Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38999595

RESUMO

The mass ratio hypothesis posits that ecosystem functions are predominantly influenced by the dominant species. However, it remains unclear whether a species must be abundant to exert functional dominance. We conducted a removal experiment in an alpine grassland near Pudacuo National Park, Yunnan, China, to assess the community and ecosystem impacts of the removed species. We implemented four treatments as follows: exclusive removal of the most abundant species (Blysmus sinocompressus), exclusive removal of a sparse species with high individual biomass (Primula secundiflora), simultaneous removal of both species, and a control with no removals. Results showed that removing B. sinocompressus significantly reduced biomass production, supporting the mass ratio hypothesis, while removal of P. secundiflora had negligible effects. B. sinocompressus removal positively impacted community metrics like coverage, species evenness, and the Shannon diversity index, but not species richness, likely due to its spatial dominance. Conversely, P. secundiflora removal had minimal community impact, probably due to its limited influence on nearby species. This study underscores the proportionate roles of the dominant species in alpine grasslands, emphasizing that their community and ecosystem impacts are proportional to their abundance.

2.
Ambio ; 52(10): 1575-1591, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37286918

RESUMO

There is an urgent need to understand and address the risks associated with a warming climate for ecosystems and societies in the Arctic and sub-Arctic regions. There are major gaps in our understanding of the complex effects of climate change-including extreme events, cascading impacts across ecosystems, and the underlying socioecological dynamics and feedbacks-all of which need collaborative efforts to be resolved. Here, we present results where climate scientists, ecologists, social scientists, and practitioners were asked to identify the most urgent research needs for understanding climate change impacts and to identify the actions for reducing future risks in catchment areas in the Norwegian High North, a region that encompasses both Arctic and sub-Arctic climates in northern Norway. From a list of 77 questions, our panel of 19 scientists and practitioners identified 15 research needs that should be urgently addressed. We particularly urge researchers to investigate cross-ecosystem impacts and the socioecological feedbacks that could amplify or reduce risks for society.


Assuntos
Mudança Climática , Ecossistema , Noruega , Regiões Árticas
3.
Sci Total Environ ; 866: 161326, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36608828

RESUMO

Extreme sea levels (ESLs) affect coastal ecosystems worldwide. Protection and adaptation strategies rely on the characterization of the extreme's occurrence probability in the future. However, knowledge on the occurrence rate and duration of ESLs is also needed to properly characterize the associated future risk. In this paper, we focus on the Venice lagoon, where a system of storm surge barriers can disconnect the lagoon from the sea to mitigate ESLs. Using long-term (96 years) sea level records, we model occurrence rate and duration of ESLs while accounting explicitly for seasonality and mean sea level rise. While historically ESLs occurred in the winter season, we project a significant increase (up to 10-fold with a mean sea level increase of +100 cm) of the occurrence rate also in the summer season, when disconnections from the sea can have profound impacts on the lagoon's ecosystem. We also predict an increase in ESLs durations up to 200 h, leading to longer disconnections of the lagoon from the sea in the future. Therefore, several adaptation strategies will be needed to limit the adverse effects of storm surge barriers on the lagoon ecosystem.


Assuntos
Ecossistema , Elevação do Nível do Mar , Oceanos e Mares
4.
Glob Chang Biol ; 28(6): 1990-2005, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35023247

RESUMO

Given climate change threats to ecosystems, it is critical to understand the responses of species to warming. This is especially important in the case of apex predators since they exhibit relatively high extinction risk, and changes to their distribution could impact predator-prey interactions that can initiate trophic cascades. Here we used a combined analysis of animal tracking, remotely sensed environmental data, habitat modeling, and capture data to evaluate the effects of climate variability and change on the distributional range and migratory phenology of an ectothermic apex predator, the tiger shark (Galeocerdo cuvier). Tiger sharks satellite tracked in the western North Atlantic between 2010 and 2019 revealed significant annual variability in the geographic extent and timing of their migrations to northern latitudes from ocean warming. Specifically, tiger shark migrations have extended farther poleward and arrival times to northern latitudes have occurred earlier in the year during periods with anomalously high sea-surface temperatures. A complementary analysis of nearly 40 years of tiger shark captures in the region revealed decadal-scale changes in the distribution and timing of shark captures in parallel with long-term ocean warming. Specifically, areas of highest catch densities have progressively increased poleward and catches have occurred earlier in the year off the North American shelf. During periods of anomalously high sea-surface temperatures, movements of tracked sharks shifted beyond spatial management zones that had been affording them protection from commercial fishing and bycatch. Taken together, these study results have implications for fisheries management, human-wildlife conflict, and ecosystem functioning.


Assuntos
Ecossistema , Tubarões , Animais , Mudança Climática , Pesqueiros , Humanos , Oceanos e Mares , Tubarões/fisiologia
5.
Environ Res Lett ; 16(2)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33747119

RESUMO

Ecosystems require access to key nutrients like nitrogen (N) and sulfur (S) to sustain growth and healthy function. However, excessive deposition can also damage ecosystems through nutrient imbalances, leading to changes in productivity and shifts in ecosystem structure. While wildland fires are a known source of atmospheric N and S, little has been done to examine the implications of wildland fire deposition for vulnerable ecosystems. We combine wildland fire emission estimates, atmospheric chemistry modeling, and forest inventory data to (a) quantify the contribution of wildland fire emissions to N and S deposition across the U S, and (b) assess the subsequent impacts on tree growth and survival rates in areas where impacts are likely meaningful based on the relative contribution of fire to total deposition. We estimate that wildland fires contributed 0.2 kg N ha-1 yr-1 and 0.04 kg S ha-1 yr-1 on average across the U S during 2008-2012, with maxima up to 1.4 kg N ha-1 yr-1 and 0.6 kg S ha-1 yr-1 in the Northwest representing over ~30% of total deposition in some areas. Based on these fluxes, exceedances of S critical loads as a result of wildland fires are minimal, but exceedances for N may affect the survival and growth rates of 16 tree species across 4.2 million hectares, with the most concentrated impacts occurring in Oregon, northern California, and Idaho. Understanding the broader environmental impacts of wildland fires in the U S will inform future decision making related to both fire management and ecosystem services conservation.

6.
Mar Pollut Bull ; 159: 111450, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32892911

RESUMO

Marine noise pollution (MNP) can cause a multitude of impacts on many organisms, but information is often scattered and general outcomes difficult to assess. We have reviewed the literature on MNP impacts on Mediterranean fish and invertebrates. Both chronic and acute MNP produced by various human activities - e.g. maritime traffic, pile driving, air guns - were found to cause detectable effects on intra-specific communication, vital processes, physiology, behavioral patterns, health status and survival. These effects on individuals can extend to inducing population- and ecosystem-wide alterations, especially when MNP impacts functionally important species, such as keystone predators and habitat forming species. Curbing the threats of MNP in the Mediterranean Sea is a challenging task, but a variety of measures could be adopted to mitigate MNP impacts. Successful measures will require more accurate information on impacts and that effective management of MNP really becomes a priority in the policy makers' agenda.


Assuntos
Ecossistema , Ruído , Animais , Peixes , Humanos , Invertebrados , Mar Mediterrâneo
7.
Oecologia ; 190(1): 243-254, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31016381

RESUMO

We investigated the roles of vegetation structure, micro-topographic relief, and predator activity patterns (time of day) on the perception of predatory risk of arctic ground squirrels (Urocitellus parryii), an abundant pan-Arctic omnivore, in Arctic Circle tundra on the North Slope of Alaska, where tundra vegetation structure has been predicted to change in response to climate. We quantified foraging intensity by measuring the giving-up densities (GUDs) of the arctic ground squirrels in experimental foraging patches along a heath-graminoid-shrub moist tundra gradient. We hypothesized that foraging intensity of arctic ground squirrels would be greatest and GUDs lowest, where low-stature vegetation or raised micro-topography improves sightlines for predator detection. Furthermore, GUDs should vary with time of day and reflect 24-h cycles of varying predation risk. Foraging intensity varied temporally, being highest in the afternoon and lowest overnight. During the morning, foraging intensity was inversely correlated with the normalized difference vegetation index (NDVI), a proxy for vegetation productivity and cover. Foraging was additionally measured within landscapes of fear, confirming that vegetative and topographic obstructions of sightlines reduces foraging intensity and increases GUDs. We conclude that arctic ground squirrels may affect Arctic Circle vegetation of tundra ecosystems, but these effects will vary spatially and temporally.


Assuntos
Ecossistema , Tundra , Alaska , Animais , Regiões Árticas , Sciuridae
8.
J Great Lakes Res ; 44(4): 650-659, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30505066

RESUMO

It is well documented that the introduction of dreissenid bivalves in eutrophic lakes is usually associated with decreases in turbidity and total phosphorus concentrations in the water column, concomitant increases in water clarity, as well as other physical changes to habitat that may have cascading effects on other species in the invaded waterbody. In contrast, there is a paucity of data on the ecological ramifications of the elimination or decline of dreissenids due to pollution, bottom hypoxia, or other mechanisms. Using data collected by the U.S. Environmental Protection Agency Great Lakes National Program Office's Long-Term Biology and Water Quality Monitoring Programs, we analyzed the impacts of the hypoxia-induced declines in Dreissena densities in the central basin of Lake Erie on major water chemistry and physical parameters. Our analysis revealed that the decline in Dreissena density in the central basin was concomitant with a decrease in spring dissolved silica concentrations and an increase in total phosphorus and near bottom turbidity not seen in the western or eastern basins. In contrast, opposite patterns in water quality were observed in the eastern basin, which was characterized by a high and relatively stable Dreissena population. We are the first to report that dreissenid-related shifts in water quality of invaded waterbodies are reversible by documenting that the sharp decline of Dreissena in the central basin of Lake Erie was concomitant with a shift from clear to turbid water.

9.
Ecology ; 98(8): 2133-2144, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28518217

RESUMO

Invasive species frequently co-occur with other disturbances, which can impact the same ecosystem functions as the invader. Yet invasion studies rarely control for the presence of these other disturbances, although their overlapping effects may influence the direction and magnitude of impacts attributed to the invader alone. Here, we ask whether controlling for the presence of a co-occurring disturbance, as well as the time since disturbance, yields different values of an invader's ecosystem effects than when these factors remain unaddressed. We used a chronosequence of six forest stands at a single site: five logged stands that each contained paired invaded-uninvaded plots of the forest understory invasive grass Microstegium vimineum, as well as one unlogged and uninvaded control stand. By controlling for the presence of both logging and invasion, we untangled the effects of each through time. We found that the co-occurring disturbance of logging can dramatically alter the measured effects of M. vimineum by amplifying, dampening, negating, or entirely reversing the direction of the invader's impacts. During its period of peak impact, logging amplified the invader's positive effect on the size of the soil microbial biomass pool by 24%, reduced the invader's positive effect on soil water holding capacity by 5%, negated the invader's positive effect on the particulate organic matter carbon pool (from a 9% increase to no significant effect), and reversed the direction of the invader's impact on net nitrogen mineralization rate from a 51% increase to a 52% decrease. Furthermore, the influence of logging on the invader's impacts was not static, but dynamic through time. The results from our site therefore demonstrate that failure to account for the impacts of a co-occurring disturbance, as well as the time since disturbance, can result in flawed inference about the nature of an invader's effects. Future research should determine how widespread such flawed inference might be among other invasive species and across different environmental contexts. To help guide such research, we describe a general framework for disentangling the overlapping effects of invasions and co-occurring disturbances through time.


Assuntos
Ecossistema , Florestas , Espécies Introduzidas , Poaceae , Solo
10.
Mar Environ Res ; 126: 69-80, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28254623

RESUMO

Three species of macroalgae (Ecklonia radiata, Sargassum linearifolium, and Laurencia brongniartii) were subjected to future climate change conditions, tested directly for changes in their physiology and chemical ecology, and used in feeding assays with local herbivores to identify the indirect effects of climatic stressors on subsequent levels of herbivory. Each alga had distinct physical and chemical responses to the changes in environmental conditions. In high temperature conditions, S. linearifolium exhibited high levels of bleaching and low maximum quantum yield. For E. radiata, the alga became more palatable to herbivores and the C:N ratios were either higher or lower, dependent on the treatment. Laurencia brongniartii was effected in all manipulations when compared to controls, with increases in bleaching, blade density, and C:N ratios and decreases in growth, maximum quantum yield, blade toughness, total phenolics and consumption by mesograzers. The differential responses we observed in each species have important implications for benthic communities in projected climate change conditions and we suggest that future studies target multi-species assemblage responses.


Assuntos
Mudança Climática , Ecossistema , Monitoramento Ambiental , Alga Marinha/fisiologia , Austrália
11.
Ambio ; 46(Suppl 2): 328-338, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28215010

RESUMO

Increasing abundance of geese in North America and Europe constitutes a major conservation success, but has caused increasing conflicts with economic, health and safety interests, as well as ecosystem impacts. Potential conflict resolution through a single, 'one size fits all' policy is hindered by differences in species' ecology, behaviour, abundance and population status, and in contrasting political and socio-economic environments across the flyways. Effective goose management requires coordinated application of a suite of tools from the local level to strategic flyway management actions. The European Goose Management Platform, established under the Agreement on the Conservation of African-Eurasian Migratory Waterbirds, aims to harmonise and prioritise management, monitoring and conservation efforts, sharing best practice internationally by facilitating agreed policies, coordinating flyway efforts, and sharing and exchanging experiences and information. This depends crucially upon adequate government financing, the collection of necessary monitoring data (e.g., on distribution, abundance, hunting bags, demography, ecosystem and agricultural damage), the collation and effective use of such data and information, as well as the evaluation of outcomes of existing management measures.


Assuntos
Agricultura/métodos , Conservação dos Recursos Naturais/métodos , Gansos/fisiologia , Animais , Ecossistema , Europa (Continente)
12.
Bioscience ; 67(9): 853-859, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29599545

RESUMO

Empirical investigations of the impacts of anthropogenic stressors on marine organisms are typically performed under controlled laboratory conditions, onshore mesocosms, or via offshore experiments with realistic (but uncontrolled) environmental variation. These approaches have merits, but onshore setups are generally small sized and fail to recreate natural stressor fields, whereas offshore studies are often compromised by confounding factors. We suggest the use of flooded shipbuilding docks to allow studying realistic exposure to stressors and their impacts on the intra- and interspecific responses of animals. Shipbuilding docks permit the careful study of groups of known animals, including the evaluation of their behavioral interactions, while enabling full control of the stressor and many environmental conditions. We propose that this approach could be used for assessing the impacts of prominent anthropogenic stressors, including chemicals, ocean warming, and sound. Results from shipbuilding-dock studies could allow improved parameterization of predictive models relating to the environmental risks and population consequences of anthropogenic stressors.

13.
Sci Total Environ ; 537: 399-410, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26282774

RESUMO

Land cover change and stream channel loss are two related global environmental changes that are expanding and intensifying. Here, we examine how different types and transitions of land cover change impact stream channel loss across a large urbanizing watershed. We present historical land cover in the 666-km(2) Lake Thunderbird watershed in central Oklahoma (USA) over a 137 year period and coinciding stream channel length changes for the most recent 70 years of this period. Combining these two datasets allowed us to assess the interaction of land cover changes with stream channel loss. Over this period, the upper third of the watershed shifted from predominantly native grassland to an agricultural landscape, followed by widespread urbanization. The lower two-thirds of the watershed changed from a forested landscape to a mosaic of agriculture, urban, forest, and open water. Most channel length lost in the watershed over time was replaced by agriculture. Urban development gradually increased channel loss and disconnection from 1942 to 2011, particularly in the headwaters. Intensities of channel loss for both agriculture and urban increased over time. The two longest connected segments of channel loss came from the creation of two large impoundments, resulting in 46 km and 25 km of lost stream channel, respectively. Overall, the results from this study demonstrate that multiple and various land-use changes over long time periods can lead to rapid losses of large channel lengths as well as gradual (but increasing) losses of small channel lengths across all stream sizes. When these stream channel losses are taken into account, the environmental impacts of anthropogenic land-use change are compounded.

14.
Glob Chang Biol ; 21(2): 515-27, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25402975

RESUMO

Climate scientists have concluded that stratospheric ozone depletion has been a major driver of Southern Hemisphere climate processes since about 1980. The implications of these observed and modelled changes in climate are likely to be far more pervasive for both terrestrial and marine ecosystems than the increase in ultraviolet-B radiation due to ozone depletion; however, they have been largely overlooked in the biological literature. Here, we synthesize the current understanding of how ozone depletion has impacted Southern Hemisphere climate and highlight the relatively few documented impacts on terrestrial and marine ecosystems. Reviewing the climate literature, we present examples of how ozone depletion changes atmospheric and oceanic circulation, with an emphasis on how these alterations in the physical climate system affect Southern Hemisphere weather, especially over the summer season (December-February). These potentially include increased incidence of extreme events, resulting in costly floods, drought, wildfires and serious environmental damage. The ecosystem impacts documented so far include changes to growth rates of South American and New Zealand trees, decreased growth of Antarctic mosses and changing biodiversity in Antarctic lakes. The objective of this synthesis was to stimulate the ecological community to look beyond ultraviolet-B radiation when considering the impacts of ozone depletion. Such widespread changes in Southern Hemisphere climate are likely to have had as much or more impact on natural ecosystems and food production over the past few decades, than the increased ultraviolet radiation due to ozone depletion.


Assuntos
Agricultura , Mudança Climática , Ecossistema , Perda de Ozônio , África , Regiões Antárticas , Australásia , América do Sul
15.
Sci Total Environ ; 497-498: 491-498, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25151267

RESUMO

Acacia dealbata Link (Fabaceae) is one of the most invasive species in the Mediterranean ecosystems of Europe, Africa and America, where it has been proved to exert strong effects on soil and plant communities. In Italy A. dealbata has been largely used for ornamental and forestry purpose and is nowadays spreading in several areas. The present study was addressed to evaluate the impacts on soil chemical properties, soil microbial communities and understory plant communities and to assess the relationships among these compartments after the invasion of A. dealbata in a typical Mediterranean shrubland. Towards these aims, a soil and vegetation sampling was performed in Elba Island where A. dealbata is invading the sclerophyllous native vegetation. Three levels of invasion status were differentiated according to the gradient from invaded, to transitional and non-invaded vegetation. Quantitative and qualitative alterations of soil chemical properties and microbial communities (i.e. bacterial and fungal communities) and above-ground understory plant communities were found. In particular, the invaded soils had lower pH values than both the non-invaded and transitional ones. High differences were detected for both the total N and the inorganic fraction (NH4(+) and NO3(-)) contents, which showed the ranking: invaded>transitional>non-invaded soils. TOC and C/N ratio showed respectively higher and lower values in invaded than in non-invaded soils. Total plant covers, species richness and diversity in both the non-invaded and transitional subplots were higher than those in the invaded ones. The contribution of the nitrophilous species was significantly different among the three invasion statuses, with a strong increase going from native to transitional and invaded subplots. All these data confirm that A. dealbata modifies several compartments of the invaded ecosystems, from soil chemical properties to soil and plant microbial communities determining strong changes in the local ecosystem processes.


Assuntos
Acacia , Espécies Introduzidas , Microbiologia do Solo , África , Itália , Região do Mediterrâneo , Solo
16.
Proc Biol Sci ; 281(1789): 20140846, 2014 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-25009065

RESUMO

Climate-driven changes in biotic interactions can profoundly alter ecological communities, particularly when they impact foundation species. In marine systems, changes in herbivory and the consequent loss of dominant habitat forming species can result in dramatic community phase shifts, such as from coral to macroalgal dominance when tropical fish herbivory decreases, and from algal forests to 'barrens' when temperate urchin grazing increases. Here, we propose a novel phase-shift away from macroalgal dominance caused by tropical herbivores extending their range into temperate regions. We argue that this phase shift is facilitated by poleward-flowing boundary currents that are creating ocean warming hotspots around the globe, enabling the range expansion of tropical species and increasing their grazing rates in temperate areas. Overgrazing of temperate macroalgae by tropical herbivorous fishes has already occurred in Japan and the Mediterranean. Emerging evidence suggests similar phenomena are occurring in other temperate regions, with increasing occurrence of tropical fishes on temperate reefs.


Assuntos
Mudança Climática , Ecossistema , Herbivoria , Animais , Organismos Aquáticos , Biodiversidade , Peixes , Modelos Biológicos , Alga Marinha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA