Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Mater Technol ; 9(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38883438

RESUMO

Embedded printing has emerged as a valuable tool for fabricating complex structures and microfluidic devices. Currently, an ample of amount of research is going on to develop new materials to advance its capabilities and increase its potential applications. Here, we demonstrate a novel, transparent, printable, photocrosslinkable, and tuneable silicone composite that can be utilized as a support bath or an extrudable ink for embedded printing. Its properties can be tuned to achieve ideal rheological properties, such as optimal self-recovery and yield stress, for use in 3D printing. When used as a support bath, it facilitated the generation microfluidic devices with circular channels of diameter up to 30 µm. To demonstrate its utility, flow focusing microfluidic devices were fabricated for generation of Janus microrods, which can be easily modified for multitude of applications. When used as an extrudable ink, 3D printing of complex-shaped constructs were achieved with integrated electronics, which greatly extends its potential applications towards soft robotics. Further, its biocompatibility was tested with multiple cell types to validate its applicability for tissue engineering. Altogether, this material offers a myriad of potential applications (i.e., soft robotics, microfluidics, bioprinting) by providing a facile approach to develop complicated 3D structures and interconnected channels.

2.
Biofabrication ; 16(3)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38821144

RESUMO

Embedded bioprinting is an emerging technology for precise deposition of cell-laden or cell-only bioinks to construct tissue like structures. Bioink is extruded or transferred into a yield stress hydrogel or a microgel support bath allowing print needle motion during printing and providing temporal support for the printed construct. Although this technology has enabled creation of complex tissue structures, it remains a challenge to develop a support bath with user-defined extracellular mimetic cues and their spatial and temporal control. This is crucial to mimic the dynamic nature of the native tissue to better regenerate tissues and organs. To address this, we present a bioprinting approach involving printing of a photocurable viscous support layer and bioprinting of a cell-only or cell-laden bioink within this viscous layer followed by brief exposure to light to partially crosslink the support layer. This approach does not require shear thinning behavior and is suitable for a wide range of photocurable hydrogels to be used as a support. It enables multi-material printing to spatially control support hydrogel heterogeneity including temporal delivery of bioactive cues (e.g. growth factors), and precise patterning of dense multi-cellular structures within these hydrogel supports. Here, dense stem cell aggregates are printed within methacrylated hyaluronic acid-based hydrogels with patterned heterogeneity to spatially modulate human mesenchymal stem cell osteogenesis. This study has significant impactions on creating tissue interfaces (e.g. osteochondral tissue) in which spatial control of extracellular matrix properties for patterned stem cell differentiation is crucial.


Assuntos
Bioimpressão , Hidrogéis , Impressão Tridimensional , Bioimpressão/métodos , Hidrogéis/química , Humanos , Células-Tronco Mesenquimais/citologia , Engenharia Tecidual , Alicerces Teciduais/química
3.
ACS Appl Mater Interfaces ; 16(15): 18522-18533, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38564436

RESUMO

The creation of large, volumetric tissue-engineered constructs has long been hindered due to the lack of effective vascularization strategies. Recently, 3D printing has emerged as a viable approach to creating vascular structures; however, its application is limited. Here, we present a simple and controllable technique to produce porous, free-standing, perfusable tubular networks from sacrificial templates of polyelectrolyte complex and coatings of salt-containing citrate-based elastomer poly(1,8-octanediol-co-citrate) (POC). As demonstrated, fully perfusable and interconnected POC tubular networks with channel diameters ranging from 100 to 400 µm were created. Incorporating NaCl particulates into the POC coating enabled the formation of micropores (∼19 µm in diameter) in the tubular wall upon particulate leaching to increase the cross-wall fluid transport. Casting and cross-linking gelatin methacrylate (GelMA) suspended with human osteoblasts over the free-standing porous POC tubular networks led to the fabrication of 3D cell-encapsulated constructs. Compared to the constructs without POC tubular networks, those with either solid or porous wall tubular networks exhibited a significant increase in cell viability and proliferation along with healthy cell morphology, particularly those with porous networks. Taken together, the sacrificial template-assisted approach is effective to fabricate tubular networks with controllable channel diameter and patency, which can be easily incorporated into cell-encapsulated hydrogels or used as tissue-engineering scaffolds to improve cell viability.


Assuntos
Hidrogéis , Alicerces Teciduais , Humanos , Hidrogéis/química , Sobrevivência Celular , Porosidade , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Impressão Tridimensional , Gelatina/química
4.
Adv Mater ; 36(25): e2314097, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38466829

RESUMO

Planarly aligning 2D platelets is challenging due to their additional orientational freedom compared to 1D materials. This study reports a sequential dual-alignment approach, employing an extrusion-printing-induced shear force and rotating-magnetic-field-induced force couple for platelet planarly alignment in a yield-stress support bath. It is hypothesized that the partial alignment induced by a directional shear force facilitates subsequent axial rotation of the platelets for planar alignment under an external force couple, resulting in a synergistic alignment effect. This sequential dual-alignment approach achieves better planar alignment of 2D modified hexagonal boron nitride (mhBN). Specifically, the thermal conductivity of the 40 wt% mhBN/epoxy composite is significantly higher (692%) than that of unaligned composites, surpassing the cumulative effect of individual methods (only 133%) with a 5 times more synergistic effect. For 30, 40, and 50 wt% mhBN composites, the thermal conductivity values (5.9, 9.5, and 13.8 W m-1 K-1) show considerable improvement compared to the previously reported highest values (5.3, 6.6, and 8.6 W m-1 K-1). Additionally, a 3D mhBN/epoxy heat sink is printed and evaluated to demonstrate the feasibility of device fabrication. The approach enables the planar alignment of electrically or thermally conducting 2D fillers during 3D fabrication.

5.
ACS Appl Mater Interfaces ; 15(50): 58897-58904, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38084015

RESUMO

Liquid crystal elastomers (LCEs) are a class of active materials that can generate rapid, reversible mechanical actuation in response to external stimuli. Fabrication methods for LCEs have remained a topic of intense research interest in recent years. One promising approach, termed 4D printing, combines the advantages of 3D printing with responsive materials, such as LCEs, to generate smart structures that not only possess user-defined static shapes but also can change their shape over time. To date, 4D-printed LCE structures have been limited to flat objects, restricting shape complexity and associated actuation for smart structure applications. In this work, we report the development of embedded 4D printing to extrude hydrophobic LCE ink into an aqueous, thixotropic gel matrix to produce free-standing, free-form 3D architectures without sacrificing the mechanical actuation properties. The ability to 4D print complex, free-standing 3D LCE architectures opens new avenues for the design and development of functional and responsive systems, such as reconfigurable metamaterials, soft robotics, or biomedical devices.

6.
Adv Healthc Mater ; 12(25): e2300004, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37264745

RESUMO

In vitro neurovascular unit (NVU) models are valuable for investigating brain functions and developing drugs. However, it remains challenging to recapitulate the native architectural features and ultra-soft extracellular matrix (ECM) properties of the natural NVU. Cell-laden bioprinting is promising to prepare complex living tissues, but hard to balance the fidelity and cell growth. This study proposes a novel two-stage methodology for biomanufacturing functional 3D neurovascular constructs in vitro with low modulus of ECM. At the shaping stage, a low-viscosity alginate/collagen is printed through an embedded approach; at the culturing stage, the alginate is removed through targeted lysing. The low-viscosity and rapid crosslinking properties provide a printing resolution of ≈10 µm, and the lysis processing can decrease the hydrogels' modulus to ≈1 kPa and adjust the porosity of the microstructure, providing cells with an environment closing to the brain ECM. A 3D hollow coaxial neurovascular model is fabricated, in which the endothelial cells has expressed tight junction proteins and shown selective permeability, and the astrocytes outside of the endothelial layer are found to spread out with branches and directly interact with endothelial cells. The present study offers a promising modeling method for better understanding the NVU function and screening neuro-drugs.


Assuntos
Bioimpressão , Células Endoteliais , Bioimpressão/métodos , Viscosidade , Hidrogéis/química , Colágeno , Alginatos/química , Impressão Tridimensional , Alicerces Teciduais , Engenharia Tecidual/métodos
7.
Biofabrication ; 15(1)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36195056

RESUMO

As 3D bioprinting has grown as a fabrication technology, so too has the need for improved analytical methods to characterize engineered constructs. This is especially challenging for engineered tissues composed of hydrogels and cells, as these materials readily deform when trying to assess print fidelity and other properties non-destructively. Establishing that the 3D architecture of the bioprinted construct matches its intended anatomic design is critical given the importance of structure-function relationships in most tissue types. Here we report development of a multimaterial bioprinting platform with integrated optical coherence tomography forin situvolumetric imaging, error detection, and 3D reconstruction. We also report improvements to the freeform reversible embedding of suspended hydrogels bioprinting process through new collagen bioink compositions, gelatin microparticle support bath optical clearing, and optimized machine pathing. This enables quantitative 3D volumetric imaging with micron resolution over centimeter length scales, the ability to detect a range of print defect types within a 3D volume, and real-time imaging of the printing process at each print layer. These advances provide a comprehensive methodology for print quality assessment, paving the way toward the production and process control required for achieving regulatory approval and ultimately clinical translation of engineered tissues.


Assuntos
Bioimpressão , Impressão Tridimensional , Tomografia de Coerência Óptica , Bioimpressão/métodos , Engenharia Tecidual/métodos , Hidrogéis , Alicerces Teciduais
8.
ACS Appl Mater Interfaces ; 14(37): 41695-41711, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36070996

RESUMO

Three-dimensional (3D) embedded printing is emerging as a potential solution for the fabrication of complex biological structures and with ultrasoft biomaterials. For the supporting medium, bulk gels can support a wide range of bioinks with higher printing resolution as well as better finishing surfaces than granular microgel baths. However, the difficulties of regulating the physical properties of existing bulk gel supporting baths limit the further development of this method. This work has developed a bulk gel supporting bath with easily regulable physical properties to facilitate soft-material fabrication. The proposed bath is composed based on the hydrophobic association between a hydrophobically modified hydroxypropylmethyl cellulose (H-HPMC) and Pluronic F-127 (PF-127). Its rheological properties can be easily regulated; in the preprinting stage by varying the relative concentration of components, during printing by changing the temperature, and postprinting by adding additives with strong hydrophobicity or hydrophilicity. This has made the supporting bath not only available for various bioinks with a range of printing windows but also easy to be removed. Also, the removal strategy is independent of printing conditions like temperature and ions, which empowers the bath to hold great potential for the embedded printing of commonly used biomaterials. The adjustable rheological properties of the bath were leveraged to characterize the embedded printing quantitatively, involving the disturbance during the printing, filament cross-sectional shape, printing resolution, continuity, and the coalescence between adjacent filaments. The match between the bioink and the bath was also explored. Furthermore, low-viscosity bioinks (with 0.008-2.4 Pa s viscosity) were patterned into various 3D complex delicate soft structures (with a 0.5-5 kPa compressive modulus). It is believed that such an easily regulable assembled bath could serve as an available tool to support the complex biological structure fabrication and open unique prospects for personalized medicine.


Assuntos
Bioimpressão , Microgéis , Banhos , Materiais Biocompatíveis , Bioimpressão/métodos , Celulose , Hidrogéis/química , Poloxâmero , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais/química
9.
HardwareX ; 11: e00297, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35509909

RESUMO

Recent advances in Freeform Reversible Embedding of Suspended Hydrogels (FRESH), a technique that is compatible with most open-source desktop 3D printers, has enabled the fabrication of complex 3D structures using a wide range of natural and synthetic hydrogels, whose mechanical properties can be modified by embedding long fibers into printed hydrogels. However, fiber extruders dedicated for this application are not commercially available or previously reported. To address this, we have designed a continuous fiber extruder (CFE) that is compatible with low-cost, open-source desktop 3D printers, and demonstrated its performance using a Flashforge Creator-pro printer with a Replistruder-2.0 print-head. Key characteristics of the CFE include: (1) it is affordable, accessible and user-friendly to the 3D printing community due to its low fabrication cost and compatibility with open-source hardware and software, (2) it can embed user-defined 2D and 3D features using long fibers into different types of hydrogels, (3) it works with fibers of different mechanical properties and sizes, (4) it can modify mechanical properties of FRESH printed hydrogels via long fiber embedding.

10.
HardwareX ; 92021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34746519

RESUMO

Recent advances in embedded 3D bioprinting have significantly improved the resolution of individual filaments to below 100 µm; however, printing with such small filaments requires accurate extrusion of nanoliter volumes of bioink. Commercially available bioprinters and extruders are expensive and most utilize pneumatic control, which limits the minimum extrusion volume and prevents retraction (pulling bioink back into the reservoir), which is essential to printing high resolution features and complex internal geometry. Here we present a new generation of our open-source syringe pump designed for extrusion-based 3D bioprinting of soft materials: the Replistruder 4. The Replistruder 4 takes advantage of the geometry customizability and ease of 3D plastic printing while improving performance by integrating mass produced high-precision linear motion components. Simultaneously this new syringe pump remains compact and lightweight enough for several to be utilized on a 3D bioprinter for multimaterial bioprinting. To facilitate multiple use cases the Replistruder 4 is compatible with a range of syringes including disposable BD and Hamilton gastight syringes. In addition, we describe the process of designing clamps for other syringes. We demonstrate the performance of a Replistruder 4 with a 2.5 mL Hamilton gastight syringe by printing collagen type I constructs with individual filaments comprising 3.35 nL and patent channels down to 300 µm in width. With smaller volume Hamilton gastight syringes this performance can be further improved. Thus, the Replistruder 4 provides an open-source solution to print soft materials at the resolution limits of current embedded bioprinting platforms.

11.
ACS Biomater Sci Eng ; 6(11): 6453-6459, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33449644

RESUMO

Recent advances in embedded three-dimensional (3D) bioprinting have expanded the design space for fabricating geometrically complex tissue scaffolds using hydrogels with mechanical properties comparable to native tissues and organs in the human body. The advantage of approaches such as Freeform Reversible Embedding of Suspended Hydrogels (FRESH) printing is the ability to embed soft biomaterials in a thermoreversible support bath at sizes ranging from a few millimeters to centimeters. In this study, we were able to expand this printable size range by FRESH bioprinting a full-size model of an adult human heart from patient-derived magnetic resonance imaging (MRI) data sets. We used alginate as the printing biomaterial to mimic the elastic modulus of cardiac tissue. In addition to achieving high print fidelity on a low-cost printer platform, FRESH-printed alginate proved to create mechanically tunable and suturable models. This demonstrates that large-scale 3D bioprinting of soft hydrogels is possible using FRESH and that cardiac tissue constructs can be produced with potential future applications in surgical training and planning.


Assuntos
Bioimpressão , Alginatos , Humanos , Hidrogéis , Impressão Tridimensional , Alicerces Teciduais
12.
Nano Converg ; 6(1): 28, 2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31495907

RESUMO

Sensors are becoming more demanding in all spheres of human activities for their advancement in terms of fabrication and cost. Several methods of fabrication and configurations exist which provide them myriad of applications. However, the advantage of fabrication for sensors lies with bulk fabrication and processing techniques. Exhaustive study for process advancement towards miniaturization from the advent of MEMS technology has been going on and progressing at high pace and has reached a highly advanced level wherein batch production and low cost alternatives provide a competitive performance. A look back to this advancement and thus understanding the route further is essential which is the core of this review in light of nanomaterials and printed technology based sensors. A subjective appraisal of these developments in sensor architecture from the advent of MEMS technology converging present date novel materials and process technologies through this article help us understand the path further.

13.
HardwareX ; 3: 49-61, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30498799

RESUMO

Syringe pump extruders are required for a wide range of 3D printing applications, including bioprinting, embedded printing, and food printing. However, the mass of the syringe becomes a major challenge for most printing platforms, requiring compromises in speed, resolution and/or volume. To address these issues, we have designed a syringe pump large volume extruder (LVE) that is compatible with low-cost, open source 3D printers, and herein demonstrate its performance on a PrintrBot Simple Metal. Key aspects of the LVE include: (1) it is open source and compatible with open source hardware and software, making it inexpensive and widely accessible to the 3D printing community, (2) it utilizes a standard 60 mL syringe as its ink reservoir, effectively increasing print volume of the average bioprinter, (3) it is capable of retraction and high speed movements, and (4) it can print fluids using nozzle diameters as small as 100 µm, enabling the printing of complex shapes/objects when used in conjunction with the freeform reversible embedding of suspended hydrogels (FRESH) 3D printing method. Printing performance of the LVE is demonstrated by utilizing alginate as a model biomaterial ink to fabricate parametric CAD models and standard calibration objects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA