Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 889
Filtrar
1.
J Cheminform ; 16(1): 112, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39375760

RESUMO

Focused screening on target-prioritized compound sets can be an efficient alternative to high throughput screening (HTS). For most biomolecular targets, compound prioritization models depend on prior screening data or a target structure. For phenotypic or multi-protein pathway targets, it may not be clear which public assay records provide relevant data. The question also arises as to whether data collected from disparate assays might be usefully consolidated. Here, we report on the development and application of a data mining pipeline to examine these issues. To illustrate, we focus on identifying inhibitors of oxidative phosphorylation, a druggable metabolic process in epithelial ovarian tumors. The pipeline compiled 8415 available OXPHOS-related bioassays in the PubChem data repository involving 312,093 unique compound records. Application of PubChem assay activity annotations, PAINS (Pan Assay Interference Compounds), and Lipinski-like bioavailability filters yields 1852 putative OXPHOS-active compounds that fall into 464 clusters. These chemotypes are diverse but have relatively high hydrophobicity and molecular weight but lower complexity and drug-likeness. These chemotypes show a high abundance of bicyclic ring systems and oxygen containing functional groups including ketones, allylic oxides (alpha/beta unsaturated carbonyls), hydroxyl groups, and ethers. In contrast, amide and primary amine functional groups have a notably lower than random prevalence. UMAP representation of the chemical space shows strong divergence in the regions occupied by OXPHOS-inactive and -active compounds. Of the six compounds selected for biological testing, 4 showed statistically significant inhibition of electron transport in bioenergetics assays. Two of these four compounds, lacidipine and esbiothrin, increased in intracellular oxygen radicals (a major hallmark of most OXPHOS inhibitors) and decreased the viability of two ovarian cancer cell lines, ID8 and OVCAR5. Finally, data from the pipeline were used to train random forest and support vector classifiers that effectively prioritized OXPHOS inhibitory compounds within a held-out test set (ROCAUC 0.962 and 0.927, respectively) and on another set containing 44 documented OXPHOS inhibitors outside of the training set (ROCAUC 0.900 and 0.823). This prototype pipeline is extensible and could be adapted for focus screening on other phenotypic targets for which sufficient public data are available.Scientific contributionHere, we describe and apply an assay data mining pipeline to compile, process, filter, and mine public bioassay data. We believe the procedure may be more broadly applied to guide compound selection in early-stage hit finding on novel multi-protein mechanistic or phenotypic targets. To demonstrate the utility of our approach, we apply a data mining strategy on a large set of public assay data to find drug-like molecules that inhibit oxidative phosphorylation (OXPHOS) as candidates for ovarian cancer therapies.

2.
Water Res ; 268(Pt A): 122585, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39378747

RESUMO

In electro-mediated biological system (EMBS), biological anode and cathode components were incorporated into an anaerobic bioreactor, providing a small amount of oxygen to the cathode as an electron acceptor. Oxygen diffusion also impacts the anode's anaerobic ecological environment. This study unraveled how oxygen influences the metabolism and electron transport chain during the biological oxidation of refractory organics. Under the influence of electromotive force, the straight-chain model pollutant N,N-dimethylformamide (DMF) showed rapid degradation and better ammonification, with maximum rates reaching 0.53 h-1 and 26.6 %, respectively. Elevated electromotive force promoted the enrichment of functional electroactive bacteria on the anode and enhanced the availability of electron storage sites, thereby facilitating electron transfer at the anode-biofilm interface. Conversely, the anodic micro-aerobic environment disrupted the anaerobic microbial community structure, and the competitive interactions among fermentative bacteria and electroactive bacteria inhibited DMF degradation. Metagenomic analysis confirmed that cathodic oxygen up-regulated the pyruvate metabolism and the tricarboxylic acid (TCA) cycle to generate NADH and synthesize ATP. The electromotive force induced by cathodic oxygen accelerated the electron transfer in respiratory chains of electroactive bacteria, driving the oxidation of NADH and enhancing the degradation of organics. This study improves our understanding of the regulatory mechanisms governing metabolic pathways under the influence of cathodic oxygen. It offers potential for developing more efficient EMBS in industrial wastewater pretreatment, ensuring that oxygen is prevented from diffusing to the anode during micro-aeration at the cathode.

3.
Cell ; 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39395414

RESUMO

In response to cold, mammals activate brown fat for respiratory-dependent thermogenesis reliant on the electron transport chain. Yet, the structural basis of respiratory complex adaptation upon cold exposure remains elusive. Herein, we combined thermoregulatory physiology and cryoelectron microscopy (cryo-EM) to study endogenous respiratory supercomplexes from mice exposed to different temperatures. A cold-induced conformation of CI:III2 (termed type 2) supercomplex was identified with a ∼25° rotation of CIII2 around its inter-dimer axis, shortening inter-complex Q exchange space, and exhibiting catalytic states that favor electron transfer. Large-scale supercomplex simulations in mitochondrial membranes reveal how lipid-protein arrangements stabilize type 2 complexes to enhance catalytic activity. Together, our cryo-EM studies, multiscale simulations, and biochemical analyses unveil the thermoregulatory mechanisms and dynamics of increased respiratory capacity in brown fat at the structural and energetic level.

4.
J Biol Inorg Chem ; 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39424709

RESUMO

Examples of how metalloproteins feature in electron transfer processes in biological systems are reviewed. Attention is focused on the electron transport chains of cellular respiration and photosynthesis, and on metalloproteins that directly couple electron transfer to a chemical reaction. Brief mention is also made of extracellular electron transport. While covering highlights of the recent and the current literature, this review is aimed primarily at introducing the senior undergraduate and the novice postgraduate student to this important aspect of bioinorganic chemistry.

5.
ACS Synth Biol ; 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39418093

RESUMO

trans-2-Decenoic acid is a pivotal α,ß-medium-chain unsaturated fatty acid that serves as an essential intermediary in the synthesis of 10-hydroxy-2-decenoic acid and various pharmaceutical compounds. Biosynthesis yield of trans-2-decenoic acid by decanoic acid has significantly improved in recent years; however, the oxidative stress of Escherichia coli at high fatty acid concentrations restricts the conversion rate. Here, we introduced a combination of rational design and metabolic rewiring of the E. coli electron transport chain (ETC) to improve trans-2-decenoic acid production. Overexpressing ubiquinone (UbQ) biosynthesis genes enhanced the expression of ETC complex III: UbQ to reduce reactive oxygen species (ROS) accumulation. Furthermore, applying rotenone to inhibit ETC complex I improved the electron transfer efficiency of complex II. The integration of Vitamin B5 and B2 into the fermentation process increased the activities of fatty acyl-CoA synthetase (MaMACS) and fatty acyl-CoA dehydrogenase (PpfadE). Finally, the constructed E. coli BL21(DE3)(ΔfadBJR/pCDFDuet-1-PpfadE-MaMACS/pRSFDuet-1-sumo-CtydiI-ubiI) strain exhibited a 51.50% decrease in ROS and a 93.33% enhancement in trans-2-decenoic acid yield, reaching 1.45 g/L after 66 h, which is the highest yield reported for flask fermentation. This study reports the feasibility of rewiring the ETC regulation and energy metabolism to improve α,ß-UCA biosynthesis efficiency.

6.
Water Res ; 267: 122557, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39366321

RESUMO

Reducing the C/N ratio requirements for heterotrophic nitrification-aerobic denitrification (HNAD) is crucial for its practical application; however, it remains underexplored. In this study, a highly efficient HNAD bacterium, Paracoccus denitrificans XW11, was isolated. The HNAD characteristics of XW11 were studied, and the redox mediator fulvic acid (FA) was used to reduce the C/N requirements. Whole-genome sequencing revealed multiple denitrification genes in XW11; however, nitrification genes were not identified, because heterotrophic nitrification-related gene sequences were not included in the database. However, the nitrogen removal related enzyme activity test revealed complete nitrification and denitrification pathways. Reverse transcription PCR showed that the membrane-bound nitrate reductase (NarG), rather than the periplasmic nitrate reductase, was responsible for aerobic denitrification. The conventional nitrite reductase (NirS) also does not mediate nitrite denitrification. When the C/N ratio was 10, the ammonia removal efficiency of the Control was 71.71 % and the addition of FA increased it to 86.12 %. Transcriptomic analysis indicated electron flow from the carbon source to FA without proton transmembrane transport, and the presence of FA constructs another electron transfer system. The redox potential of oxidized FA/reduced FA is 0.3679 V, avoiding competition for electrons from Complex III. Thus, ammonia monooxygenase obtains electrons more easily, thereby promoting nitrification. The enzyme activity test of the nitrification process confirmed this view. In addition, NarG expression increased, and the denitrification process was enhanced. Overall, FA improved HNAD efficiency by facilitating electron transfer to the nitrogen dissimilation process, offering a novel approach to reduce the C/N requirement of HNAD.

7.
Sci Total Environ ; 955: 177014, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39423892

RESUMO

Electrokinetic enhanced bioremediation (EK-Bio) is practical for trichloroethene (TCE) dechlorination because the cathode can produce a wide range of dissolved H2 (DH) concentrations of 1.3-0 mg/L from the electrode to the aquifer. In this study, TCE dechlorination was investigated under different DH concentrations. The mechanisms were discussed by analyzing the microbial community structure and abundance of organohalide-respiring bacteria (OHRB) using 16S rRNA, and the gene abundances of key enzymes in the TCE electron transport chain using metagenomic analysis. The results showed that the moderate DH concentration of 0.19-0.53 mg/L exhibited the most pronounced TCE dechlorination, even better than the higher DH concentrations, due to the optimal redox environment, the enrichments of OHRB, reductive dehalogenase (rdhA) genes and key enzyme genes in the electron generation and transport chain. More electrons were obtained from H2 metabolism by Dehalobacter by promoting the formation of [NiFe] hydrogenase (HupS/L/C) or from glycolysis by versatile OHRB by stimulating the formation of formate and enriching formate dehydrogenase (FDH) under moderate DH conditions. In addition, the enhanced amino acid metabolism improved the vitamin K cycle for electron transport and enriched the reductive dechlorinating enzyme (RDase) genes. This study identifies the optimal DH concentration that facilitates bioremediation efficiency, provides insights into microbial community shifts and key enzymatic pathways in EK-Bio remediation.

8.
ACS Infect Dis ; 10(10): 3699-3711, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39360674

RESUMO

The nonproton pumping type II NADH dehydrogenase in Mycobacterium tuberculosis is essential for meeting the energy needs in terms of ATP under normal aerobic and stressful hypoxic environmental states. Type II NADH dehydrogenase conduits electrons into the electron transport chain in Mycobacterium tuberculosis, which results in ATP synthesis. Therefore, the inhibition of NDH-2 ensures the abolishment of the entire ATP synthesis machinery. Also, type II NADH dehydrogenase is absent in the mammalian genome, thus making it a potential target for antituberculosis drug discovery. Herein, we have screened a commercially available library of drug-like molecules and have identified a hit having a benzimidazole core moiety (6, H37Rv mc26230; minimum inhibitory concentration (MIC) = 16 µg/mL and ATP IC50 = 0.23 µg/mL) interfering with the oxidative phosphorylation pathway. Extensive medicinal chemistry optimization resulted in analogue 8, with MIC = 4 µg/mL and ATP IC50 = 0.05 µg/mL against the H37Rv mc26230 strain of Mycobacterium tuberculosis. Compounds 6 and 8 were found to be active against mono- and multidrug-resistant mycobacterium strains and demonstrated a bactericidal response. The Peredox-mCherry experiment and identification of single-nucleotide polymorphisms in mutants of CBR-5992 (a known type II NADH dehydrogenase inhibitor) were used to confirm the molecules as inhibitors of the type II NADH dehydrogenase enzyme. The safety index >10 for the test active molecules revealed the safety of test molecules.


Assuntos
Antituberculosos , Benzimidazóis , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis , NADH Desidrogenase , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Benzimidazóis/farmacologia , Benzimidazóis/química , Antituberculosos/farmacologia , Antituberculosos/química , NADH Desidrogenase/antagonistas & inibidores , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Relação Estrutura-Atividade , Humanos
9.
ACS Infect Dis ; 2024 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-39481007

RESUMO

Plasmodium malaria parasites retain an essential mitochondrional electron transport chain (ETC) that is critical for growth within humans and mosquitoes and is a key antimalarial drug target. ETC function requires cytochromes c and c1, which are unusual among heme proteins due to their covalent binding to heme via conserved CXXCH sequence motifs. Heme attachment to these proteins in most eukaryotes requires the mitochondrial enzyme holocytochrome c synthase (HCCS) that binds heme and the apo cytochrome to facilitate the biogenesis of the mature cytochrome c or c1. Although humans encode a single bifunctional HCCS that attaches heme to both proteins, Plasmodium parasites are like yeast and encode two separate HCCS homologues thought to be specific for heme attachment to cyt c (HCCS) or cyt c1 (HCC1S). To test the function and specificity of Plasmodium falciparum HCCS and HCC1S, we used CRISPR/Cas9 to tag both genes for conditional expression. HCC1S knockdown selectively impaired cyt c1 biogenesis and caused lethal ETC dysfunction that was not reversed by the overexpression of HCCS. Knockdown of HCCS caused a more modest growth defect but strongly sensitized parasites to mitochondrial depolarization by proguanil, revealing key defects in ETC function. These results and prior heterologous studies in Escherichia coli of cyt c hemylation by P. falciparum HCCS and HCC1S strongly suggest that both homologues are essential for mitochondrial ETC function and have distinct specificities for the biogenesis of cyt c and c1, respectively, in parasites. This study lays a foundation to develop novel strategies to selectively block ETC function in malaria parasites.

10.
Int J Antimicrob Agents ; : 107370, 2024 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-39481662

RESUMO

The plasmid-mediated conjugative transfer of antibiotic resistance genes (ARGs) stands out as the primary driver behind the dissemination of antimicrobial resistance (AMR). Developing effective inhibitors that target conjugative transfer represents an efficient strategy for addressing the issue of AMR. Here, we studied the effect of acetylshikonin (ASK), a botanical derivative, on plasmid conjugation. The conjugative transfer of RP4-7 plasmid inter and intra species was notably reduced by ASK. The conjugation process of IncI2 and IncX4 plasmids harboring the mobile colistin resistance gene (mcr-1), IncX4 and IncX3 plasmids containing the carbapenem resistance gene (blaNDM-5), and IncFI and IncFII plasmids possessing the tetracycline resistance gene [tet(X4)] were also reduced by ASK. Importantly, the conjugative transfer frequency of mcr-1 positive IncI2 plasmid in mouse peritoneal conjugation model and gut conjugation model was reduced by ASK. The mechanism investigation showed that ASK disrupt the functionality of the bacterial cell membrane. Furthermore, the proton motive force (PMF) was dissipated. In addition, ASK blocked the electron transmission in bacteria's electron transport chain (ETC) through disturbing the quinone interaction, resulting in an insufficient energy supply for conjugation. Collectively, ASK is a potential conjugative transfer inhibitor, providing novel strategies to prevent the spread of AMR.

11.
Reprod Med Biol ; 23(1): e12602, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39478730

RESUMO

Purpose: Spermatogenesis requires a large amount of energy, which is primarily produced by the mitochondrial electron transfer chain. Mitochondrial dysfunction affects male infertility, suggesting a relationship between the electron transfer chain and male infertility. COXFA4L3 (C15ORF48) is an emerging subunit protein of cytochrome oxidase specifically expressed in germ cells during spermatogenesis, and it may be involved in male infertility. Therefore, to investigate whether COXFA4L3 could be a marker of mitochondrial dysfunction in the sperm, this study examined the protein expression and localization profile of COXFA4L3 in the sperm of male patients with infertility. Methods: Twenty-seven semen samples from a male infertility clinic at the Reproductive Center of Yokohama City University Medical Center were used to analyze sperm quality parameters and the expression and localization of energy production-related proteins. These data were compared with the outcomes of infertility treatment. Results: The expression levels of COXFA4L3 varied significantly between samples. Furthermore, COXFA4L3 was ectopically localized to the acrosome. Conclusions: Ectopic expression of COXFA4L3 and PNA-stained acrosomes may be useful parameters for fertility treatment selection. Assessing the acrosomal localization of COXFA4L3 will expedite pregnancy treatment planning.

12.
Int J Mol Sci ; 25(20)2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-39457098

RESUMO

Compromised mitochondrial electron transport chain (ETC) activities are associated with depression in humans and rodents. However, the effects of the enhancement of mitochondrial ETC activities on depression remain elusive. We recently reported that an extremely low-frequency electromagnetic field (ELF-EMF) of as low as 10 µT induced hormetic activation of mitochondrial ETC complexes in human/mouse cultured cells and mouse livers. Chronic social defeat stress (CSDS) for 10 consecutive days caused behavioral defects mimicking depression in mice, and using an ELF-EMF for two to six weeks ameliorated them. CSDS variably decreased the mitochondrial ETC proteins in the prefrontal cortex (PFC) in 10 days, which were increased by an ELF-EMF in six weeks. CSDS had no effect on the mitochondrial oxygen consumption rate in the PFC in 10 days, but using an ELF-EMF for six weeks enhanced it. CSDS inactivated SOD2 by enhancing its acetylation and increased lipid peroxidation in the PFC. In contrast, the ELF-EMF activated the Sirt3-FoxO3a-SOD2 pathway and suppressed lipid peroxidation. Furthermore, CSDS increased markers for mitophagy, which was suppressed by the ELF-EMF in six weeks. The ELF-EMF exerted beneficial hormetic effects on mitochondrial energy production, mitochondrial antioxidation, and mitochondrial dynamics in a mouse model of depression. We envisage that an ELF-EMF is a promising therapeutic option for depression.


Assuntos
Depressão , Campos Eletromagnéticos , Mitocôndrias , Superóxido Dismutase , Animais , Camundongos , Mitocôndrias/metabolismo , Depressão/metabolismo , Depressão/terapia , Superóxido Dismutase/metabolismo , Masculino , Sirtuína 3/metabolismo , Córtex Pré-Frontal/metabolismo , Peroxidação de Lipídeos , Proteína Forkhead Box O3/metabolismo , Comportamento Animal/efeitos da radiação , Camundongos Endogâmicos C57BL , Estresse Psicológico/metabolismo , Estresse Psicológico/terapia , Transporte de Elétrons , Mitofagia , Modelos Animais de Doenças
13.
Free Radic Biol Med ; 225: 286-295, 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39313011

RESUMO

Muscle injuries and the subsequent regeneration events compromise muscle homeostasis at morphological, functional and molecular levels. Among the molecular alterations, those derived from the mitochondrial function are especially relevant. We analysed the mitochondrial dynamics, the redox balance, the protein oxidation and the main protein repairing mechanisms after 9 days of injury in the rat gastrocnemius muscle. During the recovery rats were exposed to intermittent cold exposure (ICE), intermittent hypobaric hypoxia (IHH), and both simultaneous combined stimuli. Non-injured contralateral legs were also analysed to evaluate the specific effects of the three environmental exposures. Our results showed that ICE enhanced mitochondrial adaptation by improving the electron transport chain efficiency during muscle recovery, decreased the expression of regulatory subunit of proteasome and accumulated oxidized proteins. Exposure to IHH did not show mitochondrial compensation or increased protein turnover mechanisms; however, no accumulation of oxidized proteins was observed. Both ICE and IHH, when applied separately, elicited an increased expression of eNOS, which could have played an important role in accelerating muscle recovery. The combined effect of ICE and IHH led to a complex response that could potentially impede optimal mitochondrial function and enhanced the accumulation of protein oxidation. These findings underscore the nuanced role of environmental stressors in the muscle healing process and their implications for optimizing recovery strategies.

14.
Mitochondrion ; 79: 101951, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39218051

RESUMO

Breast cancer cells exhibit metabolic heterogeneity based on tumour aggressiveness. Glycolysis and mitochondrial respiration are two major metabolic pathways for ATP production. The oxygen flux, oxygen tension, proton leakage, protonmotive force, inner mitochondrial membrane potential, ECAR and electrochemical proton gradient maintain metabolic homeostasis, ATP production, ROS generation, heat dissipation, and carbon flow and are referred to as "sub-domains" of mitochondrial bioenergetics. Tumour aggressiveness is influenced by these mechanisms, especially when breast cancer cells undergo metastasis. These physiological parameters for healthy mitochondria are as crucial as energy demands for tumour growth and metastasis. The instant energy demands are already elucidated under Warburg effects, while these parameters may have dual functionality to maintain cellular bioenergetics and cellular health. The tumour cell might maintain these mitochondrial parameters for mitochondrial health or avoid apoptosis, while energy production could be a second priority. This review focuses explicitly on the crosstalk between metabolic domains and the utilisation of these parameters by breast cancer cells for their progression. Some major interventions are discussed based on mitochondrial bioenergetics that need further investigation. This review highlights the pathophysiological significance of mitochondrial bioenergetics and the regulation of its sub-domains by breast tumour cells for uncontrolled proliferation.

15.
Sci Rep ; 14(1): 22391, 2024 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333742

RESUMO

Age-related macular degeneration (AMD) is associated with the dysfunction and degeneration of retinal pigment epithelium (RPE) cells. Here, we examined how the formation and expansions of cell clusters are regulated by the differentiation of the RPE cells. In this study, ARPE-19 cells were cultivated in standard or differentiation media, i.e., without or with nicotinamide, to evaluate the spreading of cell clusters specified with differentiated cell phenotypes. Mitochondria membrane potential (MMP) and the distribution of the RPE cell clusters was also monitored with or without rotenone, a mitochondrial electron transport chain (ETC) complex I inhibitor. Cultured ARPE-19 cells generated scattered cell clusters composed mostly of smaller size cells expressing the differentiation markers mouse anti-cellular retinaldehyde-binding protein (CRALBP) and Bestrophin only in differentiation medium. After the increase of the number of clusters, the clusters appeared to paracellularly merge, resulting in expansion of the area occupied by the clusters. Of note, the cells within the clusters selectively had high MMP and were in accordance with the expression of RPE differentiation markers. Rotenone repressed the formation of the clusters and decreased intracellular MMP. The above results suggest that clustering of RPE cells with functional mitochondria plays a pivotal role in RPE cell differentiation process and the ETC complex I inhibition greatly influences the composition of RPE cells that are degenerated or differentiation disposed.


Assuntos
Diferenciação Celular , Potencial da Membrana Mitocondrial , Epitélio Pigmentado da Retina , Humanos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/citologia , Linhagem Celular , Mitocôndrias/metabolismo , Rotenona/farmacologia , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Animais , Camundongos , Agregação Celular/efeitos dos fármacos
16.
Cancers (Basel) ; 16(17)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39272889

RESUMO

BACKGROUND: mTORC1 activity is dependent on the presence of micronutrients, including Asparagine (Asn), to promote anabolic cell signaling in many cancers. We hypothesized that targeting Asn metabolism would inhibit tumor growth by reducing mTORC1 activity in well-differentiated (WD)/dedifferentiated (DD) liposarcoma (LPS). METHODS: Human tumor metabolomic analysis was utilized to compare abundance of Asn in WD vs. DD LPS. Gene set enrichment analysis (GSEA) compared relative expression among metabolic pathways upregulated in DD vs. WD LPS. Proliferation assays were performed for LPS cell lines and organoid models by using the combination treatment of electron transport chain (ETC) inhibitors with Asn-free media. 13C-Glucose-labeling metabolomics evaluated the effects of combination treatment on nucleotide synthesis. Murine xenograft models were used to assess the effects of ETC inhibition combined with PEGylated L-Asparaginase (PEG-Asnase) on tumor growth and mTORC1 signaling. RESULTS: Asn was enriched in DD LPS compared to WD LPS. GSEA indicated that mTORC1 signaling was upregulated in DD LPS. Within available LPS cell lines and organoid models, the combination of ETC inhibition with Asn-free media resulted in reduced cell proliferation. Combination treatment inhibited nucleotide synthesis and promoted cell cycle arrest. In vivo, the combination of ETC inhibition with PEG-Asnase restricted tumor growth. CONCLUSIONS: Asn enrichment and mTORC1 upregulation are important factors contributing to WD/DD LPS tumor progression. Effective targeting strategies require limiting access to extracellular Asn and inhibition of de novo synthesis mechanisms. The combination of PEG-Asnase with ETC inhibition is an effective therapy to restrict tumor growth in WD/DD LPS.

17.
Cell Rep ; 43(10): 114775, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39305483

RESUMO

Targeting the distinct metabolic needs of tumor cells has recently emerged as a promising strategy for cancer therapy. The heterogeneous, context-dependent nature of cancer cell metabolism, however, poses challenges to identifying effective therapeutic interventions. Here, we utilize various unsupervised and supervised multivariate modeling approaches to systematically pinpoint recurrent metabolic states within hundreds of cancer cell lines, elucidate their association with tumor lineage and growth environments, and uncover vulnerabilities linked to their metabolic states across diverse genetic and tissue contexts. We validate key findings via analysis of data from patient-derived tumors and pharmacological screens and by performing genetic and pharmacological experiments. Our analysis uncovers synthetically lethal associations between the tumor metabolic state (e.g., oxidative phosphorylation), driver mutations (e.g., loss of tumor suppressor PTEN), and actionable biological targets (e.g., mitochondrial electron transport chain). Investigating the mechanisms underlying these relationships can inform the development of more precise and context-specific, metabolism-targeted cancer therapies.


Assuntos
Neoplasias , Humanos , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patologia , Linhagem Celular Tumoral , Análise Multivariada , Fosforilação Oxidativa , Mutações Sintéticas Letais , Mitocôndrias/metabolismo , Animais
18.
bioRxiv ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39185180

RESUMO

Background: The outer mitochondrial Rho GTPase 1, MIRO1, mediates mitochondrial motility within cells, but implications for vascular smooth muscle cell (VSMC) physiology and its roles invascular diseases, such as neointima formation following vascular injury are widely unknown. Methods: An in vivo model of selective Miro1 deletion in VSMCs was generated, and the animals were subjected to carotid artery ligation. The molecular mechanisms relevant to VSMC proliferation were then explored in explanted VSMCs by imaging mitochondrial positioning and cristae structure and assessing the effects on ATP production, metabolic function and interactions with components of the electron transport chain (ETC). Results: MIRO1 was robustly expressed in VSMCs within human atherosclerotic plaques and promoted VSMC proliferation and neointima formation in mice by blocking cell-cycle progression at G1/S, mitochondrial positioning, and PDGF-induced ATP production and respiration; overexpression of a MIRO1 mutant lacking the EF hands that are required for mitochondrial mobility did not fully rescue these effects. At the ultrastructural level, Miro1 deletion distorted the mitochondrial cristae and reduced the formation of super complexes and the activity of ETC complex I. Conclusions: Mitochondrial motility is essential for VSMC proliferation and relies on MIRO1. The EF-hands of MIRO1 regulate the intracellular positioning of mitochondria. Additionally, the absence of MIRO1 leads to distorted mitochondrial cristae and reduced ATP generation. Our findings demonstrate that motility is linked to mitochondrial ATP production. We elucidated two unrecognized mechanisms through which MIRO1 influences cell proliferation by modulating mitochondria: first, by managing mitochondrial placement via Ca2+-dependent EF hands, and second, by affecting cristae structure and ATP synthesis.

19.
J Biol Chem ; 300(9): 107708, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39178951

RESUMO

Hydrogen sulfide (H2S) has traditionally been considered an environmental toxin for animal lineages; yet, it plays a signaling role in various processes at low concentrations. Mechanisms controlling H2S in animals, especially in sulfide-rich environments, are not fully understood. The main detoxification pathway involves the conversion of H2S into less harmful forms, through a mitochondrial oxidation pathway. The first step of this pathway oxidizes sulfide and reduces ubiquinone (UQ) through sulfide-quinone oxidoreductase (SQRD/SQOR). Because H2S inhibits cytochrome oxidase and hence UQ regeneration, this pathway becomes compromised at high H2S concentrations. The free-living nematode Caenorhabditis elegans feeds on bacteria and can face high sulfide concentrations in its natural environment. This organism has an alternative ETC that uses rhodoquinone (RQ) as the lipidic electron transporter and fumarate as the final electron acceptor. In this study, we demonstrate that RQ is essential for survival in sulfide. RQ-less animals (kynu-1 and coq-2e KO) cannot survive high H2S concentrations, while UQ-less animals (clk-1 and coq-2a KO) exhibit recovery, even when provided with a UQ-deficient diet. Our findings highlight that sqrd-1 uses both benzoquinones and that RQ-dependent ETC confers a key advantage (RQ regeneration) over UQ in sulfide-rich conditions. C. elegans also faces cyanide, another cytochrome oxidase inhibitor, whose detoxification leads to H2S production, via cysl-2. Our study reveals that RQ delays killing by the HCN-producing bacteria Pseudomonas aeruginosa PAO1. These results underscore the fundamental role that RQ-dependent ETC serves as a biochemical adaptation to H2S environments, and to pathogenic bacteria producing cyanide and H2S toxins.


Assuntos
Caenorhabditis elegans , Sulfeto de Hidrogênio , Ubiquinona , Animais , Caenorhabditis elegans/metabolismo , Sulfeto de Hidrogênio/metabolismo , Ubiquinona/metabolismo , Ubiquinona/análogos & derivados , Transporte de Elétrons/efeitos dos fármacos , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Quinona Redutases/metabolismo , Quinona Redutases/genética , Mitocôndrias/metabolismo
20.
Int J Mol Sci ; 25(15)2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39125806

RESUMO

Cytochrome c (CytC), a one-electron carrier, transfers electrons from complex bc1 to cytochrome c oxidase (CcO) in the electron-transport chain. Electrostatic interaction with the partners, complex bc1 and CcO, is ensured by a lysine cluster near the heme forming the Universal Binding Site (UBS). We constructed three mutant variants of mitochondrial CytC with one (2Mut), four (5Mut), and five (8Mut) Lys->Glu substitutions in the UBS and some compensating Glu->Lys substitutions at the periphery of the UBS for charge compensation. All mutants showed a 4-6 times increased peroxidase activity and accelerated binding of cyanide to the ferric heme of CytC. In contrast, decomposition of the cyanide complex with ferrous CytC, as monitored by magnetic circular dichroism spectroscopy, was slower in mutants compared to WT. Molecular dynamic simulations revealed the increase in the fluctuations of Cα atoms of individual residues of mutant CytC compared to WT, especially in the Ω-loop (70-85), which can cause destabilization of the Fe…S(Met80) coordination link, facilitation of the binding of exogenous ligands cyanide and peroxide, and an increase in peroxidase activity. It was found that only one substitution K72E is enough to induce all these changes, indicating the significance of K72 and the Ω-loop (70-85) for the structure and physiology of mitochondrial CytC. In this work, we also propose using a ferro-ferricyanide buffer as a substrate to monitor the peroxidase activity of CytC. This new approach allows us to determine the rate of peroxidase activity at moderate (200 µM) concentrations of H2O2 and avoid complications of radical formation during the reaction.


Assuntos
Citocromos c , Simulação de Dinâmica Molecular , Sítios de Ligação , Ligantes , Citocromos c/metabolismo , Citocromos c/química , Citocromos c/genética , Peroxidase/metabolismo , Peroxidase/química , Peroxidase/genética , Substituição de Aminoácidos , Ligação Proteica , Cianetos/metabolismo , Cianetos/química , Animais , Heme/metabolismo , Heme/química , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA