Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 902: 166008, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37544440

RESUMO

Waste dolomite powder (WDP) is a byproduct obtained from dolomite quarries during the preparation of dolomite products. To study the re-utilisation of WDP, an eco-friendly cement-based material was prepared using WDP as a micro-aggregate. The effects of WDP on the early hydration process, microscale characteristics, and life-cycle assessment of cement paste are discussed in this study. The isothermal calorimetry results showed that the incorporating WDP in cement paste accelerated the early hydration process of cement according to the degree of reaction. In this case, the setting time of the cement pastes with WDP was shortened, and the early compressive strength was significantly improved. The results of X-ray diffraction and scanning electron microscopy analysis at early curing ages (1 and 3 d) showed changes in the peak intensity of ettringite and portlandite and a denser microstructure. Mercury intrusion porosimetry tests showed that the middle and large capillary pores were refined by the nucleation and filling effects of WDP. Based on environmental and economic evaluations, the utilisation of WDP reduced energy consumption, CO2 emissions, and economic costs. Compared to the sample without WDP, the energy consumption, CO2 emissions, and economic cost indices were 42 %, 42.69 %, and 39.4 % lower, respectively. Our results may provide valuable references for the re-utilisation of WDP in low-carbonation cement-based materials.

2.
J Hazard Mater ; 452: 131327, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37027917

RESUMO

Municipal solid waste incineration (MSWI) fly ash has serious pollution. It needs to be solidification/stabilization (S/S) to sanitary landfill as quickly as possible. In order to achieve the objective, the early hydration properties of alkali-activated MSWI fly ash solidified body were investigated in this paper. Meanwhile, nano-alumina was utilized as an agent to optimize the early performance. Therefore, the mechanical properties, environmental safety, hydration process and mechanisms of heavy metals S/S were explored. The results showed that after adding nano-alumina, the leaching concentration of Pb and Zn in solidified bodies after 3 d curing was significantly reduced by 49.7-63% and 65.8-76.1%, respectively, and the compressive strength was enhanced by 10.2-55.9%. Nano-alumina improved the hydration process, and the predominant hydration products in solidified bodies were C-S-H gels and C-A-S-H gels. Meanwhile, nano-alumina could obviously increase the most stable chemical speciation (residual state) ratio of heavy metals in solidified bodies. Pore structure data showed that, due to the filling effect and pozzolanic effect of nano-alumina, the porosity has been reduced and the ratio of harmless pore structure has been increased. Therefore, it can be concluded that solidified bodies mainly solidify MSWI fly ash by physical adsorption, physical encapsulation and chemical bonding.

3.
Environ Sci Pollut Res Int ; 30(9): 24088-24100, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36334206

RESUMO

The role of nanozinc source (nanohydrozincite: nHZ; nanozinc oxide: nZO) on the performance of alkali-activated slag (AAS) was explored for the first time in the present work. The results showed that nHZ with different contents (0.5, 1.0, and 1.5 wt%) retards the early hydration rate of AAS, whereas nZO showed the lowest retardation effect. Zn(OH)2 is the main retarder inside AAS-nZO and AAS-nHZ, which consumes the dissolved Ca2+ (responsible for the early hardening of AAS) from slag to yield calcium zincate hydrate (CZH). The high retardation rate of nHZ is originated from its high affinity to consume much Ca2+ through the formation of additional pirssonite (Na2CO3.CaCO3.2H2O) double salt. Although adding nHZ induced the drying shrinkage of AAS, it improved the later compressive strengths (28 to 365 days), especially at low nHZ content (0.5 wt%), via the formation of CASH with lower Ca/Si ratio and higher binding capacity compared to that formed inside AAS and AAS-nZO. A further research is needed to reduce the drying shrinkage and to accelerate the early strength of AAS containing nHZ.


Assuntos
Álcalis , Cálcio , Força Compressiva , Dessecação , Óxidos
4.
Polymers (Basel) ; 14(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36236051

RESUMO

Natural hydraulic lime (NHL) is a cementitious material widely used in the restoration of stone cultural relics and maintenance of historic buildings, the practical use of which is mainly hindered by its poor fluidity. Due to the multilayer (double-layer) adsorption that isobutylene-maleic anhydride (IBMA) has on the surface of NHL, the effects that IBMA copolymer have on the fluidity and hydration of NHL were thus investigated. Moreover, the yield stress and plastic viscosity of NHL pastes were found to be reduced significantly by the incorporation of IBMA. Combined with the effects of electrostatic repulsion and steric hindrance, the flocculated structures in NHL pastes were gradually dismantled, releasing the trapped water and leading to a significant enhancement in the fluidity of NHL. IBMA was found to postpone the early hydration of NHL. In particular, it showed that adding specific content of IBMA can significantly improve the early strength of NHL.

5.
Materials (Basel) ; 14(6)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33806993

RESUMO

Microstructure development of concrete, mortar, and paste scale of cement-based material (CBM) during the early hydration stage has a significant impact on CBM's physical, mechanical, and durability characteristics at the high maturity state. The research was carried out using compositions with increased autogenous shrinkage and extended early age period, proposed within the RRT+ programme of the COST Action TU1404. The electrical conductivity method, used to follow the solidification process of CBM, is capable of determining the initial and final setting time, and the end of the solidification process acceleration stage for the paste and mortar scale. Simultaneous ultrasonic P- and S-wave transmission measurements revealed that the ratio of velocities VP/VS is highly dependent on the presence of aggregates-it is considerably higher for the paste scale compared to the mortar and concrete scale. The deviation from the otherwise roughly constant ratio VP/VS for each scale may indicate cracks in the material. The non-linear correlation between the dynamic and static elastic moduli valid over the three scales was confirmed. Additionally, it was found that the static E-modulus correlates very well with the square of the VS and that the VS is highly correlated to the cube compressive strength-but a separate trendline exists for each CBM scale.

6.
Materials (Basel) ; 12(12)2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-31200432

RESUMO

The addition of expansive agents could overcome the main disadvantages of raw concrete including high brittleness and low tensile strength. Few studies have investigated the early hydration kinetics of expansive cementitious binders, though the findings from the early hydration kinetics are helpful for understanding their technical performances. In this study, mixtures of 3CaO•3Al2O3•CaSO4 and CaSO4 (i.e., ZY-type™ expansive agent) with different proportions of mineral admixtures (e.g., fly ash and slag) were added into cement pastes to investigate the early hydration kinetics mechanism of expansive cementitious binders. Early hydration heat evolution rate and cumulative hydration heat were measured by isothermal calorimeter. Kinetic parameters were estimated based on the Krstulovic-Dabic model and Knudsen equations. Mechanical performances of expansive cementitious binders were tested in order to evaluate if they met the basic requirements of shrinkage-compensating materials in technical use. The early hydration heat released from cementitious binders containing ZY-type™ expansive agent was much greater than that released by pure cement, supporting the idea that addition of the expansive agent would improve the reaction of cement. The early hydration kinetic rates were decreased due to the reactions of the mineral admixture (e.g., fly ash or slag) and the ZY-type™ expansive agent in the cement system. The hydration reaction of cementitious binders containing ZY-type™ expansive agent obeyed the Krstulovic-Dabic model well. Three processes are involved in the hydration reaction of cementitious binders containing ZY-type™ expansive agent. These are nucleation and crystal growth (NG), interactions at phase boundaries (I), and diffusion (D). The 14-day expansion rates of cementitious binders containing ZY-type™ expansive agent are in the range of 2.0 × 10-4 to 3.5 × 10-4, which could meet the basic requirements of anti-cracking performances in technical use according to Chinese industry standard JGJ/T 178-2009. This study could provide an insight into understanding the effects of expansive agents on the hydration and mechanical performances of cementitious binders.

7.
Nanomaterials (Basel) ; 7(5)2017 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-28467348

RESUMO

The impact of nano-SiO2 on the early hydration properties of alite-sulphoaluminate (AC$A) cement was investigated with a fixed water to solid ratio (w/s) of one. Nano-SiO2 was used in partial substitution of AC$A cement at zero, one and three wt %. Calorimetry, X-ray diffraction (XRD), thermogravimetric/derivative thermogravimetric (TG/DTG), mercury intrusion porosimetry (MIP) and scanning electron microscopy (SEM) analyses were used to characterize the hydration and hydrates of the blended cement. The hydration of the AC$A cement was significantly promoted, resulting in an increase of the heat released with the addition of nano-SiO2. Phase development composition analysis showed that nano-SiO2 had no effect on the type of crystalline hydration products of the AC$A cement. Moreover, nano-SiO2 showed significant positive effects on pore refinement where the total porosity decreased by 54.09% at three days with the inclusion of 3% nano-SiO2. Finally, from the SEM observations, nano-SiO2 was conducive to producing a denser microstructure than that of the control sample.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA