Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.906
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Rev. biol. trop ; 72(1): e52860, ene.-dic. 2024. tab, graf
Artigo em Inglês | LILACS, SaludCR | ID: biblio-1559315

RESUMO

Abstract Introduction: Aquatic birds (AB) are usually associated with wetlands, which provide refuge, food, and/or nesting sites for resident and migratory species. Despite their ecological importance, there is little knowledge on AB in some tropical environments, such as those found on the Colima coast. Objective: To investigate the spatial and temporal composition of the AB community in Juluapan Lagoon, Colima, Central Mexican Pacific. Methods: Monthly counts were conducted between June 2017 and May 2018 during low-tide conditions to record habitat use by AB. Species richness and bird counts were obtained to compare sampling areas; mean richness and number of individuals were compared between seasons. Results: We detected 53 species and 5 750 individuals. The highest species richness and relative abundance values were obtained in winter at the lagoon area farthest from the connection with the marine system, where anthropogenic activity is lower. Diversity was greater in zones 2 and 3 in spring, summer, and fall. Muddy flats were the most used environment, and the most frequent activity was resting. Nesting activity was only recorded in the middle of the lagoon at the mangrove during spring. "Shorebirds" and "waders" were the most dominant groups in the bird community of the Juluapan lagoon. Conclusions: This coastal wetland is a site of great biological importance for aquatic birds; thus, conservation measures should be implemented, and there should be a continuous study of the effects of anthropogenic pressure.


Resumen Introducción: Las aves acuáticas (AA) son usualmente relacionadas a los humedales debido a que éstos funcionan como sitios de refugio, alimentación y anidación de diferentes especies residentes y migratorias. Sin embargo, el conocimiento sobre las aves acuáticas en algunos humedales es nulo. Objetivo: Investigar la composición espacio-temporal de la comunidad de AA en la laguna Juluapan, Colima, en el Pacífico Central Mexicano. Métodos: Entre junio de 2017 y mayo de 2018 se llevaron a cabo conteos mensuales en condiciones de marea baja para registrar el uso de hábitat de las AA. Se obtuvieron valores de riqueza de especies y número de individuos para realizar comparaciones entre zonas de muestreo, así como el promedio del número de especies y número de individuos para comparaciones entre temporadas. Resultados: Se registraron un total de 53 especies y 5 750 individuos. Los valores de riqueza de especies y densidad de individuos fueron más altos durante invierno, en la zona más alejada al ambiente marino, donde la actividad antropogénica es menor. La diversidad tuvo valores más altos en la zona 2 y 3, durante primavera, verano y otoño. El ambiente más explotado por las aves fueron las planicies lodosas; y el descanso fue la actividad más frecuente. Asimismo, la actividad de anidación sólo se registró en el manglar de la zona media durante primavera. Las "aves playeras" y "aves zancudas" fueron los grupos más predominantes en la comunidad de aves de la laguna Juluapan. Conclusiones: Este humedal costero es un sitio de gran importancia biológica para aves acuáticas, por lo que resulta necesario la implementación de medidas de conservación, así como el estudio de los efectos por la presión antropogénica.


Assuntos
Animais , Aves/classificação , Fauna Aquática , Estudos de Amostragem , México
2.
Agrofor Syst ; 98(6): 1659-1680, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39086741

RESUMO

Agroforestry systems promise a high multifunctionality providing cash and subsistence yields as well as other ecosystem services. Such land systems may be particularly promising for smallholders in tropical landscapes due to high labour intensity and productivity on limited land. Focusing on Madagascar, we here describe the history of agroforestry in the country and review the current literature on agroforestry outcomes as well as factors promoting and hindering agroforest establishment and maintenance. From this, we discuss the potential future of agroforestry in Madagascar. Historically, many crops farmed today in agroforestry systems were originally introduced as plantation crops, mostly in the nineteenth century. Since then, people co-opted these crops into mixed agroforestry systems, often focusing on clove, vanilla, coffee, or cocoa in combination with fruit trees or, for clove, with livestock. Other crops are also integrated, but shares are comparatively low. Overall, 27.4% of Malagasy exports are crops typically farmed in agroforestry systems, providing income for at least 500,000 farmers. Outcomes of agroforestry for biodiversity and ecosystem services are commonly researched, showing benefits over annual crops and monocultures. Social-economic outcomes, including yields, are more scarcely researched, but findings point towards financial benefits for smallholder farmers and a sense of community and collective memory. However, findings emphasize that research gaps remain in terms of geographic and crop coverage, also for ecological outcomes. Looking to the future, we highlight the need to overcome hurdles such as land tenure insecurity, financial barriers to implementation, and unstable value chains to scale agroforestry in Madagascar to the benefit of multifunctional land systems and human wellbeing. Supplementary Information: The online version contains supplementary material available at 10.1007/s10457-024-00975-y.

3.
Artigo em Inglês | MEDLINE | ID: mdl-39088173

RESUMO

Microplastic ingestion by marine organisms presents a challenge to both ecosystem functioning and human health. We characterized microplastic abundance, shape, size, and polymer types ingested by the West African mangrove oyster, Crassostrea tulipa (Lamarck, 1819) sampled from estuaries and lagoons from the Gambia, Sierra Leone, Ghana, Benin, and Nigeria using optical microscopy and Fourier transform infrared (FTIR) techniques. A total of 780 microplastics were isolated in the whole tissues of the 250 oysters (n = 50 oysters per country). The abundance and distribution of microplastics in the oysters followed the pattern: the Gambia > Ghana > Sierra Leone > Nigeria > Benin. The Tanbi wetlands in the Gambia recorded the highest average of 10.50 ± 6.69 per oyster while the Ouidah lagoon in Benin recorded the lowest average of 1.80 ± 1.90 per oyster. Overall, microplastic numbers varied significantly (p < 0.05) among the five countries. Microfibers, particularly those within 1001-5000 µm size, dominated the total microplastic count with a few fragments and films. No spherical microplastics were isolated in the oysters. In the Sierra Leone and Benin oysters, fragments and films were absent in the samples. Microplastic between the 1001 and 5000 µm size class dominated the counts, followed by 501-1000 µm, 101-500 µm, and 51-100 µm. Five polymer groups namely polyethylene, polyester, nylon, polypropylene, and polyamide were identified across the five countries, with polyethylene occurring in oysters from all five countries and polyester occurring in all but the oysters from Nigeria. This diversity of polymers suggests varied sources of microplastics ingested by the studied oysters. The absence of microspheres across the five supports findings from other studies that they are the least ingested and highly egested by the oysters.

4.
Glob Chang Biol ; 30(8): e17431, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39092769

RESUMO

Forests provide important ecosystem services (ESs), including climate change mitigation, local climate regulation, habitat for biodiversity, wood and non-wood products, energy, and recreation. Simultaneously, forests are increasingly affected by climate change and need to be adapted to future environmental conditions. Current legislation, including the European Union (EU) Biodiversity Strategy, EU Forest Strategy, and national laws, aims to protect forest landscapes, enhance ESs, adapt forests to climate change, and leverage forest products for climate change mitigation and the bioeconomy. However, reconciling all these competing demands poses a tremendous task for policymakers, forest managers, conservation agencies, and other stakeholders, especially given the uncertainty associated with future climate impacts. Here, we used process-based ecosystem modeling and robust multi-criteria optimization to develop forest management portfolios that provide multiple ESs across a wide range of climate scenarios. We included constraints to strictly protect 10% of Europe's land area and to provide stable harvest levels under every climate scenario. The optimization showed only limited options to improve ES provision within these constraints. Consequently, management portfolios suffered from low diversity, which contradicts the goal of multi-functionality and exposes regions to significant risk due to a lack of risk diversification. Additionally, certain regions, especially those in the north, would need to prioritize timber provision to compensate for reduced harvests elsewhere. This conflicts with EU LULUCF targets for increased forest carbon sinks in all member states and prevents an equal distribution of strictly protected areas, introducing a bias as to which forest ecosystems are more protected than others. Thus, coordinated strategies at the European level are imperative to address these challenges effectively. We suggest that the implementation of the EU Biodiversity Strategy, EU Forest Strategy, and targets for forest carbon sinks require complementary measures to alleviate the conflicting demands on forests.


Assuntos
Biodiversidade , Mudança Climática , Conservação dos Recursos Naturais , União Europeia , Agricultura Florestal , Florestas , Modelos Teóricos , Europa (Continente)
5.
Ambio ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39093372

RESUMO

Human-driven land use change can result in unequitable outcomes in the provision and appropriation of ecosystem services (ES). To better address equity-related effects of land use change in decision-making, analyses of land use and ES changes under different land use management alternatives should incorporate ecological and social information and take a disaggregated approach to ES analysis. Because such approaches are still scarce in the literature, we present a generalized social-ecological approach to support equitable land use decision-making (in terms of process and outcomes) and an example of its application to a case study in southwestern Ethiopia. We propose a six-step approach that combines scenario planning with equity-focused, disaggregated analyses of ES. Its application in our study area made equity-related effects of land use change explicit through the recognition of different beneficiary groups, value types, and spatial locations. We recommend the application of our approach in other contexts, especially in the Global South.

6.
Ecol Lett ; 27(8): e14484, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39090988

RESUMO

Resilient ecological systems are more likely to persist and function in the Anthropocene. Current methods for estimating an ecosystem's resilience rely on accurately parameterized ecosystem models, which is a significant empirical challenge. In this paper, we adapt tools from biochemical kinetics to identify ecological networks that exhibit 'structural resilience', a strong form of resilience that is solely a property of the network structure and is independent of model parameters. We undertake an exhaustive search for structural resilience across all three-species ecological networks, under a generalized Lotka-Volterra modelling framework. Out of 20,000 possible network structures, approximately 2% display structural resilience. The properties of these networks provide important insights into the mechanisms that could promote resilience in ecosystems, provide new theoretical avenues for qualitative modelling approaches and provide a foundation for identifying robust forms of ecological resilience in large, realistic ecological networks.


Assuntos
Ecossistema , Modelos Biológicos , Animais
7.
Sci Total Environ ; 950: 175276, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39102948

RESUMO

The pervasive presence of microplastics has emerged as a pressing global environmental concern, posing threats to food security and human health upon infiltrating agricultural soils. These microplastics primarily originate from agricultural activities, including fertilizer inputs, compost-based soil remediation, irrigation, and atmospheric deposition. Their remarkable durability and resistance to biodegradation contribute to their persistent presence in the environment. Microplastics within agricultural soils have prompted concerns regarding their potential impacts on agricultural practices. Functioning as significant pollutants and carriers of microcontaminants within agricultural ecosystems, microplastics and their accompanying contaminants represent ongoing challenges. Within these soil ecosystems, the fate and transportation of microplastics can detrimentally affect plant growth, microbial communities, and, subsequently, human health via the food chain. Specifically, microplastics interact with soil factors, impacting soil health and functionality. Their high adsorption capacity for hazardous microcontaminants exacerbates soil contamination, leading to increased adverse effects on organisms and human health. Due to their tiny size, microplastic debris is easily ingested by soil organisms and can transfer through the food chain, causing physiological and/or mechanical damage. Additionally, microplastics can affect plant growth and have the potential to accumulate and be transported within plants. Efforts to mitigate these impacts are crucial to safeguarding agricultural sustainability and environmental health. Future research should delve into the long-term impacts of environmental aging processes on microplastic debris within agricultural soil ecosystems from various sources, primarily focusing on food security and human beings.

8.
Toxicology ; 508: 153904, 2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39106909

RESUMO

Ecosystems and human health are being negatively impacted by the growing problem of electrical waste, especially in developing countries. E-waste poses a significant risk to ecological systems because it can release a variety of hazardous substances into the environment, containing polybrominated diphenyl ethers and heavy metals, brominated flame retardants, polychlorinated dibenzofurans and polycyclic aromatic hydrocarbons, and dioxins. This review article provides a critical assessment of the toxicological consequences of e-waste on ecosystems and human health and data analyses from scientific journals and grey literature on metals, BFRs, PBDEs, PCDFs, and PAHs in several environmental compartments of commercial significance in informal electronic trash recycling. The currently available techniques and tools employed for treating e-waste are sustainable techniques such as bioremediation, chemical leaching, biological leaching, and pyrometallurgy have been also discussed along with the necessity of implementing strong legislation to address the issue of unregulated exports of electronic trash in recycling practices. Despite the ongoing hurdles, implementing environmentally sustainable recycling methods have the potential to address the detrimental impacts of e-waste and foster positive economic development.

9.
Sci Total Environ ; 949: 175209, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39098411

RESUMO

Anthropogenic debris, particularly plastic pollution, has emerged as a significant environmental threat to biodiversity. Given that seabirds interact with artificial debris through ingestion, entanglement, and nest incorporation, it is particularly important to quantify the quantity, origins, and chemical composition of these debris items. In this work, it was evaluated for the first time the occurrence of anthropogenic debris in nests of yellow-legged gull (Larus michahellis atlantis) in biosphere reserves of the Canary Islands (Spain). A total of 48 abandoned nests were collected from five remote and hardly accessible sampling areas, revealing that 81.3 % contained anthropogenic waste, with plastic accounting for 34.7 % of the debris, followed by metal (33.6 %) and paper (19.6 %). On average, 32.8 ± 40.9 items were found per nest. Regarding the origin, food packagings (47.8 %), personal hygiene products (21.7 %), and textiles (15.8 %) were identified as the predominant sources. Furthermore, the polymer composition of the plastics was characterised by means of Fourier-transform infrared spectroscopy analysis, being polyester the most abundant (38.2 %), followed by polyethylene (25.6 %) and rayon (10.3 %). The incorporation of anthropogenic debris into nest construction may result from outdoor human activities carried out far from nesting areas.

10.
BMC Plant Biol ; 24(1): 752, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39103757

RESUMO

Present study assessed the growth of two plant species and ion uptake by them grown on different proportion of industrial solid waste and garden soil. The industrial waste having high concentration of chemicals were used with garden soil at different proportion i.e. 0% (T0), 5% (T1), 10% (T2), 15% (T3) and 20% (T4). Two species namely Conocarpus erectus (alien plant) and Dodonaea viscosa (indigenous) were used as test plants in pot study. Different parameters including growth, physiology, and anatomy of plants and concentration of cations (Na+, K+, Ca2+, and Mg2+) in the plant shoot and root were measured at different time duration (initial, 1st, 2nd, 3rd and 4th month). The key objective of the study was to use these plants to establish their plantations on the barren lands where industrial solid wastes were being disposed of. C. erectus showed better growth than D. viscosa, as well as more uptake of ions. A significant increase in plant growth was observed in fourth month in T1, where plant height reached 24.5% and 46% for C. erectus and D. viscosa, respectively. At harvest, in C. erectus, no significant difference in the fresh (65-78 g) and dry weight (24-30 g) of the shoot was observed across treatments compared to the control. In D. viscosa, at the time of harvest, the fresh and dry weights of the root and shoot showed a strong, significantly decreasing pattern across T1, T2, and T3, leading to the death of the plant at T3 and T4. Further, optimum ratio of waste soil to garden soil was found as 10:90 and 20:80 to establish the plantations of D. viscosa and C. erectus, respectively in areas where such solid waste from industries are disposed. Findings can be used for the restoration of such solid waste for the sustainable management of industrial areas and their associated ecosystems.


Assuntos
Resíduos Industriais , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Sapindaceae/crescimento & desenvolvimento , Sapindaceae/metabolismo , Sapindaceae/fisiologia , Íons/metabolismo , Biodegradação Ambiental
11.
Sci Total Environ ; : 175293, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39111414

RESUMO

Conserving biodiversity is crucial for maintaining essential ecosystem functions, as indicated by the positive relationships between biodiversity and ecosystem functioning. However, the impacts of declining biodiversity on ecosystem functions in response to mounting human pressures remain uncertain. This uncertainty arises from the complexity of trade-offs among human activities, climate change, river properties, and biodiversity, which have not been comprehensively addressed collectively. Here, we provide evidence that river biodiversity was significantly and positively associated with multifunctionality and contributed to key ecosystem functions such as microbially driven water purification, leaf litter decomposition and pathogen control. However, human pressure led to abrupt changes in microbial diversity and river multifunctionality relationships at a human pressure value of 0.5. In approximately 30 % (N = 58) of countries globally, the ratio of area above this threshold exceeded the global average (~11 %), especially in Europe. Results show that human pressure affected ecosystem functions through direct effects and interactive effects. We provide more direct evidence that the nonadditive effects triggered by prevailing human pressure impact the multifunctionality of rivers globally. Under high levels of human stress, the beneficial effects of biodiversity on nutrient cycling, carbon storage, gross primary productivity, leaf litter decomposition, and pathogen control tend to diminish. Our findings highlight that considering interactions between human pressure and local abiotic and biotic factors is key for understanding the fate of river ecosystems under climate change and increasing human pressure.

12.
Ecol Evol ; 14(8): e70109, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39130096

RESUMO

Branching stipe morphologies have evolved multiple times across the kelp (Laminariales) lineage, creating morphological forms that drive the complexity of kelp forest habitats. Although branching is likely a complicated developmental process, it has evolved repeatedly through kelp evolution and the processes facilitating the emergence of branched forms from unbranched ancestors remain unclear. Here I report on abnormally branched individuals (n = 9) from five kelp species found in British Columbia, Canada that had atypical bifurcations in their stipes, creating a single dichotomous branch. One of these species generally lacks branching entirely (Laminaria ephemera) while the other four exhibit some branching but typically lack this stipe bifurcation (Alaria marginata, Laminaria setchellii, Nereocystis luetkeana, Pterygophora californica). These unusually branched individuals exhibited replicated morphological subunits distal to the stipe bifurcation, including more blades, pneumatocysts, and sporophylls than is typical. This suggests that unbranched species possess an inherent developmental capacity for modularity with autonomy in the development of individual modules that may have helped to facilitate the widespread emergence of branched morphologies. Given the role of kelp forests in coastal environments, branching may influence habitat characteristics, potentially influencing community dynamics, and is thus a trait of particular evolutionary interest. These findings highlight the need for experiments that manipulate kelp development to better characterise the ontogenetic processes of these globally important taxa.

13.
Plant Environ Interact ; 5(4): e70002, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39131952

RESUMO

Arbuscular mycorrhizal fungi (AMF) are widespread obligate symbionts of plants. This dynamic symbiosis plays a large role in successful plant performance, given that AMF help to ameliorate plant responses to abiotic and biotic stressors. Although the importance of this symbiosis is clear, less is known about what may be driving this symbiosis, the plant's need for nutrients or the excess of plant photosynthate being transferred to the AMF, information critical to assess the functionality of this relationship. Characterizing the AMF community along a natural plant productivity gradient is a first step in understanding how this symbiosis may vary across the landscape. We surveyed the AMF community diversity at 12 sites along a plant productivity gradient driven by soil nitrogen availability. We found that AMF diversity in soil environmental DNA significantly increased along with the growth of the host plants Acer rubrum and A. saccharum., a widespread tree genus. These increases also coincided with a natural soil inorganic N availability gradient. We hypothesize photosynthate from the increased tree growth is being allocated to the belowground AMF community, leading to an increase in diversity. These findings contribute to understanding this complex symbiosis through the lens of AMF turnover and suggest that a more diverse AMF community is associated with increased host-plant performance.

14.
Sci Total Environ ; : 175389, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39134272

RESUMO

Current food production systems are causing severe environmental damage, including the emergence of dangerous pathogens that put humans and wildlife at risk. Several dangerous pathogens have emerged (e.g., Influenza Virus H1N1, Porcine reproductive and respiratory syndrome virus) associated with the dominant intensive food production systems. In this article, we use the case of the emergence and spillover of the Highly Pathogenic Avian Influenza virus H5N1 (hereafter, H5N1) to illustrate how intensive food production methods provide a breeding ground for dangerous pathogens. We also discuss how emerging pathogens, such as the H5N1, may affect not only ecosystem health but also human well-being and the economy. The current H5N1 panzootic (2020-2024) is producing a catastrophic impact: the millions of domestic birds affected by this virus have led to significant economic losses globally, and wild birds and mammals have suffered alarming mortalities, with the associated loss of their material and non-material ecosystem services. Transformative actions are required to reduce the emergence and impact of pathogens such as H5N1; we particularly need to reconsider the ways we are producing food. Governments should redirect funds to the promotion of alternative production systems that reduce the risk of new emerging pathogens and produce environmentally healthy food. These systems need to have a positive relationship with nature rather than being systems based on business as usual to the detriment of the environment. Sustainable food production systems may save many lives, economies, and biodiversity, together with the ecosystem services species provide.

15.
J Environ Manage ; 368: 122132, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39128343

RESUMO

The economic management of lignocellulosic biomass from semi-natural grasslands is now a challenge across Europe. The abandonment of mowing these grasslands leads to the gradual degradation of these ecosystems. This study investigates how chemical and biological factors affect the suitability of biomass from abandoned grasslands for biogas production. We sampled 30 mown and 30 abandoned grassland sites in the Sudetes Mountains (Poland and Czechia). The cover contribution of short herbs was found to be significantly higher in mown grasslands (p < 0.001), while that of tall herbs was more prevalent in abandoned grasslands (p < 0.01). The specific biogas yield (SBY, NL kg-1 volatile solids) is negatively affected by an increased percentage of herbs in the biomass of mown and abandoned grasslands. This is due to the inhibitory effect of herbs on biodegradation, the increase in lignin content and the decrease in cellulose. This study highlights the importance of individual plant species in assessing grassland biomass for area biogas yield (ABY, m3 ha-1) and provides new insights into a field that has not yet been extensively investigated. In mown grasslands, ABY was most positively correlated with grass species (Arrhenatherum elatius, Trisetum flavescens and Festuca pratensis). In abandoned grasslands, the ABY was most correlated with herbaceous species (Galium aparine, Urtica dioica and Chaerophyllum aromaticum) and grasses (A. elatius and Elymus repens). Mown grasslands had significantly higher species richness (p < 0.001) compared to abandoned grasslands, but the number of species sampled did not correlate with SBY and ABY. This study contributes to the development of a sustainable bio-economy by highlighting the need for efficient use of grassland biomass. This approach helps protect semi-natural ecosystems and facilitates sustainable management of renewable resources.

16.
J Fish Biol ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39132847

RESUMO

Weakfish (Cynoscion regalis) is not federally managed but feeds on species of management and ecological interest. We examined the trophic ecology of weakfish in Chesapeake Bay and the coastal and offshore waters of the eastern United States. For these areas, we determined the dominant prey of weakfish; identified how much diet variation was explained by the factors: season, size class, and year; and quantified prey biomass removed by weakfish from 2007 to 2019. In general, diet composition was mostly dominated by Engraulidae, Osteichthyes (bony fishes), and Mysidacea, and significantly varied by season and size class in Chesapeake Bay and coastal waters, although this was less dramatic in Chesapeake Bay. The total amount of variance explained by the three factors was 23.1% (Chesapeake Bay) and 14.7% (coastal waters), with year not being a significant factor in explaining weakfish diet variation for these areas. Weakfish total prey biomass removal occurred primarily in coastal waters in the fall and small size class (annual mean: approximately 41,038 t; maximum: approximately 63,793 t). Highly opportunistic feeders, weakfish cannibalism also played an essential part of their diet. These results have implications for fisheries and ecosystem management of weakfish when considering ecological interactions in regulatory approaches, such as recruitment and cannibalism, competition with federally managed fishes, and the natural mortality of their prey.

17.
J Environ Manage ; 367: 122006, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39094414

RESUMO

Blue carbon ecosystems (BCEs), such as mangroves, saltmarshes, and seagrasses, are important nature-based solutions for climate change mitigation and adaptation but are threatened by degradation. Effective BCE restoration requires strategic planning and site selection to optimise outcomes. We developed a Geographic Information System (GIS)-based multi-criteria decision support tool to identify suitable areas for BCE restoration along the 2512 km-long coastline of Victoria, Australia. High-resolution spatial data on BCE distribution, coastal geomorphology, hydrodynamics, and land tenure were integrated into a flexible spatial model that distinguishes between passive and active restoration suitability. The tool was applied to identify high-priority locations for mangrove, saltmarsh, and seagrass restoration across different scenarios. Results indicate substantial potential for BCE restoration in Victoria, with 33,253 ha of suitable area identified, mostly (>97%) on public land, which aligned with the selection criteria used in the tool. Restoration opportunities are concentrated in bays and estuaries where historical losses have been significant. The mapped outputs provide a decision-support framework for regional restoration planning, while the tool itself can be adapted to other geographies. By integrating multiple spatial criteria and distinguishing between passive and active restoration, our approach offers a new method for targeting BCE restoration and informing resource allocation. The identified restoration potential will also require collaboration with coastal managers and communities, and consideration of socio-economic factors. With further refinements, such as incorporating multi-criteria decision analysis techniques, GIS-based tools can help catalyse strategic blue carbon investments and contribute to climate change mitigation and adaptation goals at different spatial scales. This study highlights the value of spatial identification for BCE restoration and provides a transferable framework for other regions.


Assuntos
Carbono , Mudança Climática , Conservação dos Recursos Naturais , Ecossistema , Carbono/química , Técnicas de Apoio para a Decisão , Áreas Alagadas , Sistemas de Informação Geográfica , Vitória
18.
Sci Rep ; 14(1): 18456, 2024 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-39117749

RESUMO

Zooplankton are critical indicators of pressures impacting freshwater ecosystems. We analyzed the response of zooplankton communities across different sub-catchment types-headwaters, natural, urban, urban-agricultural, and agricultural-within the Lyna river-lake system in Northern Poland. Using taxonomic groups and functional traits (body size, feeding strategies), we applied Partial Least Squares Regression (PLS-R) to elucidate the relationships between environmental conditions, land use, and zooplankton metacommunity structure. Two-Way Cluster Analysis (TWCA) identified local subsets with characteristic patterns, while Indicator Species Analysis (ISA) determined area-specific taxa. The natural river zone exhibited significant habitat heterogeneity and feeding niches, whereas urban areas created functional homogenization of zooplankton, dominated by small, broad-diet microphages. Agricultural areas promoted diversity among large filter feeders (Crustacea), active suctors (Rotifera), and amoebae (Protozoa). However, intensified agricultural activities, substantially diminished the zooplankton population, biomass, taxonomic richness, and overall ecosystem functionality. The impact of land cover change is more pronounced at small-scale sub-catchments than at the catchment level as a whole. Therefore, assessing these impacts requires detailed spatial and temporal analysis at the sub-catchment level to identify the most affected areas. This study introduces a new sub-catchment-based perspective on ecosystem health assessment and underscores the zooplankton's role as robust indicators of ecological change.


Assuntos
Biodiversidade , Ecossistema , Água Doce , Zooplâncton , Animais , Polônia , Agricultura , Biomassa , Rios , Monitoramento Ambiental/métodos
19.
J Environ Manage ; 368: 122002, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39137635

RESUMO

In recent years, Climate-Smart Forestry (CSF) has emerged as an innovative approach to sustainable forest management, aiming to enhance forest resilience and to balance the provision of ecosystem services facing climate-related threats. This study introduces for the first time a new composite climate-smart index (ICSF) to assess CSF. The methodological approach comprises the following steps: (i) the selection and evaluation of CSF indicators; (ii) the weighting of these indicators; and (iii) the assessment of CSF for Mediterranean forests in two distinct periods, specifically 2005 and 2015. Eight indicators were selected from a systematic literature review. The Analytic Hierarchy Process was applied to translate the preferences obtained through an online questionnaire from a network of CSF-expert stakeholders into weights, at both indicators and criteria levels (i.e., adaptation, mitigation, and the social dimension). Results reveals that indicators "tree species composition", "forest damage", and "regeneration" are of crucial importance for CSF assessment. The comparison of the CSF value between the years 2005 and 2015, shows a slight increase in CSF ratings. The ICSF serves as a comprehensive index of CSF covering all aspects of that concept, i.e. adaptation, mitigation, and the social dimension (including production). The national-scale analysis provides an overview of the dynamics that involve forest management of Mediterranean forests against climate change. The study offers a practicable method for CSF evaluation with its allover set of indicators, representing a suitable tool for supporting forest managers to mitigate the negative impacts of climate change.

20.
New Phytol ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39137959

RESUMO

In the marine environment, seaweeds (i.e. marine macroalgae) provide a wide range of ecological services and economic benefits. Like land plants, seaweeds do not provide these services in isolation, rather they rely on their associated microbial communities, which together with the host form the seaweed holobiont. However, there is a poor understanding of the mechanisms shaping these complex seaweed-microbe interactions, and of the evolutionary processes underlying these interactions. Here, we identify the current research challenges and opportunities in the field of seaweed holobiont biology. We argue that identifying the key microbial partners, knowing how they are recruited, and understanding their specific function and their relevance across all seaweed life history stages are among the knowledge gaps that are particularly important to address, especially in the context of the environmental challenges threatening seaweeds. We further discuss future approaches to study seaweed holobionts, and how we can apply the holobiont concept to natural or engineered seaweed ecosystems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA