Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.101
Filtrar
1.
Talanta ; 281: 126824, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39250868

RESUMO

In native mass spectrometry (MS) salts are indispensable for preserving the native structures of biomolecules, but detrimental to mass sensitivity, resolution, and accuracy. Such a conflict makes desalting in native MS more challenging, distinctive, and sample-dependent than in peptide-centric MS. This review first briefly introduces the charged residue mechanism whereby native-like gaseous protein ions are released from electrospray droplets, revealing a higher degree of salt adduction than denatured proteins. Subsequently, this review summarizes and explores the existing strategies, underlying mechanisms and future perspectives of desalting in native MS. These strategies mainly focus on buffer exchange into volatile salts (offline and online approaches), addition of solution additives (e.g., anion, supercharging reagent, solution phase chelator and amino acid), use of submicron electrospray emitters (down to 60 nm), and other potential approaches (e.g., induced and electrophoretic nanoelectrospray ionization). The strategies of online buffer exchange and using nanoscale electrospray emitters are highlighted. This review would not only be a valuable addition to the field of sample preparation in MS, but would also serve as a beginner's guide to desalting in native MS.


Assuntos
Espectrometria de Massas , Espectrometria de Massas/métodos , Proteínas/química , Proteínas/análise , Humanos , Sais/química , Espectrometria de Massas por Ionização por Electrospray/métodos
2.
J Hazard Mater ; 480: 136220, 2024 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-39437467

RESUMO

The release of algae-derived dissolved organic matter (ADOM) significantly increased in serious eutrophication waters, posing great threats to drinking water safety. Thus, the molecular composition decipherment is urgently in need. However, due to unsatisfactory pretreatment and ionization effects, the application of Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) on ADOM was limited. Therefore, the effects of pretreatment methods (cartridge type and loading) during solid-phase extraction (SPE) and electrospray ionization (ESI) modes with FT-ICR-MS on the molecular composition of ADOM were evaluated. The results showed compared with silica-based octadecyl (C18) cartridge, styrene-divinylbenzene polymer (PPL) cartridge exhibited higher recovery efficiency and retained more saturated and oxygenated compounds, such as carbohydrate-like and tannin-like. Furthermore, the recovery efficiency decreased with increasing loading, and hydrophilic and high-oxygenated carbohydrate-like and tannin-like were continuously replaced by hydrophobic and low-oxygenated aliphatic and aromatic compounds. Moreover, compared to negative ESI mode, the addition of positive ESI mode increased the molecular chemodiversity, especially more lipid-like and protein-like compounds. Thus, we proposed < 1:500 DOC/PPL mass ratio during SPE and dual ESI modes coupled with FT-ICR-MS could identify ADOM molecules more comprehensively. This work contributes to more comprehensive understanding of the molecular composition of ADOM and provides more references for pretreatment and characterization strategies of severely eutrophic waters.

3.
Artigo em Inglês | MEDLINE | ID: mdl-39417657

RESUMO

Native mass spectrometry (nMS) provides insights into the structures and dynamics of biomacromolecules in their native-like states by preserving noncovalent interactions through "soft" electrospray ionization (ESI). For native proteins, the number of charges that are acquired scales with the surface area and mass. Here, we explore the effect of highly negatively charged DNA on the ESI charge of protein complexes and find a reduction of the mass-to-charge ratio as well as a greater variation. The charge state distributions of pure DNA assemblies show a lower mass-to-charge ratio than proteins due to their greater density in the gas phase, whereas the charge of protein-DNA complexes can additionally be influenced by the distribution of the ESI charges, ion pairing events, and collapse of the DNA components. Our findings suggest that structural features of protein-DNA complexes can result in lower charge states than expected for proteins.

4.
Polymers (Basel) ; 16(19)2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39408475

RESUMO

Smart materials for drug delivery are designed to offer a precise and controlled release of therapeutic agents. By responding to specific physiological stimuli, such as changes in temperature and pH, these materials improve treatment efficacy and minimize side effects, paving the way for personalized therapeutic solutions. In this study, we present the fabrication of dual-responsive alginate/poly(N-isopropylacrylamide) (PNIPAM) microspheres, having the ability to respond to both pH and temperature variations and embedding the lipophilic bioactive compound Ozoile. Ozoile® Stable Ozonides is obtained from extra virgin olive oil and acts as an inducer, interacting with major biological pathways by means of modulating the systemic redox balance. The dual-responsive microspheres are prepared by electrospray technique without the use of organic solvents. PNIPAM is synthesized by radical polymerization using the APS/TEMED redox initiators. The microspheres are further optimized with a chitosan coating to enhance their stability and modulate the degradation kinetics of the gel matrix. A comprehensive morphological analysis, Fourier transform infrared (FTIR) spectroscopy, and degradation assays are conducted to confirm the structural stability and pH-responsive behavior of the hydrogel microspheres. A study of the volume phase transition temperature (VPTT) by differential scanning calorimetry (DSC) is used to assess the microsphere thermal response. This research introduces a promising methodology for the development of targeted drug delivery systems, which are particularly useful in the context of oxidative stress modulation and inflammation management.

5.
Anal Chim Acta ; 1329: 343225, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39396290

RESUMO

BACKGROUND: A regular face mask is comprised of three layers for resisting moisture, filtration, and absorbing oral fluid, respectively. Since the polymers with different polarities are used to make the layers, a face mask can be used as a sampling tool to retain polar or non-polar chemical and biochemical substances in the exhaled breath. In this study, thermal desorption-electrospray ionization tandem mass spectrometry (TD-ESI/MS/MS), an ambient ionization mass spectrometric technique, was used to detect trace acetaminophen that were exhaled and retained on the surface of different layers in a face mask. RESULTS: With probe sampling combined with TD-ESI/MS/MS, the acetaminophen ion signal can be detected at the mouth/nostril region of the face mask after taking the acetaminophen tablet. The experimental results were similar to previous studies for the detection of acetaminophen in blood over time using LC/MS/MS. In addition, the intensities of acetaminophen on different layers of the face mask could reveal the differing distributions of exhaled acetaminophen on each layer. To explore the distribution of acetaminophen on the face mask surface, multiple probes were used to collect samples from different locations of the face mask for analysis. The molecular mapping of acetaminophen on the face mask was rendered by scaling the analyte ion signal intensity based on a temperature color gradient. The cartography showed a higher acetaminophen ion signal distribution on the mouth and nostril regions than in other areas of the face mask. SIGNIFICANCE: Owing to the advantages of a simple, sensitive, and non-invasive sampling approach, drug monitoring could be potentially performed to provide useful information for anti-drug of precision medicine in the future.


Assuntos
Acetaminofen , Máscaras , Espectrometria de Massas em Tandem , Acetaminofen/análise , Acetaminofen/sangue , Humanos , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Analgésicos não Narcóticos/análise , Analgésicos não Narcóticos/sangue
6.
ACS Nano ; 18(41): 28335-28348, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39356827

RESUMO

Diabetic foot ulcers (DFUs) are a significant challenge in the clinical care of diabetic patients, often necessitating limb amputation and compromising the quality of life and life expectancy of this cohort. Minimally invasive therapies, such as modular scaffolds, are at the forefront of current DFU treatment, offering an efficient approach for administering therapeutics that accelerate tissue repair and regeneration. In this study, we report a facile method for fabricating granular nanofibrous microspheres (NMs) with predesigned structures and porosities. The proposed technology combines electrospinning and electrospraying to develop a therapeutic option for DFUs. Specifically, porous NMs were constructed using electrospun poly(lactic-co-glycolic acid) (PLGA):gelatin short nanofibers, followed by gelatin cross-linking. These NMs demonstrated enhanced cell adhesion to human dermal fibroblasts (HDF) during an in vitro cytocompatibility assessment. Notably, porous NMs displayed superior performance owing to their interconnected pores compared to nonporous NMs. Cell-laden NMs demonstrated higher Young's modulus values than NMs without loaded cells, suggesting improved material resiliency attributed to the reinforcement of cells and their secreted extracellular matrix. Dynamic injection studies on cell-laden NMs further elucidated their capacity to safeguard loaded cells under pressure. In addition, porous NMs promoted host cell infiltration, neovascularization, and re-epithelialization in a diabetic mouse wound model, signifying their effectiveness in healing diabetic wounds. Taken together, porous NMs hold significant potential as minimally invasive, injectable treatments that effectively promote tissue integration and regeneration.


Assuntos
Microesferas , Nanofibras , Cicatrização , Cicatrização/efeitos dos fármacos , Porosidade , Animais , Nanofibras/química , Humanos , Camundongos , Pé Diabético/patologia , Pé Diabético/tratamento farmacológico , Pé Diabético/terapia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Diabetes Mellitus Experimental , Fibroblastos/efeitos dos fármacos , Alicerces Teciduais/química
7.
J Funct Biomater ; 15(10)2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39452576

RESUMO

Cancer is one of the major threats to human health and lives. However, effective cancer treatments remain a great challenge in clinical medicine. As a common approach for cancer treatment, chemotherapy has saved the life of millions of people; however, patients who have gone through chemotherapy often suffer from severe side effects owing to the inherent cytotoxicity of anti-cancer drugs. Stabilizing the blood concentration of an anti-cancer drug will reduce the occurrence or severity of side effects, and relies on using an appropriate drug delivery system (DDS) for achieving sustained or even on-demand drug delivery. However, this is still an unmet clinical challenge since the mainstay of anti-cancer drugs is small molecules, which tend to be diffused rapidly in the body, and conventional DDSs exhibit the burst release phenomenon. Here, we establish a class of DDSs based on biodegradable core-shell microspheres with encapsulated doxorubicin hydrochloride-loaded gold nanoparticles (DOX@Au@MSs), with the core-shell microspheres being made of poly(lactic-co-glycolic acid) in the current study. By harnessing the physical barrier of the biodegradable shell of core-shell microspheres, DOX@Au@MSs can provide a sustained release of the anti-cancer drug in the test duration (which is 21 days in the current study). Thanks to the photothermal properties of the encapsulated gold nanoparticle carriers, the core-shell biodegradable microspheres can be ruptured through remotely controlled near-infrared (NIR) light, thereby achieving an NIR-controlled triggered release of the anti-cancer drug. Furthermore, the route of the DOX-Au@MS-enabled controlled release of the anti-cancer drug can provide durable cancer cell ablation for the long period of 72 h.

8.
J Pharm Biomed Anal ; 253: 116535, 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39454545

RESUMO

Direct coupling sample preparation with mass spectrometry has risen as a reliable analytical strategy in bioanalysis as it provides a high sample throughput. This approach avoids an exhaustive separation step, thus being cost-effective compared to the traditional analytical workflow. The selectivity and sensitivity levels rely on the mass spectrometric analysis and the appropriate selection of the sample preparation. Miniaturized extraction techniques have demonstrated particular utility in this coupling thanks to their ability to pre-concentrate the target analytes while removing many of the matrix components. This article reviews the main developments in combining microextraction techniques with mass spectrometry based on electrospray ionization, a consolidated ionization technique in bioanalysis. The article aims to provide an overview of the potential of these techniques by describing the most significant examples. The different approaches are classified according to the materials or devices used to perform the extraction and analysis.

9.
Materials (Basel) ; 17(20)2024 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-39459819

RESUMO

This work presents a versatile and cost-effective spray setup that integrates both compressed air spray and electrospray techniques, specifically designed for small-scale laboratory use. This setup provides researchers with an accessible tool to explore spray methods for growing battery electrodes. While these techniques hold significant industrial promise, affordable and simple methods for their use in research settings have been limited. To address this, the setup includes custom control software and detailed information on costs and materials, offering an easy-to-implement solution. The system was tested with three samples per technique, using identical settings, to evaluate the repeatability of each method and gain insights into the uniformity and structure of the resulting films. The structural and morphological characteristics of the samples were analyzed using X-ray diffraction and scanning electron microscopy. The air-spray samples showed greater consistency and repeatability, whereas the electrospray samples exhibited better deposition results in terms of material coverage and higher crystallinity films. Cracking was observed in the air-spray samples, which was related to thermal stress, and both techniques exhibited solvent evaporation issues. The issues encountered with the setup and samples are summarized, along with possible solutions and the next steps for future upgrades and research.

10.
Anal Bioanal Chem ; 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39384572

RESUMO

Positive-ion laser desorption/ionization (LDI) of fullerenes contained in soot as produced by the Krätschmer-Huffman process delivers a wide range of fullerene molecular ions from C56+• to above C300+•. Here, the collision cross section (CCS) values of those fullerene molecular ions are determined using a trapped ion mobility-quadrupole-time-of-flight (TIMS-Q-TOF) instrument. While CCS values in the range from C60+• to C96+• are already known with high accuracy, those of ions from C98+• onward had yet to be determined. The fullerene molecular ions covered in this work have CCS values from about 200 to 440 Å2. The fullerene molecular ion series is evenly spaced at C2 differences in composition, and thus, small CCS differences of just 2.2-3.5 Å2 were determined across the entire range. Fullerene M+• ions may be employed as mobility calibrants, in particular, when very narrow 1/K0 ranges are being analyzed to achieve high TIMS resolving power. In addition, due to the simple elemental composition, M+• ions of fullerenes could also serve for mass calibration. This study describes the determination of CCS values of fullerene molecular ions from C56+• to C240+• and the application of ions from C56+• to C220+• to calibrate the ion mobility scale of a Bruker timsTOFflex instrument in any combination of LDI, matrix-assisted laser desorption/ionization (MALDI), and electrospray ionization (ESI) modes in the CCS range from about 200 to 420 Å2. This use was exemplified along with ions from Agilent Tune Mix, leucine-enkephalin, angiotensin I, angiotensin II, and substance P.

11.
AAPS PharmSciTech ; 25(8): 257, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39477831

RESUMO

The present study focuses on the adaptive development of a key peripheral component of conventional electrohydrodynamic atomisation (EHDA) systems, namely spraying needles (also referred to as nozzles or spinnerets). Needle geometry and planar alignment are often overlooked. To explore potential impact, curcumin-loaded polylactic-co-glycolic acid (PLGA) and methoxypolyethylene glycol amine (PEG)-based nanoparticles were fabricated. To elucidate these technological aspects, a horizontal electrospraying needle regime was adapted, and three formulations containing different polymeric ratios of PLGA: PEG (50:50, 75:25, and 25:75) were prepared and utilised. Furthermore, processing head tip geometries e.g. blunt (a flat needle exit) or slanted (a 45° inclination angle), were subjected to various flow rates (5 µL-100 µL). Successful engineering of curcumin-loaded polymeric nanoparticles (< 150 nm) was observed. In-silico analysis demonstrated stable properties of curcumin, PEG and PLGA (molecular docking studies) and fluid flow direction towards the Taylor-Cone (also known as the stable jet mode), was shown by the assessment of fluid dynamics simulations in various needle outlets. Curcumin-loaded nanoparticles were characterised using an array of methods including Scanning electron microscopy, Differential scanning calorimetry, Fourier transform infrared spectroscopy, X-ray diffraction, as well as their contact angles, encapsulation efficiencies and finally release patterns. The discrepancy when spraying with blunt and angled needles was evidenced by electron micrographs and deposition patterns. Spraying plumes utilising slanted needles enhanced particle collection efficiency and distribution of resultant atomised structures. In addition to needle design, fine-tuning the applied voltage and flow rate impacted the electrospraying process. The coefficient of variation was calculated as 30.5% and 25.6% for blunt and angled needle outlets, respectively, presenting improved particle uniformity with the employment of angled needle tips (8-G needle at 25 µL). The interplay of processing parameters with the utilisation of a slanted exit at a capillary optimised the spray pattern and formation of desired nanoparticulates. These demonstrate great applicability for controlled deposition and up-scaling processes in the pharmaceutical industry. These advances elaborate on EHDA processes, indicating a more cost-effective and scalable approach for industrial applications, facilitating the generation of a diverse range of particle systems in a controlled and more uniform fashion.


Assuntos
Curcumina , Nanopartículas , Agulhas , Polietilenoglicóis , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Polímeros , Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Polietilenoglicóis/química , Curcumina/química , Polímeros/química , Química Farmacêutica/métodos , Tamanho da Partícula , Portadores de Fármacos/química , Simulação de Acoplamento Molecular
12.
SLAS Technol ; 29(6): 100216, 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39454874

RESUMO

Tracking chemical reactions by measuring incurred mass shifts upon successful binding is a direct and attractive alternative to existing assays based on chemical tags. Traditional methods use liquid chromatography-mass spectrometry (LC-MS), and because the required buffers are not amenable to direct MS injection, sample pre-treatment is needed to desalt. This leads to analysis times from ten seconds to minutes per sample, limiting throughput and preventing widespread application. Combining an acoustic ejection (AE) interface with a time-of-flight mass spectrometer (MS) removes this bottleneck, as samples can be directly introduced at rates of up to one second per sample. This article describes a complete workflow for measuring the covalent binding of compounds to proteins in real-time, from assay to data evaluation. It is noteworthy that this is the first instance of using SCIEX Echo® MS+ system with ZenoTOF 7600 system to study the kinetic regimes of covalent binding.

13.
Small ; : e2405472, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39367552

RESUMO

Supramolecular materials provide a pathway for achieving precise, highly ordered structures while exhibiting remarkable response to external stimuli, a characteristic not commonly found in covalently bonded materials. The design of self-assembled materials, where properties could be predicted/design from chemical nature of the individual building blocks, hinges upon our ability to relate macroscopic properties to individual building blocks - a feat which has thus far remained elusive. Here, a design approach is demonstrated to chemically engineer the thermal expansion coefficient of 2D supramolecular networks by over an order of magnitude (\boldmath 120 to \boldmath 1000 × 10-6 K-1). This systematic study provides a clear pathway on how to carefully design the thermal expansion coefficient of a 2D molecular assembly. Specifically, a linear relation has been identified between the length of decorating alkyl chains and the thermal expansion coefficient. Counter-intuitively, the shorter the chains the larger is the thermal expansion coefficient. This precise control over thermo-mechanical properties marks a significant leap forward in the de-novo design of advanced 2D materials. The possibility to chemically engineer their thermo-mechanical properties holds promise for innovations in sensors, actuators, and responsive materials across diverse fields.

14.
Artigo em Inglês | MEDLINE | ID: mdl-39367863

RESUMO

Dissolved organic matter (DOM) is a complex mixture of thousands of molecular formulas comprised of an unknown number of chemical compounds, the concentration and composition of which are critical to ecosystem function and biogeochemical cycling. Despite its importance, our understanding of the DOM composition is lacking. This is principally due to its molecular complexity, which means that no single method is capable of describing DOM in its entirety. Quantification is typically done by proxy (e.g., relative to carbon content) and does not necessarily match well to compositional data, due to incomplete analytical windows and selectivity of different analytical methods. We present an integrated liquid chromatography (LC)-diode array detector (DAD)-charged aerosol detector (CAD)-mass spectrometry (MS) pipeline designed to both characterize and quantify solid-phase extractable DOM (SPE-DOM) in a single analysis. We applied this method to a set of eight Swedish water bodies sampled in the summer and winter. Chromophoric SPE-DOM was proportionally higher in samples with higher SPE-DOM concentrations but remained relatively consistent between sampling occasions. Ionizable SPE-DOM was relatively consistent across sites but was proportionally higher in summer. Overall, the carbon content of DOM was very consistently ∼40% across sites in both summer and winter. These findings suggest that SPE-DOM concentration at these sites is driven by (presumably allochthonous) chromophoric inputs, with an increased relative contribution in summer of material that is more ionizable and less chromophoric and may be either autochthonous or selectively enriched from allochthonous sources. Thus, with minimal additional effort, this method provided further compositional insights not attained by any single analysis in isolation.

15.
Molecules ; 29(19)2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39407512

RESUMO

The acrylation degree of vegetable oils plays a relevant role in determining the mechanical properties of the resulting polymers. Both epoxide and acrylate functionalities participate in polymerization reactions, producing various types of chemical bonds in the polymer network, which contribute to specific properties such as molecular size distribution, crosslinking degree, and glass transition temperature (Tg). The accurate identification of epoxide and acrylated groups in triglyceride molecules helps to predict their behavior during the polymerization process. A methodology based on analytical spectrometric techniques, such as direct infusion, mass spectrometry with electrospray ionization, and ultra-high-performance liquid chromatography, is used in combination with FTIR and 1H NMR to characterize the epoxy and acrylic functionalities in the fatty chains with different numbers of carbon atoms of partially acrylated triglycerides obtained by a non-catalytic reaction.

16.
J Mass Spectrom ; 59(10): e5090, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39328006

RESUMO

The study of metal ion's role in the biological processes of Alzheimer's disease has spurred investigations into the coordination chemistry of amyloid beta peptide and its fragments. Nano-electrospray ionization mass spectrometry (nESI-MS) has been utilized to examine the stabilization of bound anions on multiprotein complexes without bulk solvent. However, the effects of anions on metal ion binding interactions with amyloid beta peptide have not been explored. This study directly examined metal-peptide complexes using nESI-MS and investigated the effects of various anions on the binding ratio and stability of these complexes from ammonium salt solutions. The results indicate that different anions have distinct effects on the binding ratio and stability of various metal-peptide complexes. Of these, the bicarbonate ion exhibits the highest binding ratios for metal-peptide complexes, while binding ratios for these complexes in phosphate are comparatively low. Our results suggest that acetate, formate, bicarbonate, and phosphate have weak affinities and act as weak stabilizers of the metal-peptide complex structure in the gas phase. Intriguingly, chloride and sulfate act as stabilizers of the metal-peptide complex in the gas phase. The rank order determined from these data is substantially different from the Hofmeister salt series in solution. Although this outcome was anticipated due to the reduced influence of anions and water solvation, our findings correlate well with expected anion binding in solution and emphasize the importance of both hydration layer and anion-metal-peptide binding effects for Hofmeister-type stabilization in solution. This approach proved useful in examining the interactions between metal ions and amyloid beta peptide, which are relevant to Alzheimer's disease, using direct ESI-MS.


Assuntos
Peptídeos beta-Amiloides , Ânions , Humanos , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Ânions/química , Espectrometria de Mobilidade Iônica/métodos , Metais/química , Metais/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Espectrometria de Massas por Ionização por Electrospray/métodos
17.
Mater Today Bio ; 28: 101207, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39285943

RESUMO

Spatial deposition and patterning of microparticles are crucial in chemistry, medicine, and biology. Existing technologies like electric force manipulation, despite precise trajectory control, struggle with complex and personalized patterns. Key challenges include adjusting the quantity of particles deposited in different areas and accurately depositing particles in non-continuous patterns. Here, we present a rational process termed combinatory electric-field-guided deposition (CED) for achieving spatially regulated microparticle deposition on insulative substrates. This process involves coating the substrates with insulating materials like PVP and positioning it on a relief-patterned negative electrode. The negative electric field generated by the electrode attracts microparticles, while the positive surface charges on the substrates repel microparticles, resulting in the formation of a potential well over the electrode area. Consequently, this configuration enables precise control over microparticle deposition without the need for direct contact with the substrate's surface, simplifying the process of switching masks to meet varying microparticle deposition requirements. Furthermore, we demonstrate the customization of patterned microparticles on superhydrophobic coatings to regulate cell distribution, as well as the successful loading of drug-laden microparticles onto antibacterial bandages to match the areas of skin lesions. These applications underscore the versatility of CED across chemical, medical, and bioengineering domains.

18.
Biosens Bioelectron ; 267: 116758, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39316871

RESUMO

Recently a laccase-based biosensors with unprecedented reuse and storage capabilities in the detection of catechol compound has been manufactured using ambient Electrospray Deposition (ESD) technique. These biosensors showed to be reused up to 63 measurements on the same electrode just prepared at room temperature and pressure. In this new work the reasons behind such a high-performance functioning have been investigated by analysing the commercial sample of laccase with different chemical physics methods: Electrophoresis, Fourier Transform Infrared Spectroscopy, X-ray Fluorescence and Nuclear Magnetic Resonance Spectroscopy. The analyses reveal the presence of the starch in the sample and its essential role as stabilizing agent. Indeed, comparing the performance of starch/laccase-based biosensors with starch-free/laccase-based biosensors, both produced via ESD, showed that the starch-free biosensors lost about 40% of their performance after just the first wash. This suggests that the presence of starch in the laccase sample is a key factor in providing the high wash and storage resistance, which are essential for the fabrication of such devices.

19.
Toxins (Basel) ; 16(9)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39330837

RESUMO

Snakebite is a serious health issue in tropical and subtropical areas of the world and results in various pathologies, such as hemotoxicity, neurotoxicity, and local swelling, blistering, and tissue necrosis around the bite site. These pathologies may ultimately lead to permanent morbidity and may even be fatal. Understanding the chemical and biological properties of individual snake venom toxins is of great importance when developing a newer generation of safer and more effective snakebite treatments. Two main approaches to ionizing toxins prior to mass spectrometry (MS) analysis are electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI). In the present study, we investigated the use of both ESI-MS and MALDI-MS as complementary techniques for toxin characterization in venom research. We applied nanofractionation analytics to separate crude elapid venoms using reversed-phase liquid chromatography (RPLC) and high-resolution fractionation of the eluting toxins into 384-well plates, followed by online LC-ESI-MS measurements. To acquire clear comparisons between the two ionization approaches, offline MALDI-MS measurements were performed on the nanofractionated toxins. For comparison to the LC-ESI-MS data, we created so-called MALDI-MS chromatograms of each toxin. We also applied plasma coagulation assaying on 384-well plates with nanofractionated toxins to demonstrate parallel biochemical profiling within the workflow. The plotting of post-column acquired MALDI-MS data as so-called plotted MALDI-MS chromatograms to directly align the MALDI-MS data with ESI-MS extracted ion chromatograms allows the efficient correlation of intact mass toxin results from the two MS-based soft ionization approaches with coagulation bioassay chromatograms. This facilitates the efficient correlation of chromatographic bioassay peaks with the MS data. The correlated toxin masses from ESI-MS and/or MALDI-MS were all around 6-8 or 13-14 kDa, with one mass around 20 kDa. Between 24 and 67% of the toxins were observed with good intensity from both ionization methods, depending on the venom analyzed. All Naja venoms analyzed presented anticoagulation activity, whereas pro-coagulation was only observed for the Pseudonaja textillis venom. The data of MALDI-MS can provide complementary identification and characterization power for toxin research on elapid venoms next to ESI-MS.


Assuntos
Venenos Elapídicos , Elapidae , Naja , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Animais , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Venenos Elapídicos/toxicidade , Venenos Elapídicos/química , Venenos Elapídicos/análise , Coagulação Sanguínea/efeitos dos fármacos , Cromatografia de Fase Reversa , Ophiophagus hannah
20.
Int J Pharm ; 666: 124724, 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39312984

RESUMO

Enhancing the efficacy and reducing the toxicity of chemotherapeutic agents like doxorubicin (DOX) is crucial in cancer treatment. Core-shell nanoparticles (NPs) fabricated by coaxial electrospraying offer controlled release of anticancer agents with the polymer shell protecting drug molecules from rapid degradation, prolonging therapeutic effect. This study developed DOX-loaded poly(lactic-co-glycolic acid) (PLGA) NPs. NPs were fabricated with matrix or core-shell structure via single needle or coaxial electrospraying, respectively. Core-shell NPs exhibited high encapsulation efficiency (>80 %) with controlled DOX distribution. Compared to matrix NPs, core-shell NPs demonstrated slower sustained release (69 % in 144 h) after reduced initial burst (22 % in 8 h). Release kinetics followed a diffusion mechanism when compared to free drug and matrix DOX-loaded NPs. In vitro assays showed core-shell NPs' enhanced cytotoxicity against breast cancer cells MCF-7, with higher uptake observed by fluorescence microscopy and flow cytometry. The IC50 for core-shell NPs displayed a significant drop (0.115 µg/mL) compared to matrix NPs (0.235 µg/mL) and free DOX (1.482 µg/mL) after 72 h. Coaxial electrospraying enables the production of therapeutically advantageous core-shell NPs, offering controlled drug release with high encapsulation efficiency, potentially improving clinical anticancer chemotherapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA