dependent kinase (CDK2) and glycogen synthase kinase-3-beta (GSK-3ß) inhibitors with potent anticancer activity. The synthesized hits displayed potent anticancer activity against national cancer institute cancer cell lines in single-dose and five-dose assays. Moreover, the derivatives 8k, 8l, 8n, 8o, and 8p demonstrated potent cytotoxic activity against PANC-1 cells with IC50 = 1.88-2.79 µM. In addition, the hybrids 8l, 8n, 8o, and 8p displayed potent antiproliferative activity on the MG-63 cell line (IC50 = 0.99-1.90 µM). Concurrently, the benzimidazole-oxindole hybrid 8v exhibited potent dual CDK2/GSK-3ß inhibitory activity with IC50 values of 0.04 and 0.021 µM, respectively. In addition, 8v displayed more than 10-fold higher selectivity toward CDK2 and GSK-3 ß over CDK1, CDK5, GSK-3α, vascular endothelial growth factor receptor-2, and B-rapidly accelerated fibrosarcoma. Screening of the effect of 8n and 8v on the cell cycle and apoptosis of PANC-1 and MG-63 cells displayed their ability to arrest their cell cycle at the G2-M phase and to potentiate the apoptosis of both cell lines. In silico docking of the benzimidazole-oxindole hybrid 8v into the catalytic pocket of both CDK2 and GSK-3ß revealed its perfect fitting through the formation of hydrogen bonding and hydrophobic interactions with the key amino acids in the binding sites. In addition, in silico absorption, distribution, metabolism, excretion studies proved that 8a-x exhibit satisfactory drug-likeness properties for drug development.

7.
Eur J Med Chem ; 276: 116647, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38981337

RESUMO

Multi-drug resistance (MDR) is a serious challenge in contemporary clinical practice and is mostly responsible for the failure of cancer medication therapies. Several experimental evidence links MDR to the overexpression of the drug efflux transporter P-gp, therefore, the discovery of novel P-glycoprotein inhibitors is required to treat or prevent MDR and to improve the absorption of chemotherapy drugs via the gastrointestinal system. In this work, we explored a series of novel pyridoquinoxaline-based derivatives designed from parental compounds, previously proved active in enhancing anticancer drugs in MDR nasopharyngeal carcinoma (KB). Among them, derivative 10d showed the most potent and selective inhibition of fluorescent dye efflux, if compared to reference compounds (MK-571, Novobiocin, Verapamil), and the highest MDR reversal activity when co-administered with the chemotherapeutic agents Vincristine and Etoposide, at non-cytotoxic concentrations. Molecular modelling predicted the two compound 10d binding mode in a ratio of 2:1 with the target protein. No cytotoxicity was observed in healthy microglia cells and off-target investigations showed the absence of CaV1.2 channel blockade. In summary, our findings indicated that 10d could potentially be a novel therapeutic coadjutant by inhibiting P-gp transport function in vitro, thereby reversing cancer multidrug resistance.

8.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124734, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38986255

RESUMO

A ninhydrin-based colorimetric chemosensor (LH) was synthesized using 3-hydroxy-2-naphthoic hydrazide and 11H-indeno[1,2-b]quinoxalin-11-one. It was characterized by spectroscopic and single crystal X-ray diffraction techniques. In a semi-aqueous (MeOH/HEPES) system, LH displayed a characteristic chromogenic change from colorless to yellow upon adding Cu2+ ion, with the appearance of a new peak at λmax = 460 nm. A 1:1 binding stoichiometry between LH and Cu2+ ion has been found, with LOD = 2.3 µM (145 ppb) and LOQ = 8 µM (504 ppb). Based on experimental results the formula of [Cu(L)Cl(H2O)2] (1) was assigned and this in-situ generated 1 was found to exhibit a discoloration of upon gradual addition of cysteine (LOD = 60 nM) as well as ATP (LOD = 130 nM) having 1:2 and 1:1 stoichiometry respectively. The LH was useful for recognition of Cu2+ ion in real water samples and on filter paper strips. A two-input-two-output logic gate circuitry was also constructed by employing 1 and cysteine. The DFT/TDDFT calculations performed on LH and 1 were consistent with experimental findings. The binding affinity of LH towards HSA and BSA were determined with HSA having greater affinity than BSA, which was also supported by theoretical calculations.

9.
Int J Biol Macromol ; 274(Pt 1): 132792, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38834110

RESUMO

Many terpyridines and their metal complexes are known to exhibit remarkable potential for the interaction of biological targets. Notably, a subtle change in the structure of the ligand can influence these interactions significantly. In this regard, it would be very interesting to assess the binding affinity of functionalized molecules with DNA/BSA. In this work, a novel ester-based terpyridine (L) and the corresponding four metal complexes with Ni(II) (MC1), Cu(II) (MC2), Fe(III) (MC3) and Ru(III) (MC4) were prepared and structurally characterized using various spectroscopic and analytical techniques including the validation of molecular structures of ligand (L) and Ni(II)-Tpy complex (MC1). The EPR data demonstrate that MC1 is diamagnetic and other complexes (MC2-MC4) exhibit paramagnetic behavior. Additionally, the structures of ligands and metal complexes were determined using DFT studies and the same were utilized for the docking studies. Interestingly, MC3 and MC4 exhibit a predominant lowest binding energy of -9.62 Kcal/mol (with DNA) and -10.05 Kcal/mol (with BSA) respectively. The binding affinity of the ligand and its complexes with protein and DNA was evaluated by spectroscopic techniques. Notably, the cytotoxicity studies of L and MC1-MC4 were performed against the MCF-7 (human breast cancer) cell lines. The complex MC4 displayed great activity with an IC50 of 3.5 ±â€¯1.75 µM among all synthesized compounds and comparable with cisplatin.


Assuntos
Complexos de Coordenação , DNA , Simulação de Acoplamento Molecular , Soroalbumina Bovina , DNA/química , DNA/metabolismo , Humanos , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Ésteres/química , Piridinas/química , Piridinas/farmacologia , Ligantes , Ligação Proteica , Células MCF-7 , Bovinos , Animais , Níquel/química , Linhagem Celular Tumoral
10.
Eur J Med Chem ; 275: 116589, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38878516

RESUMO

Uncontrolled diabetes can lead to hyperglycemia, which causes neuropathy, heart attacks, retinopathy, and nervous system damage over time, therefore, controlling hyperglycemia using potential drug target inhibitors is a promising strategy. This work focused on synthesizing new derivatives via the diazo group, using a hybridization strategy involving two approved drugs, paracetamol and several sulfonamides. The newly designed diazo-paracetamols 5-12 were fully characterized and then screened for in vitro α-amylase and α-glucosidase activities and exhibited inhibitory percentages (IP) = 92.5-96.5 % and 91.0-95.7 % compared to Acarbose IP = 96.5 and 95.8 %, respectively at 100 µg/mL. The IC50 values of the synthesized derivatives were evaluated against α-amylase and α-glucosidase enzymes, and the results demonstrated moderate to potent activity. Among the tested diazo-paracetamols, compound 11 was found to have the highest potency activity against α-amylase with IC50 value of 0.98 ± 0.015 µM compared to Acarbose IC50 = 0.43 ± 0.009 µM, followed by compound 10 (IC50 = 1.55 ± 0.022 µM) and compound 9 (IC50 = 1.59 ± 0.023 µM). On the other hand, for α-glucosidase, compound 10 with pyrimidine moiety demonstrated the highest inhibitory activity with IC50 = 1.39 ± 0.021 µM relative to Acarbose IC50 = 1.24 ± 0.029 µM and the order of the most active derivatives was 10 > 9 (IC50 = 2.95 ± 0.046 µM) > 11 (IC50 = 5.13 ± 0.082 µM). SAR analysis confirmed that the presence of 4,5-dimethyl-isoxazole or pyrimidine nucleus attached to the sulfonyl group is important for activity. Finally, the docking simulation was achieved to determine the mode of binding interactions for the most active derivatives in the enzyme's active site.


Assuntos
Acetaminofen , Desenho de Fármacos , Inibidores de Glicosídeo Hidrolases , Hipoglicemiantes , Simulação de Acoplamento Molecular , alfa-Amilases , alfa-Glucosidases , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/metabolismo , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/síntese química , Inibidores de Glicosídeo Hidrolases/química , alfa-Glucosidases/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/síntese química , Acetaminofen/farmacologia , Relação Estrutura-Atividade , Estrutura Molecular , Humanos , Relação Dose-Resposta a Droga , Sulfonamidas/química , Sulfonamidas/farmacologia , Sulfonamidas/síntese química , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química
11.
Curr Med Chem ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38797910

RESUMO

BACKGROUND: Infection remains a significant global health concern, with millions of new cases and deaths occurring due to infectious diseases. Currently, chemoprophylaxis and chemotherapy are the primary treatments, but side effects and toxicities pose challenges. Pathogenic microorganisms have developed resistance to antimicrobial medications. Nitrogen containing heterocyclic scaffolds possess the potential in drug discovery and are explored in various fields like pharmaceuticals, cosmetics, and agrochemicals. To minimize antimicrobial drug resistance, there is a need to design potent, safer antimicrobial lead compounds with higher selectivity and minimal cytotoxicity. OBJECTIVES: The present review aims to outline several recent developments in medicinal chemistry aspect of nitrogenous heterocyclic derivatives with the following purposes: (1) To cast light on the recent literature reports of the last eight years ranging from 2015 to 2023 describing anti-microbial potential of nitrogen-containing heterocyclic derivatives which includes pyrazole, pyrazoline, imidazole, tetrazole and quinoline; (2) To brief the recent developments in the medicinal chemistry of nitrogenous heterocyclic derivatives that is directed towards their anti-microbial profile; (3) To summarize the complete correlation of structural features of nitrogenous heterocyclic molecules with the pharmacological action including in silico as well as mechanistic studies to provide thoughts accompanying the generation of lead molecules. METHODS: Antimicrobial potential of nitrogenous heterocyclic molecules has been displayed by relating the structural features of various lead candidates with their in vitro as well as in vivo antimicrobial outcomes. In contrast, in silico computational analysis from different articles also helped to predict the SAR of potent molecules. RESULTS: Nitrogen containing heterocycles are involved in a range of natural to synthetic analogues with keen antimicrobial potency. It is an emerging need to generate new nitrogenous heterocyclic molecules in order to tackle the drug resistance in micro-organisms with more targeted selectivity as well as specificity. CONCLUSION: To limit the side effects associated with them and to combat the microbes acquired resistance towards the current drug regimen, novel nitrogenous heterocycle based antimicrobial agents are essential to be developed. This review connects the structural units present in lead compounds with their promising antimicrobial action.

12.
Pharmaceuticals (Basel) ; 17(5)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38794220

RESUMO

It has been more than four years since the first report of SARS-CoV-2, and humankind has experienced a pandemic with an unprecedented impact. Moreover, the new variants have made the situation even worse. Among viral enzymes, the SARS-CoV-2 main protease (Mpro) has been deemed a promising drug target vs. COVID-19. Indeed, Mpro is a pivotal enzyme for viral replication, and it is highly conserved within coronaviruses. It showed a high extent of conservation of the protease residues essential to the enzymatic activity, emphasizing its potential as a drug target to develop wide-spectrum antiviral agents effective not only vs. SARS-CoV-2 variants but also against other coronaviruses. Even though the FDA-approved drug nirmatrelvir, a Mpro inhibitor, has boosted the antiviral therapy for the treatment of COVID-19, the drug shows several drawbacks that hinder its clinical application. Herein, we report the synthesis of new thiazolidine-4-one derivatives endowed with inhibitory potencies in the micromolar range against SARS-CoV-2 Mpro. In silico studies shed light on the key structural requirements responsible for binding to highly conserved enzymatic residues, showing that the thiazolidinone core acts as a mimetic of the Gln amino acid of the natural substrate and the central role of the nitro-substituted aromatic portion in establishing π-π stacking interactions with the catalytic His-41 residue.

13.
Drug Des Devel Ther ; 18: 1547-1571, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38737333

RESUMO

The Coronavirus disease 2019 (COVID-19) pandemic is one of the most considerable health problems across the world. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the major causative agent of COVID-19. The severe symptoms of this deadly disease include shortness of breath, fever, cough, loss of smell, and a broad spectrum of other health issues such as diarrhea, pneumonia, bronchitis, septic shock, and multiple organ failure. Currently, there are no medications available for coronavirus patients, except symptom-relieving drugs. Therefore, SARS-CoV-2 requires the development of effective drugs and specific treatments. Heterocycles are important constituents of more than 85% of the physiologically active pharmaceutical drugs on the market now. Several FDA-approved drugs have been reported including molnupiravir, remdesivir, ritonavir, oseltamivir, favipiravir, chloroquine, and hydroxychloroquine for the cure of COVID-19. In this study, we discuss potent anti-SARS-CoV-2 heterocyclic compounds that have been synthesized over the past few years. These compounds included; indole, piperidine, pyrazine, pyrimidine, pyrrole, piperazine, quinazoline, oxazole, quinoline, isoxazole, thiazole, quinoxaline, pyrazole, azafluorene, imidazole, thiadiazole, triazole, coumarin, chromene, and benzodioxole. Both in vitro and in silico studies were performed to determine the potential of these heterocyclic compounds in the fight against various SARS-CoV-2 proteins.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Compostos Heterocíclicos , SARS-CoV-2 , Humanos , Antivirais/farmacologia , Antivirais/química , Antivirais/síntese química , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/química , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/uso terapêutico , SARS-CoV-2/efeitos dos fármacos , COVID-19
14.
ACS Appl Mater Interfaces ; 16(21): 27011-27027, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38743026

RESUMO

Nanobactericides are employed as a promising class of nanomaterials for eradicating microbial infections, considering the rapid resistance risks of conventional antibiotics. Herein, we present a pioneering approach, reporting the synthesis of two-dimensional titanium disulfide nanosheets coated by nitrogen/sulfur-codoped carbon nanosheets (2D-TiS2@NSCLAA hybrid NSs) using a rapid l-ascorbic acid-assisted sulfurization of Ti3C2Tx-MXene to achieve efficient alternative bactericides. The as-developed materials were systematically characterized using a suite of different spectroscopy and microscopy techniques, in which the X-ray diffraction/Raman spectroscopy/X-ray photoelectron spectroscopy data confirm the existence of TiS2 and C, while the morphological investigation reveals single- to few-layered TiS2 NSs confined by N,S-doped C, suggesting the successful synthesis of the ultrathin hybrid NSs. From in vitro evaluation, the resultant product demonstrates impressive bactericidal potential against both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli bacteria, achieving a substantial decrease in the bacterial viability under a 1.2 J dose of visible-light irradiation at the lowest concentration of 5 µg·mL-1 compared to Ti3C2Tx (15 µg·mL-1), TiS2-C (10 µg·mL-1), and standard antibiotic ciprofloxacin (15 µg·mL-1), respectively. The enhanced degradation efficiency is attributed to the ultrathin TiS2 NSs encapsulated within heteroatom N,S-doped C, facilitating effective photogenerated charge-carrier separation that generates multiple reactive oxygen species (ROS) and induced physical stress as well as piercing action due to its ultrathin structure, resulting in multimechanistic cytotoxicity and damage to bacterial cells. Furthermore, the obtained results from molecular docking studies conducted via computational simulation (in silico) of the as-synthesized materials against selected proteins (ß-lactamasE. coli/DNA-GyrasE. coli) are well-consistent with the in vitro antibacterial results, providing strong and consistent validation. Thus, this sophisticated study presents a simple and effective synthesis technique for the structural engineering of metal sulfide-based hybrids as functionalized synthetic bactericides.


Assuntos
Antibacterianos , Carbono , Escherichia coli , Testes de Sensibilidade Microbiana , Nanoestruturas , Nitrogênio , Staphylococcus aureus , Titânio , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Titânio/química , Titânio/farmacologia , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Carbono/química , Carbono/farmacologia , Nanoestruturas/química , Nitrogênio/química , Enxofre/química , Enxofre/farmacologia , Luz
15.
Int J Biol Macromol ; 269(Pt 2): 132027, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38702001

RESUMO

In this study, novel Cu-complexes of heterocyclic cellulose which were synthesized via the reaction of carboxymethyl cellulose (CMC) from bagasse pulp with NH2NH2 to give hydrazide cellulose which easily reacted with CS2 to form salt and then cyclized in the presence of HCl to afford cellulose oxadiazole, or with hydrazine hydrate to give cellulose triazole. Furthermore, the cellulose oxadiazole and triazole moieties acting as chelating agents with metal ion Cu (II), and all synthesized compounds were examined for their spectral analysis to show the adsorption of Cu (II) on the surface of cellulose through intramolecular hydrogen bonding. Results illustrated that cellulose oxadiazole and Cu- cellulose oxadiazole exhibited antimicrobial activities more than triazole and Cu- cellulose triazole. Furthermore, anticancer results showed that both cellulose oxadiazole and triazole exhibited activity higher than Cu-cellulose oxadiazole and Cu-cellulose triazole, where the cellulose triazole showed the highest activity (IC50 = 58.7 µg/µL). Additionally, the docking simulation of the synthesized cellulose complexes with different proteins such as PDBID:3t88, PDBID:4ynt, PDBID:1tgh, PDBID:2wje, and PDBID:4hdq and shortage bond length to confirm the experimental results. Optimization of metal complexes utilized the DFT/B3LYP/LANL2DZ basis set to confirm the stability of these metals theoretically and their physical descriptors and FMO analysis.


Assuntos
Anti-Infecciosos , Antineoplásicos , Celulose , Cobre , Simulação de Acoplamento Molecular , Celulose/química , Cobre/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Humanos , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Teoria da Densidade Funcional , Testes de Sensibilidade Microbiana , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Linhagem Celular Tumoral
16.
J Enzyme Inhib Med Chem ; 39(1): 2335927, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38606915

RESUMO

A novel series of hydantoins incorporating phthalimides has been synthesised by condensation of activated phthalimides with 1-aminohydantoin and investigated for their inhibitory activity against a panel of human (h) carbonic anhydrase (CA, EC 4.2.1.1): the cytosolic isoforms hCA I, hCA II, and hCA VII, secreted isoform hCA VI, and the transmembrane hCA IX, by a stopped-flow CO2 hydrase assay. Although all newly developed compounds were totally inactive on hCA I and mainly ineffective towards hCA II, they generally exhibited moderate repressing effects on hCA VI, VII, and IX with KIs values in the submicromolar to micromolar ranges. The salts 3a and 3b, followed by derivative 5, displayed the best inhibitory activity of all the evaluated compounds and their binding mode was proposed in silico. These compounds can also be considered interesting starting points for the development of novel pharmacophores for this class of enzyme inhibitors.


Assuntos
Anidrases Carbônicas , Hidantoínas , Humanos , Anidrases Carbônicas/metabolismo , Anidrase Carbônica IX , Relação Estrutura-Atividade , Anidrase Carbônica I , Anidrase Carbônica II , Isoformas de Proteínas/metabolismo , Ftalimidas/farmacologia , Hidantoínas/farmacologia , Inibidores da Anidrase Carbônica/química , Estrutura Molecular
17.
Heliyon ; 10(7): e29221, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38617929

RESUMO

4-Acetylpyridine 1 and malononitrile 2 were allowed to react in a 3MCRs with dimedone 3a or cyclohexa-1,3-dione 3b under reflux to afford 4-methyl-4-(pyridin-4-yl)-5,6,7,8-tetrahydro-4H-chromene derivatives 4a,b respectively. The mechanism of the reaction has been studied and the structures elucidated by analytical, spectral as well as X-ray crystallographic data. Heterocyclic compounds find widespread application in pharmaceutical and agrochemical products. Docking analyses were performed on the synthesized compounds to assess their binding modes with various amino acids of the target protein tubulin (PDB Code - 1SA0). The results indicated promising binding scores for compounds 4a and 4b, suggesting a strong affinity for the tubulin binding site. Finally, ADMET for the synthesized compounds 4a, 4b, 5, 8a and 8b were carried out. The drug likeness and pharmacokinetic properties of the prepared compounds were also evaluated. Notably, all of the novel compounds adhered to Lipinski's rule (Ro5) without any violations.

18.
BMC Chem ; 18(1): 67, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581040

RESUMO

A novel series of 4-nitrophenylpiperazine derivatives (4a-m) was designed and synthesized as potential tyrosinase inhibitors. Comprehensive characterization using 1H-NMR, 13C-NMR, CNH, and IR techniques was performed for all target compounds. Subsequently, the derivatives were evaluated for their inhibitory activity against tyrosinase. Among them, compound 4l, featuring an indole moiety at the N-1 position of the piperazine ring, exhibited a significant tyrosinase inhibitory effect with an IC50 value of 72.55 µM. Enzyme kinetics analysis revealed that 4l displayed mixed inhibition of the tyrosinase enzymatic reaction. Molecular docking was carried out in the enzyme's active site to further investigate the enzyme-inhibitor interactions. Based on the findings, compound 4l shows promise as a lead structure for the design of potent tyrosinase inhibitors. This study paves the way for the development of more effective tyrosinase inhibitors for potential applications in various fields.

19.
Sci Rep ; 14(1): 5474, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443456

RESUMO

Two new series of oxadiazole and pyrazoline derivatives were designed and synthesized as promising EGFR-TK inhibitors. The in vitro antiproliferative activity was studied against three human cancer cell lines; HCT116, HepG-2 and MCF7 using MTT assay. Compound 10c showed the most potent anticancer activity against all cancer cell lines, with IC50 range of 1.82 to 5.55 µM, while proving safe towards normal cells WI-38 (IC50 = 41.17 µM) compared to the reference drug doxorubicin (IC50 = 6.72 µM). The most active candidates 5a, 9b, 10a, 10b and 10c were further assessed for their EGFR-TK inhibition. The best of which, compounds 5a and 10b showed IC50 of 0.09 and 0.16 µM respectively compared to gefitinib (IC50 = 0.04 µM). Further investigation against other EGFR family members, showed that 5a displayed good activities against HER3 and HER4 with IC50 values 0.18 and 0.37 µM, respectively compared to gefitinib (IC50 = 0.35 and 0.58 µM, respectively). Furthermore, 5a was evaluated for cell cycle distribution and apoptotic induction on HepG-2 cells. It induced mitochondrial apoptotic pathway and increased accumulation of ROS. Molecular docking study came in agreement with the biological results. Compounds 5a and 10b showed promising drug-likeness with good physicochemical properties.


Assuntos
Receptores ErbB , Oxidiazóis , Humanos , Gefitinibe , Simulação de Acoplamento Molecular , Ciclo Celular , Oxidiazóis/farmacologia
20.
Bioorg Chem ; 146: 107302, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38521010

RESUMO

Leishmaniasis, a group of neglected infectious diseases, encompasses a serious health concern, particularly with visceral leishmaniasis exhibiting potentially fatal outcomes. Nucleoside hydrolase (NH) has a fundamental role in the purine salvage pathway, crucial for Leishmania donovani survival, and presents a promising target for developing new drugs for visceral leishmaniasis treatment. In this study, LdNH was immobilized into fused silica capillaries, resulting in immobilized enzyme reactors (IMERs). The LdNH-IMER activity was monitored on-flow in a multidimensional liquid chromatography system, with the IMER in the first dimension. A C18 analytical column in the second dimension furnished the rapid separation of the substrate (inosine) and product (hypoxanthine), enabling direct enzyme activity monitoring through product quantification. LdNH-IMER exhibited high stability and was characterized by determining the Michaelis-Menten constant. A known inhibitor (1-(ß-d-Ribofuranosyl)-4-quinolone derivative) was used as a model to validate the established method in inhibitor recognition. Screening of three additional derivatives of 1-(ß-d-Ribofuranosyl)-4-quinolone led to the discovery of novel inhibitors, with compound 2a exhibiting superior inhibitory activity (Ki = 23.37 ± 3.64 µmol/L) compared to the employed model inhibitor. Docking and Molecular Dynamics studies provided crucial insights into inhibitor interactions at the enzyme active site, offering valuable information for developing new LdNH inhibitors. Therefore, this study presents a novel screening assay and contributes to the development of potent LdNH inhibitors.


Assuntos
Leishmania donovani , Leishmaniose Visceral , Humanos , N-Glicosil Hidrolases/metabolismo , Cromatografia de Afinidade , 4-Quinolonas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA