Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Magn Reson Med ; 92(3): 926-944, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38725389

RESUMO

PURPOSE: Demonstrate the feasibility and evaluate the performance of single-shot diffusion trace-weighted radial echo planar spectroscopic imaging (Trace DW-REPSI) for quantifying the trace ADC in phantom and in vivo using a 3T clinical scanner. THEORY AND METHODS: Trace DW-REPSI datasets were acquired in 10 phantom and 10 healthy volunteers, with a maximum b-value of 1601 s/mm2 and diffusion time of 10.75 ms. The self-navigation properties of radial acquisitions were used for corrections of shot-to-shot phase and frequency shift fluctuations of the raw data. In vivo trace ADCs of total NAA (tNAA), total creatine (tCr), and total choline (tCho) extrapolated to pure gray and white matter fractions were compared, as well as trace ADCs estimated in voxels within white or gray matter-dominant regions. RESULTS: Trace ADCs in phantom show excellent agreement with reported values, and in vivo ADCs agree well with the expected differences between gray and white matter. For tNAA, tCr, and tCho, the trace ADCs extrapolated to pure gray and white matter ranged from 0.18-0.27 and 0.26-0.38 µm2/ms, respectively. In sets of gray and white matter-dominant voxels, the values ranged from 0.21 to 0.27 and 0.24 to 0.31 µm2/ms, respectively. The overestimated trace ADCs from this sequence can be attributed to the short diffusion time. CONCLUSION: This study presents the first demonstration of the single-shot diffusion trace-weighted spectroscopic imaging sequence using radial echo planar trajectories. The Trace DW-REPSI sequence could provide an estimate of the trace ADC in a much shorter scan time compared to conventional approaches that require three separate measurements.


Assuntos
Encéfalo , Imagem de Difusão por Ressonância Magnética , Imagem Ecoplanar , Imagens de Fantasmas , Humanos , Imagem Ecoplanar/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Masculino , Feminino , Colina/metabolismo , Substância Branca/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Voluntários Saudáveis , Creatina/metabolismo , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/metabolismo , Algoritmos , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Espectroscopia de Ressonância Magnética/métodos
2.
Clin Neuroradiol ; 33(4): 993-1005, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37336867

RESUMO

PURPOSE: This study aimed to detect age-related brain metabolic and microstructural changes in healthy human brains by the use of whole-brain proton magnetic resonance spectroscopic imaging (1H­MRSI) and quantitative MR imaging (qMRI). METHODS: In this study, 60 healthy participants with evenly distributed ages (between 21 and 69 years) and sex underwent MRI examinations at 3T including whole-brain 1H­MRSI. The concentrations of the metabolites N­acetylaspartate (NAA), choline-containing compounds (Cho), total creatine and phosphocreatine (tCr), glutamine and glutamate (Glx), and myo-inositol (mI), as well as the brain relaxation times T2, T2' and T1 were measured in 12 regions of interest (ROI) in each hemisphere. Correlations between measured parameters and age were estimated with linear regression analysis and Pearson's correlation test. RESULTS: Significant age-related changes of brain regional metabolite concentrations and tissue relaxation times were found: NAA decreased in eight of twelve ROIs, Cho increased in three ROIs, tCr in four ROIs, and mI in three ROIs. Glx displayed a significant decrease in one ROI and an increase in another ROI. T1 increased in four ROIs and T2 in one ROI, while T2' decreased in two ROIs. A negative correlation of tCr concentrations with T2' relaxation time was found in one ROI as well as the positive correlations of age-related T1 relaxation time with concentrations of tCr, mI, Glx and Cho in another ROI. CONCLUSION: Normal aging in human brain is associated with coexistent brain regional metabolic alterations and microstructural changes, which may be related to age-related decline in cognitive, affective and psychomotor domains of life in the older population.


Assuntos
Envelhecimento , Imageamento por Ressonância Magnética , Humanos , Espectroscopia de Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/métodos , Envelhecimento/metabolismo , Envelhecimento/patologia , Encéfalo/patologia , Creatina/metabolismo , Colina/metabolismo , Ácido Aspártico , Inositol/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo
3.
Magn Reson Med ; 88(4): 1516-1527, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35666820

RESUMO

PURPOSE: Spectroscopic imaging could provide insights into regional cardiac triglyceride variations, but is hampered by relatively long scan times. It is proposed to synergistically combine echo-planar spectroscopic imaging (EPSI) with motion-adapted gating, weighted acquisition and metabolite cycling to reduce scan times to less than 10 min while preserving spatial-spectral quality. The method is compared to single-voxel measurements and to metabolite-cycled EPSI with conventional acquisition for assessing triglyceride-to-water (TG/W) ratios in the human heart. METHODS: Measurements were performed on 10 healthy volunteers using a clinical 1.5T system. EPSI data was acquired both without and with motion-adapted gating in combination with weighted acquisition to assess TG/W ratios and relative Cramér-Rao lower bounds (CRLB) of TG. For comparison, single-voxel (PRESS) spectra were acquired in the interventricular septum. RESULTS: Bland-Altman analyses did not show a significant bias in TG/W when comparing both metabolite-cycled EPSI methods to PRESS for any of the cardiac segments. Scan time was 8.05 ± 2.06 min and 17.91 ± 3.93 min for metabolite-cycled EPSI with and without motion-adapted gating and weighted acquisition, respectively, while relative CRLB of TG did not differ significantly between the two methods for any of the cardiac segments. CONCLUSIONS: Metabolite-cycled EPSI with motion-adapted gating and weighted acquisition allows detecting TG/W ratios in different regions of the in vivo human heart. Scan time is reduced by more than 2-fold to less than 10 min as compared to conventional acquisition, while keeping the quality of TG fitting constant.


Assuntos
Encéfalo , Imagem Ecoplanar , Encéfalo/metabolismo , Imagem Ecoplanar/métodos , Coração/diagnóstico por imagem , Humanos , Espectroscopia de Ressonância Magnética/métodos , Triglicerídeos
4.
Neuroimage Clin ; 35: 103053, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35617872

RESUMO

Prior studies indicate a pathogenic role of neuroinflammation in psychiatric disorders; however, there are no accepted methods that can reliably measure low-level neuroinflammation non-invasively in these individuals. Magnetic resonance spectroscopic imaging (MRSI) is a versatile, non-invasive neuroimaging technique that demonstrates sensitivity to brain inflammation. MRSI in conjunction with echo-planar spectroscopic imaging (EPSI) measures brain metabolites to derive whole-brain and regional brain temperatures, which may increase in neuroinflammation. The validity of MRSI/EPSI for measurement of low level neuroinflammation was tested using a safe experimental model of human brain inflammation - intramuscular administration of typhoid vaccine. Twenty healthy volunteers participated in a double-blind, placebo-controlled crossover study including MRSI/EPSI scans before and 3 h after vaccine/placebo administration. Body temperature and mood, assessed using the Profile of Mood States, were measured every hour up to four hours post-treatment administration. A mixed model analysis of variance was used to test for treatment effects. A significant proportion of brain regions (44/47) increased in temperature post-vaccine compared to post-placebo (p < 0.0001). For temperature change in the brain as a whole, there was no significant treatment effect. Significant associations were seen between mood scores assessed at 4 h and whole brain and regional temperatures post-treatment. Findings indicate that regional brain temperature may be a more sensitive measure of low-level neuroinflammation than whole-brain temperature. Future work where these measurement techniques are applied to populations with psychiatric disorders would be of clinical interest.


Assuntos
Encefalite , Vacinas Tíficas-Paratíficas , Encéfalo/patologia , Estudos Cross-Over , Encefalite/metabolismo , Encefalite/patologia , Humanos , Espectroscopia de Ressonância Magnética/métodos , Doenças Neuroinflamatórias , Temperatura , Vacinas Tíficas-Paratíficas/metabolismo
5.
Front Neurol ; 13: 789355, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370872

RESUMO

Proton magnetic resonance spectroscopy (1H-MRS) provides a non-invasive biochemical profile of brain tumors. The conventional 1H-MRS methods present a few challenges mainly related to limited spatial coverage and low spatial and spectral resolutions. In the recent past, the advent and development of more sophisticated metabolic imaging and spectroscopic sequences have revolutionized the field of neuro-oncologic metabolomics. In this review article, we will briefly describe the scientific premises of three-dimensional echoplanar spectroscopic imaging (3D-EPSI), two-dimensional correlation spectroscopy (2D-COSY), and chemical exchange saturation technique (CEST) MRI techniques. Several published studies have shown how these emerging techniques can significantly impact the management of patients with glioma by determining histologic grades, molecular profiles, planning treatment strategies, and assessing the therapeutic responses. The purpose of this review article is to summarize the potential clinical applications of these techniques in studying brain tumor metabolism.

6.
Neuroimage ; 238: 118250, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34116154

RESUMO

Mammalian neurons operate at length scales spanning six orders of magnitude; they project millimeters to centimeters across brain regions, are composed of micrometer-scale-diameter myelinated axons, and ultimately form nanometer scale synapses. Capturing these anatomical features across that breadth of scale has required imaging samples with multiple independent imaging modalities. Translating between the different modalities, however, requires imaging the same brain with each. Here, we imaged the same postmortem mouse brain over five orders of spatial resolution using MRI, whole brain micrometer-scale synchrotron x-ray tomography (µCT), and large volume automated serial electron microscopy. Using this pipeline, we can track individual myelinated axons previously relegated to axon bundles in diffusion tensor MRI or arbitrarily trace neurons and their processes brain-wide and identify individual synapses on them. This pipeline provides both an unprecedented look across a single brain's multi-scaled organization as well as a vehicle for studying the brain's multi-scale pathologies.


Assuntos
Encéfalo/diagnóstico por imagem , Imagem Multimodal/métodos , Animais , Conectoma , Imageamento por Ressonância Magnética , Camundongos , Microscopia Eletrônica , Tomografia Computadorizada por Raios X
7.
Magn Reson Med ; 86(3): 1505-1513, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33963782

RESUMO

PURPOSE: High spectral and spatial resolution (HiSS) MRI is a spectroscopic imaging method focusing on water and fat resonances that has good diagnostic utility in breast imaging. The purpose of this work was to assess the feasibility and potential utility of HiSS MRI for the diagnosis of prostate cancer. METHODS: HiSS MRI was acquired at 3 T from six patients who underwent prostatectomy, yielding a train of 127 phase-coherent gradient echo (GRE) images. In the temporal domain, changes in voxel intensity were analyzed and linear (R) and quadratic (R1, R2) quantifiers of signal logarithm decay were calculated. In the spectral domain, three signal scaling-independent parameters were calculated: water resonance peak width (PW), relative peak asymmetry (PRA), and relative peak distortion from ideal Lorentzian shape (PRD). Seven cancer and five normal tissue regions of interest were identified in correlation with pathology and compared. RESULTS: HiSS-derived quantifiers, except R2, showed high reproducibility (coefficients of variation, 5%-14%). Spectral domain quantifiers performed better than temporal domain quantifiers, with receiver operator characteristic areas under the curve ranging from of 0.83 to 0.91. For temporal domain parameters, the range was 0.74 to 0.91. Low absolute values of the coefficients of correlation between monoexponential decay markers (R, PW) and resonance shape markers (PRA, PRD) were observed (range, 0.23-0.38). CONCLUSION: The feasibility and potential diagnostic utility of HiSS MRI in the prostate at 3 T without an endorectal coil was confirmed. Weak correlation between well-performing markers indicates that complementary information could be leveraged to further improve diagnostic accuracy.


Assuntos
Imageamento por Ressonância Magnética , Neoplasias da Próstata , Humanos , Masculino , Projetos Piloto , Neoplasias da Próstata/diagnóstico por imagem , Reprodutibilidade dos Testes
8.
Magn Reson Med ; 84(1): 11-24, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31828853

RESUMO

PURPOSE: To introduce a robust methodology for fast 1 H MRSI of the brain at 3T with improved SNR and reduced phase-related artifacts. METHOD: An accelerated acquisition scheme using echo-planar spectroscopic imaging (EPSI) was combined with the overdiscrete reconstruction framework. This approach enables the interleaved acquisition of a water reference scan at each phase encoding step, maximizing its correlation with the water-suppressed measurement. Moreover, a generalized high-order phase correction was incorporated into the reconstruction pipeline. The spatial-temporal phase correction term was estimated from the reference scan and interpolated to high resolution using a polynomial basis. The method was implemented at 3T and validated with phantom and in vivo experiments. RESULTS: The methodology showed the elimination of spectral artifacts generated by phase disturbances and achieved mean SNR gains in vivo of 3.18 and 1.19 compared to standard reconstructions with corrections performed at nominal and high resolution, respectively. EPSI scans with interleaved water acquisition showed to be robust to system instabilities and potentially to patient motion. Moreover, phase distortions were effectively corrected in a single step, avoiding additional reference measurements and post-processing steps. CONCLUSION: The overdiscrete reconstruction framework with high-order phase correction allowed to effectively correct for distortions, related to B0 inhomogeneities, B0 drift, eddy currents, and system vibrations. Furthermore, the presented reconstruction method, combined with EPSI acquisitions, demonstrated improved measurement stability, substantial SNR enhancement, better spectral linewidth, and effective artifact removal.


Assuntos
Artefatos , Imagem Ecoplanar , Encéfalo/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Espectroscopia de Ressonância Magnética , Imagens de Fantasmas
9.
Clin Neuroradiol ; 30(2): 251-261, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30659340

RESUMO

PURPOSE: The aim of this study was to compare a recently established whole brain MR spectroscopic imaging (wbMRSI) technique using spin-echo planar spectroscopic imaging (EPSI) acquisition and the Metabolic Imaging and Data Analysis System (MIDAS) software package with single voxel spectroscopy (SVS) technique and LCModel analysis for determination of relative metabolite concentrations in aging human brain. METHODS: A total of 59 healthy subjects aged 20-70 years (n ≥ 5 per age decade for each gender) underwent a wbEPSI scan and 3 SVS scans of a 4 ml voxel volume located in the right basal ganglia, occipital grey matter and parietal white matter. Concentration ratios to total creatine (tCr) for N­acetylaspartate (NAA/tCr), total choline (tCho/tCr), glutamine (Gln/tCr), glutamate (Glu/tCr) and myoinositol (mI/tCr) were obtained both from EPSI and SVS acquisitions with either LCModel or MIDAS. In addition, an aqueous phantom containing known metabolite concentrations was also measured. RESULTS: Metabolite concentrations obtained with wbMRSI and SVS were comparable and consistent with those reported previously. Decreases of NAA/tCr and increases of line width with age were found with both techniques, while the results obtained from EPSI acquisition revealed generally narrower line widths and smaller Cramer-Rao lower bounds than those from SVS data. CONCLUSION: The wbMRSI could be used to estimate metabolites in vivo and in vitro with the same reliability as using SVS, with the main advantage being the ability to determine metabolite concentrations in multiple brain structure simultaneously in vivo. It is expected to be widely used in clinical diagnostics and neuroscience.


Assuntos
Envelhecimento , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Adulto , Fatores Etários , Idoso , Imagem Ecoplanar/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Adulto Jovem
10.
Magn Reson Med ; 82(3): 867-876, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30990227

RESUMO

PURPOSE: To design and implement a multislice MRSI method for fast spectroscopic imaging, using a modified version of echo planar spectroscopic imaging (EPSI) that offers higher spectral width and/or shorter scan time. METHODS: Echo planar spectroscopic imaging suffers from inconsistencies between readout lines acquired with gradients of opposite signs, which has typically been addressed by reconstructing the "positive" and "negative" data sets separately and averaging the two. Nevertheless, consistency between the readout lines of each phase encode can be achieved by interposing the EPSI readouts with alternating "blipped" phase-encode gradients. This method exchanges inconsistencies along the temporal dimension with inconsistencies along the phase-encode dimension, which are straightforward to correct, as is conventionally done in various EPI reconstruction schemes. Such consistent k-t-space EPSI doubles the spectral width in comparison to EPSI, or, in an alternative realization, yields the same spectral width as EPSI, but at half the acquisition time. In this work, multiband CAIPIRINHA (controlled aliasing in parallel imaging results in higher acceleration) slice selection was integrated with consistent k-t-space EPSI to further accelerate the measurement 2-fold. RESULTS: The feasibility of a consistent k-t-space EPSI was demonstrated in both phantoms and in vivo brain imaging at 3 T, and four pulse scheme variants were evaluated. It was demonstrated to be useful in optimizing the spectral width and scan acceleration, both of which are limiting factors in vivo. Dual-band implementation was shown to shorten the duration of the scan 4-fold. CONCLUSION: The consistent k-t-space EPSI can be used to accelerate MRSI or, alternatively, double its spectral width. Adding dual-band CAIPIRINHA further accelerates the acquisition by a factor of 2.


Assuntos
Imagem Ecoplanar/métodos , Processamento de Imagem Assistida por Computador/métodos , Encéfalo/diagnóstico por imagem , Humanos , Imagens de Fantasmas
11.
NMR Biomed ; 32(3): e4046, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30637822

RESUMO

Magnetic resonance spectroscopic imaging (MRSI) is an important technique for assessing the spatial variation of metabolites in vivo. The long scan times in MRSI limit clinical applicability due to patient discomfort, increased costs, motion artifacts, and limited protocol flexibility. Faster acquisition strategies can address these limitations and could potentially facilitate increased adoption of MRSI into routine clinical protocols with minimal addition to the current anatomical and functional acquisition protocols in terms of imaging time. Not surprisingly, a lot of effort has been devoted to the development of faster MRSI techniques that aim to capture the same underlying metabolic information (relative metabolite peak areas and spatial distribution) as obtained by conventional MRSI, in greatly reduced time. The gain in imaging time results, in some cases, in a loss of signal-to-noise ratio and/or in spatial and spectral blurring. This review examines the current techniques and advances in fast MRSI in two and three spatial dimensions and their applications. This review categorizes the acceleration techniques according to their strategy for acquisition of the k-space. Techniques such as fast/turbo-spin echo MRSI, echo-planar spectroscopic imaging, and non-Cartesian MRSI effectively cover the full k-space in a more efficient manner per TR . On the other hand, techniques such as parallel imaging and compressed sensing acquire fewer k-space points and employ advanced reconstruction algorithms to recreate the spatial-spectral information, which maintains statistical fidelity in test conditions (ie no statistically significant differences on voxel-wise comparisions) with the fully sampled data. The advantages and limitations of each state-of-the-art technique are reviewed in detail, concluding with a note on future directions and challenges in the field of fast spectroscopic imaging.


Assuntos
Imageamento por Ressonância Magnética , Algoritmos , Imagem Ecoplanar , Humanos , Razão Sinal-Ruído , Análise de Ondaletas
12.
NMR Biomed ; 32(2): e4042, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30556932

RESUMO

Accurate differentiation of true progression (TP) from pseudoprogression (PsP) in patients with glioblastomas (GBMs) is essential for planning adequate treatment and for estimating clinical outcome measures and future prognosis. The purpose of this study was to investigate the utility of three-dimensional echo planar spectroscopic imaging (3D-EPSI) in distinguishing TP from PsP in GBM patients. For this institutional review board approved and HIPAA compliant retrospective study, 27 patients with GBM demonstrating enhancing lesions within six months of completion of concurrent chemo-radiation therapy were included. Of these, 18 were subsequently classified as TP and 9 as PsP based on histological features or follow-up MRI studies. Parametric maps of choline/creatine (Cho/Cr) and choline/N-acetylaspartate (Cho/NAA) were computed and co-registered with post-contrast T1 -weighted and FLAIR images. All lesions were segmented into contrast enhancing (CER), immediate peritumoral (IPR), and distal peritumoral (DPR) regions. For each region, Cho/Cr and Cho/NAA ratios were normalized to corresponding metabolite ratios from contralateral normal parenchyma and compared between TP and PsP groups. Logistic regression analyses were performed to obtain the best model to distinguish TP from PsP. Significantly higher Cho/NAA was observed from CER (2.69 ± 1.00 versus 1.56 ± 0.51, p = 0.003), IPR (2.31 ± 0.92 versus 1.53 ± 0.56, p = 0.030), and DPR (1.80 ± 0.68 versus 1.19 ± 0.28, p = 0.035) regions in TP patients compared with those with PsP. Additionally, significantly elevated Cho/Cr (1.74 ± 0.44 versus 1.34 ± 0.26, p = 0.023) from CER was observed in TP compared with PsP. When these parameters were incorporated in multivariate regression analyses, a discriminatory model with a sensitivity of 94% and a specificity of 87% was observed in distinguishing TP from PsP. These results indicate the utility of 3D-EPSI in differentiating TP from PsP with high sensitivity and specificity.


Assuntos
Progressão da Doença , Imagem Ecoplanar , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Área Sob a Curva , Feminino , Humanos , Modelos Logísticos , Masculino , Metaboloma , Pessoa de Meia-Idade , Espectroscopia de Prótons por Ressonância Magnética , Curva ROC
13.
Tomography ; 4(3): 110-122, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30320211

RESUMO

Here, we developed a symmetric echo-planar spectroscopic imaging (EPSI) sequence for hyperpolarized 13C imaging on a clinical hybrid positron emission tomography/magnetic resonance imaging system. The pulse sequence uses parallel reconstruction pipelines to separately reconstruct data from odd-and-even gradient echoes to reduce artifacts from gradient imbalances. The ramp-sampled data in the spatiotemporal frequency space are regridded to compensate for the chemical-shift displacements. Unaliasing of nonoverlapping peaks outside of the sampled spectral width was performed to double the effective spectral width. The sequence was compared with conventional phase-encoded chemical-shift imaging (CSI) in phantoms, and it was evaluated in a canine cancer patient with ameloblastoma after injection of hyperpolarized [1-13C]pyruvate. The relative signal-to-noise ratio of EPSI with respect to CSI was 0.88, which is consistent with the decrease in sampling efficiency due to ramp sampling. Data regridding in the spatiotemporal frequency space significantly reduced spatial blurring compared with direct fast Fourier transform. EPSI captured the spatial distributions of both metabolites and their temporal dynamics in vivo with an in-plane spatial resolution of 5 × 9 mm2 and a temporal resolution of 3 seconds. Significantly higher spatial and temporal resolution for delineating anatomical structures in vivo was achieved for EPSI metabolic maps than for CSI maps, which suffered spatiotemporal blurring. The EPSI sequence showed promising results in terms of short acquisition time and sufficient spectral bandwidth of 500 Hz, allowing to adjust the trade-off between signal-to-noise ratio and encoding speed.

14.
NMR Biomed ; 31(11): e3950, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30052300

RESUMO

MR spectroscopic imaging (MRSI) at ultra-high field (≥7 T) benefits from improved sensitivity that allows the detection of low-concentration metabolites in the brain. However, optimized acquisition techniques are required to overcome inherent limitations of MRSI at ultra-high field. This work describes an optimized method for fast high-resolution 1 H-MRSI of the brain at 7 T. The proposed acquisition sequence combines precise volume localization using semi-localization by adiabatic selective refocusing, fast spatial encoding using high-bandwidth symmetric echo-planar spectroscopic imaging (EPSI), and robust water suppression with variable power and optimized relaxation delays. This showed improved robustness to B0 and B1+ inhomogeneities, eddy currents, nuisance signal contamination and system instabilities. Furthermore, a method for correction of phase inconsistencies in symmetric EPSI enabled high-bandwidth measurements at 7 T. The proposed correction effectively removed spectral ghosting using a single-shot water reference scan. This framework was tested in healthy volunteers at 7 T and spectral quality was compared with lower-spatial-resolution scans, measured at 3 T using the same methodology. A gain in the signal-to-noise ratio (SNR) per unit volume and unit time of 1.57 was achieved, keeping acquisition time short (5 min) and the specific absorption rate within the permitted limits. This SNR enhancement obtained at ultra-high field enabled high-resolution (0.25-0.375 mL) metabolite mapping of the brain within a clinically feasible scan time. The correlation of the reconstructed maps with anatomical structures was observed, showing the diagnostic potential of the technique.


Assuntos
Imagem Ecoplanar , Colina/metabolismo , Creatina/metabolismo , Humanos , Processamento de Imagem Assistida por Computador , Espectroscopia de Ressonância Magnética , Metaboloma , Razão Sinal-Ruído
15.
Proc IEEE Int Symp Biomed Imaging ; 2018: 679-682, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33633819

RESUMO

Echo-planar spectroscopic imaging (EPSI) sequence with spectrally interleaving is often used to rapidly collect metabolic MRI data. The main problem in using it on high field scanners is the presence of spurious peaks resulting from phase distortions between interleaves as well as the low signal to noise ratio. We introduce a novel structured low-rank framework for the simultaneous denoising and deinterleaving of spectrally interleaved EPSI data. The proposed algorithm exploits annihilation relations resulting from the linear predicability of exponential signals as well as due to uncorrected phase relations between interleaves. The algorithm is formulated as a structured nuclear norm minimization of a block Hankel matrix, derived from the interleaves. Experiments using hyperpolarized 13 C mouse kidney EPSI data demonstrate the ability of the algorithm to remove ghost peaks from EPSI data collected using bipolar readout gradients.

16.
Magn Reson Med ; 79(3): 1251-1259, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28639310

RESUMO

PURPOSE: Conventional 31 P chemical shift imaging is time-consuming and yields only limited spatial resolution. The purpose of this study was to demonstrate feasibility of 31 P echo-planar spectroscopic imaging (EPSI) in vivo at 7T. METHODS: A 3D 31 P EPSI sequence with trapezoidal-shaped gradient pulses was implemented on a 7T MR scanner. To increase spectral width with reduced demand on gradient performance, a multishot approach was chosen. Acquisition weighting and 31 P-{1 H} double resonance for nuclear Overhauser signal enhancement were applied to increase sensitivity. RESULTS: 3D 31 P-{1 H} EPSI data from model solution and from human calf muscle and brain were obtained from voxels with effective sizes of 4.1 to 16.2 cm3 in measurement times of approximately 10 min. Individual spectra showed well-resolved resonances of endogenous 31 P-metabolites without artifacts. Volumetric high-resolution 31 P-metabolite maps in vivo showed metabolic heterogeneity of different tissues. CONCLUSION: In vivo 31 P EPSI at 7T yields high-quality metabolic images. The proposed multishot EPSI technique reduces the measurement times for acquisition of volumetric high-resolution maps of 31 P-metabolites or intracellular pH in human studies. Magn Reson Med 79:1251-1259, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Imageamento por Ressonância Magnética/métodos , Isótopos de Fósforo/química , Adulto , Encéfalo/diagnóstico por imagem , Química Encefálica/fisiologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Músculo Esquelético/diagnóstico por imagem , Adulto Jovem
17.
J Magn Reson ; 282: 27-31, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28715700

RESUMO

Proton-proton scalar coupling plays an important role in molecular structure elucidation. Many methods have been proposed for revealing scalar coupling networks involving chosen protons. However, determining all JHH values within a fully coupled network remains as a tedious process. Here, we propose a method termed as simultaneous multi-slice selective J-resolved spectroscopy (SMS-SEJRES) for simultaneously measuring JHH values out of all coupling networks in a sample within one experiment. In this work, gradient-encoded selective refocusing, PSYCHE decoupling and echo planar spectroscopic imaging (EPSI) detection module are adopted, resulting in different selective J-edited spectra extracted from different spatial positions. The proposed pulse sequence can facilitate the analysis of molecular structures. Therefore, it will interest scientists who would like to efficiently address the structural analysis of molecules.

18.
J Magn Reson Imaging ; 46(5): 1341-1348, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28263425

RESUMO

PURPOSE: To develop and assess a full-coverage, sensitivity encoding (SENSE)-accelerated breast high spatial and spectral resolution (HiSS) magnetic resonance imaging (MRI) within clinically reasonable times as a potential nonenhanced MRI protocol for breast density measurement or breast cancer screening. MATERIALS AND METHODS: Sixteen women with biopsy-proven cancer or suspicious lesions, and 13 women who were healthy volunteers or were screened for breast cancer, received 3T breast MRI exams, including SENSE-accelerated HiSS MRI, which was implemented as a submillimeter spatial resolution echo-planar spectroscopic imaging (EPSI) sequence. In postprocessing, fat and water resonance peak height and integral images were generated from EPSI data. The postprocessing software was custom-designed, and new algorithms were developed to enable processing of whole-coverage axial HiSS datasets. Water peak height HiSS images were compared to pre- and postcontrast T1 -weighted images. Fat suppression was quantified as parenchymal-to-suppressed-fat signal ratio in HiSS water peak height and nonenhanced T1 -weighted images, and artifact levels were scored. RESULTS: Approximately a 4-fold decrease in acquisition speed, with a concurrent 2.5-fold decrease in voxel size, was achieved, with low artifact levels, and with spectral signal-to-noise ratio (SNR) of 45:1. Fat suppression was 1.9 times more effective (P < 0.001) in HiSS images than in T1 -weighted images (SPAIR), and HiSS images showed higher SNR in the axilla. HiSS MRI visualized 10 of 13 malignant lesions identified on dynamic contrast-enhanced (DCE)-MRI, and did not require skin removal in postprocessing to generate maximum intensity projection images. CONCLUSION: We demonstrate full-coverage, SENSE-accelerated breast HiSS MRI within clinically reasonable times, as a potential protocol for breast density measurement or breast cancer screening. LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2017;46:1341-1348.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Mama/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Adulto , Algoritmos , Biópsia , Densidade da Mama , Meios de Contraste , Imagem Ecoplanar , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Razão Sinal-Ruído , Software
19.
J Biomol NMR ; 66(2): 141-157, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27683189

RESUMO

Thanks to their special spatiotemporal encoding/decoding scheme, ultrafast (UF) NMR sequences can deliver arbitrary 2D spectra following a single excitation. Regardless of their nature, these sequences have in common their tracing of a path in the [Formula: see text]-[Formula: see text] plane, that will deliver the spectrum being sought after a 1D Fourier transformation versus [Formula: see text]. This need to simultaneously digitize two domains, tends to impose bandwidth limitations along all spectral axes. Along the [Formula: see text]/[Formula: see text] dimension this problem is exacerbated by the fact that odd and even time points are not equispaced, and by additional artifacts such as time shifts between time points sampled while under the action of positive and negative decoding gradients. As a result, odd and even [Formula: see text] points are typically Fourier transformed separately, halving the potential spectral width along this dimension. While this halving of the [Formula: see text] span can be overcome by an interlaced Fourier transform, this post-processing is seldom used because of its sensitivity to hardware inaccuracies requiring even finer corrections of the even/odd [Formula: see text] data points. These corrections have so far been done manually, but are challenging to implement when dealing with low signal-to-noise ratio signals like those associated with biomolecular NMR experiments. This study introduces an algorithm for an automatic correction of all even/odd ultrafast NMR inconsistencies, based on the acquisition of a reference scan on the solvent. This algorithm was verified experimentally using an [Formula: see text]-[Formula: see text] UF-HSQC variant on ubiquitin at 600 MHz. Features of this method as well as of the interlaced Fourier transformation in general, are discussed.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Ressonância Magnética Nuclear Biomolecular/métodos , Análise de Fourier , Espectroscopia de Ressonância Magnética/normas , Razão Sinal-Ruído
20.
CNS Oncol ; 5(3): 137-44, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27076281

RESUMO

Tumor-treating fields (TTFields) is a novel antimitotic treatment modality for patients with glioblastoma. To assess response to TTFields, a newly diagnosed patient with glioblastoma underwent diffusion, perfusion and 3D echo-planar spectroscopic imaging prior to initiation of TTFields plus temozolamide (baseline) and at 1- and 2-month follow-up periods. Increased mean diffusivity along with decreased fractional anisotropy and maximum relative cerebral blood volume were noted at 2 months relative to baseline suggesting inhibition of tumor growth and angiogenesis. Additionally, a reduction in choline/creatine was also noted during this period. These preliminary data indicate the potential of physiologic and metabolic MRI in assessing early treatment response to TTFields in combination with temozolamide.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Campos Eletromagnéticos , Glioblastoma , Imageamento por Ressonância Magnética , Avaliação de Resultados em Cuidados de Saúde/métodos , Anisotropia , Antineoplásicos Alquilantes/uso terapêutico , Volume Sanguíneo Cerebral/efeitos dos fármacos , Volume Sanguíneo Cerebral/fisiologia , Colina/metabolismo , Creatina/metabolismo , Dacarbazina/análogos & derivados , Dacarbazina/uso terapêutico , Terapia por Estimulação Elétrica , Feminino , Seguimentos , Glioblastoma/diagnóstico por imagem , Glioblastoma/tratamento farmacológico , Glioblastoma/radioterapia , Humanos , Processamento de Imagem Assistida por Computador , Espectroscopia de Ressonância Magnética , Pessoa de Meia-Idade , Temozolomida , Tálamo/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA