Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 363(Pt 1): 125146, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39424052

RESUMO

The implementation of advanced recycling techniques represents a key strategy for mitigating the mismanagement and the environmental impact of plastic waste. A limited array of plastic polymers can be efficiently recycled, while a notable portion of plastic waste remains unrecyclable. In Italy, this residual, heterogeneous fraction is referred to as Plasmix. Because of its complexity and non-homogeneous composition, Plasmix is primarily directed towards low-value applications. However, recent developments in laboratory-scale mechanical recycling have enabled the creation of new plastic materials from Plasmix. Prior to their application, these materials must undergo rigorous eco-safety evaluation. The present study aims to assess the potential toxicity of microplastics (MPs) from Plasmix-based materials on the freshwater crustacean Daphnia magna. Specifically, this study investigated sub-individual and individual effects induced by a 21-day exposure to different concentrations of MPs generated from the grinding of naïve and Additivated Plasmix-based materials (hereafter referred to as Px-MPs and APx-MPs, respectively). Sub-individual endpoints focused on changes in oxidative status, including the modulation of antioxidant and detoxifying enzyme activities, as well as oxidative damage, such as lipid peroxidation. Individual level endpoints included alterations in survival and reproduction. Microscopy analyses confirmed the ingestion of both Px-MPs and APx-MPs by D. magna individuals. An oxidative stress condition raised in organisms exposed to Px-MPs, whereas no effect was observed in individuals exposed to APx-MPs. Although survival was not affected, a significant impairment in reproductive output was detected at the end of exposure to all the concentrations of both MP types. These findings suggest that even low concentrations of Px-MPs and APx-MPs could negatively affect the health status of D. magna, underscoring the need for further research to complete the risk assessment of Plasmix-based materials prior to their use in consumer products.

2.
Environ Pollut ; 350: 123934, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38588971

RESUMO

In the framework of a safe-by-design approach, we previously assessed the eco-safety of nanostructured cellulose sponge (CNS) leachate on sea urchin reproduction. It impaired gamete quality, gamete fertilization competence, and embryo development possibly due to the leaching of chemical additives used during the CNS synthesis process. To extend this observation and identify the component(s) that contribute to CNS ecotoxicity, in the present study, we individually screened the cytotoxic effects on sea urchin Arbacia lixula and Paracentrotus lividus gametes and embryos of the three main constituents of CNS, namely cellulose nanofibers, citric acid, and branched polyethylenimine. The study aimed to minimize any potential safety risk of these components and to obtain an eco-safe CNS. Among the three CNS constituents, branched polyethylenimine resulted in the most toxic agent. Indeed, it affected the physiology and fertilization competence of male and female gametes as well as embryo development in both sea urchin species. These results are consistent with those previously reported for CNS leachate. Moreover, the characterisation of CNS leachate confirmed the presence of detectable branched polyethylenimine in the conditioned seawater even though in a very limited amount. Altogether, these data indicate that the presence of branched polyethylenimine is a cause-effect associated with a significant risk in CNS formulations due to its leaching upon contact with seawater. Nevertheless, the suggested safety protocol consisting of consecutive leaching treatments and conditioning of CNS in seawater can successfully ameliorate the CNS ecotoxicity while maintaining the efficacy of its sorbent properties supporting potential environmental applications.


Assuntos
Celulose , Ácido Cítrico , Nanofibras , Polietilenoimina , Reprodução , Ouriços-do-Mar , Poluentes Químicos da Água , Animais , Celulose/toxicidade , Celulose/química , Polietilenoimina/toxicidade , Polietilenoimina/química , Ácido Cítrico/química , Ácido Cítrico/toxicidade , Poluentes Químicos da Água/toxicidade , Reprodução/efeitos dos fármacos , Nanofibras/toxicidade , Nanofibras/química , Feminino , Ouriços-do-Mar/efeitos dos fármacos , Masculino , Paracentrotus/efeitos dos fármacos
3.
Sci Total Environ ; 912: 168644, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38000755

RESUMO

Harmful algal blooms resulting from eutrophication pose a severe threat to human health. Acetylacetone (AA) has emerged as a potential chemical for combatting cyanobacterial blooms, but its real-world application remains limited. In this study, we conducted a 42-day evaluation of AA's effectiveness in controlling blooms in river water, with a focus on the interplay between ecological community structure, organism functional traits, and water quality. At a concentration of 0.2 mM, AA effectively suppressed the growth of Cyanobacteria (88 %), Bacteroidia (49 %), and Alphaproteobacteria (52 %), while promoting the abundance of Gammaproteobacteria (5.0 times) and Actinobacteria (7.2 times) that are associated with the degradation of organic matter. Notably, after dosing of AA, the OD680 (0.07 ± 0.02) and turbidity (8.6 ± 2.1) remained at a satisfactory level. AA induced significant disruptions in two photosynthesis and two biosynthesis pathways (P < 0.05), while simultaneously enriching eight pathways of xenobiotics biodegradation and metabolism. This enrichment facilitated the reduction of organic pollutants and supported improved water quality. Importantly, AA treatment decreased the abundance of two macrolide-related antibiotic resistance genes (ARGs), ereA and vatE, while slightly increased the abundance of two aminoglycoside-related ARGs, aacA and strB. Overall, our findings establish AA as an efficient and durable algicide with favorable ecological safety. Moreover, this work contributes to the development of effective strategies for maintaining and restoring the health and resilience of aquatic ecosystems impacted by harmful algal blooms.


Assuntos
Cianobactérias , Ecossistema , Humanos , Pentanonas , Eutrofização , Proliferação Nociva de Algas , Lagos/química
4.
Environ Sci Pollut Res Int ; 30(54): 116175-116185, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37907823

RESUMO

Owing to the unique physicochemical properties and the low manufacturing costs, silver nanoparticles (AgNPs) have gained growing interest and their application has expanded considerably in industrial and agricultural sectors. The large-scale production of these nanoparticles inevitably entails their direct or indirect release into the environment, raising some concerns about their hazardous aspects. Callus culture represents an important tool in toxicological studies to evaluate the impact of nanomaterials on plants and their potential environmental risk. In this study, we investigated the chronic phytotoxic effects of different concentrations of novel bifunctionalized silver nanoparticles (AgNPs-Cit-L-Cys) and silver nitrate (AgNO3) on callus culture of Populus nigra L., a pioneer tree species in the riparian ecosystem. Our results showed that AgNPs-Cit-L-Cys were more toxic on poplar calli compared to AgNO3, especially at low concentration (2.5 mg/L), leading to a significant reduction in biomass production, accompanied by a decrease in protein content, a significant increase in both lipid peroxidation level, ascorbate peroxidase (APX), and catalase (CAT) enzymatic activities. In addition, these findings suggested that the harmful activity of AgNPs-Cit-L-Cys might be correlated with their physicochemical properties and not solely attributed to the released Ag+ ions and confirmed that AgNPs-Cit-L-Cys phytoxicity is associated to oxidative stress.


Assuntos
Nanopartículas Metálicas , Populus , Nitrato de Prata/toxicidade , Nitrato de Prata/química , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Ecossistema , Prata/toxicidade
5.
Waste Manag ; 157: 242-248, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36577275

RESUMO

This opinion paper offers a scientific view on the current debate of the place of biodegradable plastics as part of the solution to deal with the growing plastic pollution in the world's soil, aquatic, and marine compartments. Based on the current scientific literature, we focus on the current limits to prove plastic biodegradability and to assess the toxicity of commercially used biobased and biodegradable plastics in natural environments. We also discuss the relevance of biodegradable plastics for selected applications with respect to their use and end of life. In particular, we underlined that there is no universal biodegradability of plastics in any ecosystem, that considering the environment as a waste treatment system is not acceptable, and that the use of compostable plastics requires adaptation of existing organic waste collection and treatment channels.


Assuntos
Plásticos Biodegradáveis , Ecossistema , Plásticos , Poluição Ambiental , Solo
6.
Nanomaterials (Basel) ; 11(8)2021 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-34443734

RESUMO

Marine nano-ecotoxicology has emerged with the purpose to assess the environmental risks associated with engineered nanomaterials (ENMs) among contaminants of emerging concerns entering the marine environment. ENMs' massive production and integration in everyday life applications, associated with their peculiar physical chemical features, including high biological reactivity, have imposed a pressing need to shed light on risk for humans and the environment. Environmental safety assessment, known as ecosafety, has thus become mandatory with the perspective to develop a more holistic exposure scenario and understand biological effects. Here, we review the current knowledge on behavior and impact of ENMs which end up in the marine environment. A focus on titanium dioxide (n-TiO2) and silver nanoparticles (AgNPs), among metal-based ENMs massively used in commercial products, and polymeric NPs as polystyrene (PS), largely adopted as proxy for nanoplastics, is made. ENMs eco-interactions with chemical molecules including (bio)natural ones and anthropogenic pollutants, forming eco- and bio-coronas and link with their uptake and toxicity in marine organisms are discussed. An ecologically based design strategy (eco-design) is proposed to support the development of new ENMs, including those for environmental applications (e.g., nanoremediation), by balancing their effectiveness with no associated risk for marine organisms and humans.

7.
Biomolecules ; 11(3)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809769

RESUMO

In recent years, the application of engineered nanomaterials (ENMs) in environmental remediation gained increasing attention. Due to their large surface area and high reactivity, ENMs offer the potential for the efficient removal of pollutants from environmental matrices with better performances compared to conventional techniques. However, their fate and safety upon environmental application, which can be associated with their release into the environment, are largely unknown. It is essential to develop systems that can predict ENM interactions with biological systems, their overall environmental and human health impact. Until now, Life-Cycle Assessment (LCA) tools have been employed to investigate ENMs potential environmental impact, from raw material production, design and to their final disposal. However, LCA studies focused on the environmental impact of the production phase lacking information on their environmental impact deriving from in situ employment. A recently developed eco-design framework aimed to fill this knowledge gap by using ecotoxicological tools that allow the assessment of potential hazards posed by ENMs to natural ecosystems and wildlife. In the present review, we illustrate the development of the eco-design framework and review the application of ecotoxicology as a valuable strategy to develop ecosafe ENMs for environmental remediation. Furthermore, we critically describe the currently available ENMs for marine environment remediation and discuss their pros and cons in safe environmental applications together with the need to balance benefits and risks promoting an environmentally safe nanoremediation (ecosafe) for the future.


Assuntos
Ecossistema , Poluição Ambiental/análise , Nanoestruturas/análise , Animais , Recuperação e Remediação Ambiental , Humanos , Risco
8.
Polymers (Basel) ; 12(8)2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32717864

RESUMO

Silver nanoparticles (AgNPs) are widely used as engineered nanomaterials (ENMs) in many advanced nanotechnologies, due to their versatile, easy and cheap preparations combined with peculiar chemical-physical properties. Their increased production and integration in environmental applications including water treatment raise concerns for their impact on humans and the environment. An eco-design strategy that makes it possible to combine the best material performances with no risk for the natural ecosystems and living beings has been recently proposed. This review envisages potential hybrid solutions of AgNPs for water pollution monitoring and remediation to satisfy their successful, environmentally safe (ecosafe) application. Being extremely efficient in pollutants sensing and degradation, their ecosafe application can be achieved in combination with polymeric-based materials, especially with cellulose, by following an eco-design approach. In fact, (AgNPs)-cellulose hybrids have the double advantage of being easily produced using recycled material, with low costs and possible reuse, and of being ecosafe, if properly designed. An updated view of the use and prospects of these advanced hybrids AgNP-based materials is provided, which will surely speed their environmental application with consequent significant economic and environmental impact.

9.
Nanomaterials (Basel) ; 9(10)2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31547209

RESUMO

In this work, hydrophilic silver nanoparticles (AgNPs), bifunctionalized with citrate (Cit) and L-cysteine (L-cys), were synthesized. The typical local surface plasmon resonance (LSPR) at λ max = 400 nm together with Dynamic Light Scattering (DLS) measurements (<2RH> = 8 ± 1 nm) and TEM studies (Ø = 5 ± 2 nm) confirmed the system nanodimension and the stability in water. Molecular and electronic structures of AgNPs were investigated by FTIR, SR-XPS, and NEXAFS techniques. We tested the system as plasmonic sensor in water with 16 different metal ions, finding sensitivity to Hg2+ in the range 1-10 ppm. After this first screening, the molecular and electronic structure of the AgNPs-Hg2+ conjugated system was deeply investigated by SR-XPS. Moreover, in view of AgNPs application as sensors in real water systems, environmental safety assessment (ecosafety) was performed by using standardized ecotoxicity bioassay as algal growth inhibition tests (OECD 201, ISO 10253:2006), coupled with determination of Ag+ release from the nanoparticles in fresh and marine aqueous exposure media, by means of ICP-MS. These latest studies confirmed low toxicity and low Ag+ release. Therefore, these ecosafe AgNPs demonstrate a great potential in selective detection of environmental Hg2+, which may attract a great interest for several biological research fields.

10.
Materials (Basel) ; 11(7)2018 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-30018238

RESUMO

Nanoremediation, which is the use of nanoparticles and nanomaterials for environmental remediation, is widely explored and proposed for preservation of ecosystems that suffer from the increase in human population, pollution, and urbanization. We herein report a critical analysis of nanotechnologies for water remediation by assessing their sustainability in terms of efficient removal of pollutants, appropriate methods for monitoring their effectiveness, and protocols for the evaluation of any potential environmental risks. Our purpose is to furnish fruitful guidelines for sustainable water management, able to promote nanoremediation also at European level. In this context, we describe new nanostructured polysaccharide-based materials obtained from renewable resources as alternative efficient and ecosafe solutions for water nano-treatment. We also provide eco-design indications to improve the sustainability of the production of these materials, based on life-cycle assessment methodology.

11.
Ecotoxicol Environ Saf ; 154: 237-244, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29476973

RESUMO

The use of engineered nanomaterials (ENMs) for environmental remediation, known as nanoremediation, represents a challenging and innovative solution, ensuring a quick and efficient removal of pollutants from contaminated sites. Although the growing interest in nanotechnological solutions for pollution remediation, with significant economic investment worldwide, environmental and human risk assessment associated with the use of ENMs is still a matter of debate and nanoremediation is seen yet as an emerging technology. Innovative nanotechnologies applied to water and soil remediation suffer for a proper environmental impact scenario which is limiting the development of specific regulatory measures and the exploitation at European level. The present paper summarizes the findings from the workshop: "Ecofriendly Nanotechnology: state of the art, future perspectives and ecotoxicological evaluation of nanoremediation applied to contaminated sediments and soils" convened during the Biannual ECOtoxicology Meeting 2016 (BECOME) held in Livorno (Italy). Several topics have been discussed and, starting from current state of the art of nanoremediation, which represents a breakthrough in pollution control, the following recommendations have been proposed: (i) ecosafety has to be a priority feature of ENMs intended for nanoremediation; ii) predictive safety assessment of ENMs for environmental remediation is mandatory; (iii) greener, sustainable and innovative nano-structured materials should be further supported; (iii) those ENMs that meet the highest standards of environmental safety will support industrial competitiveness, innovation and sustainability. The workshop aims to favour environmental safety and industrial competitiveness by providing tools and modus operandi for the valorization of public and private investments.


Assuntos
Recuperação e Remediação Ambiental , Nanoestruturas , Nanotecnologia , Consenso , Ecotoxicologia , Poluição Ambiental , Poluentes do Solo , Poluição da Água
12.
Environ Sci Pollut Res Int ; 25(11): 10151-10163, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28721618

RESUMO

Mosquitoes, being a vector for some potentially dreadful diseases, pose a considerable threat to people all around the world. The control over the growth and propagation of mosquitoes comprises conventional pesticides, insect growth regulators and other microbial control agents. However, the usage of these common chemicals and conventional pesticides eventually has a negative impact on human health as well as the environment, which therefore becomes a major concern. The lacuna allows nanotechnology to come into action and exploit nanopesticides. Nanopesticides are majorly divided into two categories-synthetic and biological. Several nanoformulations serve as a promising nanopesticide viz. nanoparticles, e.g. biologically synthesised nanoparticles through plant extracts, nanoemulsions prepared using the essential oils like neem oil and citronella oil and nanoemulsion of conventional pesticides like pyrethroids. These green approaches of synthesising nanopesticides make use of non-toxic and biologically derived compounds and hence are eco-friendly with a better target specificity. Even though there are numerous evidences to show the effectiveness of these nanopesticides, very few efforts have been made to study the possible non-target effects on other organisms prevalent in the aquatic ecosystem. This study focuses on the role of these nanopesticides towards the vector control and its eco-safe property against the other non-target species.


Assuntos
Mosquitos Vetores , Nanopartículas/química , Óleos Voláteis/química , Praguicidas/toxicidade , Extratos Vegetais/química , Piretrinas/toxicidade , Animais , Humanos , Controle de Mosquitos , Mosquitos Vetores/efeitos dos fármacos , Praguicidas/química , Piretrinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA