Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(17)2022 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-36080272

RESUMO

The low-viscosity adhesive that is used to bond composite restorative materials to the tooth is readily damaged by acids, enzymes, and oral fluids. Bacteria infiltrate the resulting gaps at the composite/tooth interface, demineralize the tooth, and further erode the adhesive. This paper presents the preparation and characterization of a low-crosslink-density hydrophilic adhesive that capitalizes on sol-gel reactions and free-radical polymerization to resist hydrolysis and provide enhanced mechanical properties in wet environments. Polymerization behavior, water sorption, and leachates were investigated. Dynamic mechanical analyses (DMA) were conducted using water-saturated adhesives to mimic load transfer in wet conditions. Data from all tests were analyzed using appropriate statistical tests (α = 0.05). The degree of conversion was comparable for experimental and control adhesives at 88.3 and 84.3%, respectively. HEMA leachate was significantly lower for the experimental (2.9 wt%) compared to control (7.2 wt%). After 3 days of aqueous aging, the storage and rubbery moduli and the glass transition temperature of the experimental adhesive (57.5MPa, 12.8MPa, and 38.7 °C, respectively) were significantly higher than control (7.4MPa, 4.3 MPa, and 25.9 °C, respectively). The results indicated that the autonomic sol-gel reaction continues in the wet environment, leading to intrinsic reinforcement of the polymer network, improved hydrolytic stability, and enhanced mechanical properties.


Assuntos
Adesivos , Metacrilatos , Resinas Compostas/química , Hidrólise , Teste de Materiais , Metacrilatos/química , Polimerização , Água/química
2.
Polymers (Basel) ; 13(14)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34300984

RESUMO

In this paper, we study the effect of the addition of wood flour as a filler in a recycled polyethylene (r-PE) in view of its potential applications in 3D printing. The composites, prepared by melt mixing, are characterized with torque measurements performed during the compounding, dynamic rotational rheology, and infrared spectroscopy. Data show that the introduction of wood results in increased viscosity and in sensible viscous heating during the compounding. The r-PE appear to be stable at temperatures up to 180 °C while at higher temperatures the material shows a rheological response characterized by time-increasing viscoelastic moduli that suggests a thermal degradation governed by crosslinking reactions. The compounds (with wood loading up to 50% in wt.) also shows thermal stability at temperatures up to 180 °C. The viscoelastic behavior and the infrared spectra of the r-PE matrix suggests the presence of branches in the macromolecular structure due to the process. Although the addition of wood particles determines increased viscoelastic moduli, a solid-like viscoelastic response is not shown even for the highest wood concentrations. This behavior, due to a poor compatibility and weak interfacial adhesion between the two phases, is however promising in view of common processing technologies as extrusion or injection molding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA