RESUMO
The pervasive distribution of microplastics (MPs) in aquatic ecosystems presents a significant threat to wildlife, with amphibians being particularly vulnerable due to their complex life cycles and ecological roles. This study investigates physiological and ecological impacts of aquatic MP exposure on juvenile black-spotted pond frogs (Pelophylax nigromaculatus), focusing on juvenile frog stage, history of life after metamorphosis. MP examinations in the intestine and body revealed accumulation primarily in the gastrointestinal tracts without evidence of systemic distribution. Experimental exposure to different concentrations of MPs demonstrated adverse effects on growth, physiological stress, and immune function. Notably, higher MP concentrations led to significant reductions in growth and innate immunity, indicative of compromised health. High concentrations of MPs were associated with elevated levels of corticosterone and antioxidant enzymes, indicating physiological stress. However, there was no evidence of extreme hormonal surges or imbalances in antioxidant enzyme activity, suggesting that amphibians were able to effectively cope with the levels of MPs used in the study. Changes in gastrointestinal morphology and fecal microbiota composition were observed, reflecting response of metabolic adaptation to MP exposure. At low concentrations of MPs, adaptive changes in digestive tract morphology and the maintenance of gut microbiota balance were observed, indicating that the frogs were able to manage the exposure below a certain threshold. In contrast, high concentrations of MPs had clear negative effects on amphibians, which could impact biodiversity and ecosystem stability. These findings also suggest that MPs may trigger adaptive responses at lower concentrations, while still posing significant environmental risks at higher levels.
RESUMO
As an alternative to perfluorooctane sulfonate, sodium p-perfluorous nonenoxybenzene sulfonate (OBS) has been widely used and caused ubiquitous water pollution. However, its toxicity to aquatic organisms is still not well known. Therefore, in this study, parental zebrafish were exposed to OBS at environmentally relevant concentrations from â¼ 2 h post-fertilization to 21 days post-fertilization (dpf) in order to investigate the thyroid disrupting effects in F0 adults and F1 offspring. Histopathological changes, such as hyperplasia of thyroid follicular epithelia and colloidal depletion, were observed in F0 adults at 180 dpf. In F0 females, thyroxine (T4) levels were significantly reduced in 30 and 300 µg/L exposure groups, while triiodothyronine (T3) levels were significantly increased in 3 µg/L exposure group. For F0 males, significant increases of T4 and T3 levels were observed, revealing the sex-specific differences after the OBS exposure. The transcription levels of some key genes related to the hypothalamic-pituitary-thyroid (HPT) axis were significantly disrupted, which induced the thyroid endocrine disruption effects in adult zebrafish even after a prolonged recovery period. For F1 offspring, the thyroid hormone (TH) homeostasis was also altered as T4 and T3 levels in embryos/larvae exhibited similar changes as F0 females. The transcription levels of some key genes related to the HPT axis were also significantly dysregulated, suggesting the transgenerational thyroid disrupting effects of OBS in F1 offspring. In addition, the decreased swirl-escape rate was observed in F1 larvae, which could be caused by disrupting gene expressions related to the central nervous system development and be associated with the TH dyshomeostasis. Therefore, parental OBS exposure at early life stage resulted in thyroid endocrine disruption effects in both F0 adult zebrafish and F1 offspring, and caused the developmental neurotoxicity in F1 larvae.
RESUMO
The widespread presence of microplastics in the environment has raised significant concerns regarding their potential impact on human and animal health. Among various microplastic types, polyethylene microplastics (PE-MPs) are particularly prevalent due to the extensive use in packaging and consumer products. Exploring the uncharted therapeutic potentials of naringin, this study delves into its mitigating effects on disruptions in kallikrein-3 levels, steroidal-thyroidal hormone balance, and antioxidant defense triggered by PE-MPs exposure, paving the way for novel interventions in environmental toxin-induced endocrine and oxidative stress disorders. Male Wistar rats (n = 24) were randomly grouped into four: Control, PE-MPs (1.5 mg/kg), PE-MPs + NAR (1.5 mg/kg PE-MPs + 100 mg/kg NAR), and NAR (100 mg/kg). Hormonal and antioxidant parameters were assessed after 28 days of exposure. PE-MPs exposure caused a significant increase(p < 0.005) in the level of kallikrein-3 (KLK-3) while it significantly reduces the levels of testosterone (TST), luteinizing hormone, thyroid stimulating hormone (TSH) and Free-triiodothyronine (fT3) and Total cholesterol (TChol) concentration. PE-MPs exposure also disrupted significantly (p < 0.005) antioxidant profile by down-regulating the activities of glutathione-S-transferase, catalase (CAT), superoxide dismutase (SOD) and reducing levels of glutathione (GSH) and ascorbic acid (AA) while concentration of malondialdehyde (MDA) levels were increased relative to control. However, the mitigating potentials of naringin on disruptions in hormonal and antioxidant profiles caused by PE-MPs exposure were demonstrated, as NAR normalized KLK-3, steroid, and thyroid hormone levels, cholesterol concentration, and enhanced antioxidant defense. This suggests that NAR is a promising protective agent against endocrine and oxidative damage induced by environmental contaminants such as microplastics.
Assuntos
Antioxidantes , Flavanonas , Microplásticos , Polietileno , Animais , Masculino , Ratos , Antioxidantes/metabolismo , Flavanonas/farmacologia , Calicreínas/metabolismo , Microplásticos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Hormônios Tireóideos/metabolismo , Tireotropina/sangue , Tireotropina/metabolismoRESUMO
This study investigated how early exposure to xenobiotics can lead to disease in adulthood, which is challenging for toxicologists. We employed a 'cradle to grave' approach using zebrafish (Danio rerio) embryos exposed to 4-methylbenzylidene camphor (4-MBC), a commonly used organic UV filter. Molecular docking and simulation studies confirmed the predictive toxicity and stable interaction of 4-MBC with androgen and estrogen receptors, with binding energies of -9.28 and -9.01 kcal/mol, respectively. Exposure to 4-MBC at 5, 50, and 500 µg/L concentrations resulted in significantly altered transcriptional and translational responses of ar, esr1, and vtg1 genes in embryos at 120 h post-fertilization (hpf). The exposure induced a non-monotonic dose-response pattern (NMDR), a characteristic feature of endocrine-disrupting chemicals. Additionally, a significant decrease in fertilization was observed in adults. Although fecundity was not affected in inter- and intra-breeding performances, developmental deformities were observed in F1 progenies with impaired survival at 10 days post-fertilization. The findings of this study show that embryonic exposure to 4-MBC is likely to induce reproductive and transgenerational toxicity in D. rerio and exhibit endocrine disruption in aquatic non-target organisms. This work is the first to elucidate the low-level long-term effects of 4-MBC from the embryonic stage to adulthood.
RESUMO
Bisphenol A (BPA), a synthetic chemical widely used in the production of polycarbonate plastic and epoxy resins, has been associated with a variety of adverse effects in humans including metabolic, immunological, reproductive, and neurodevelopmental effects, raising concern about its health impact. In the EU, it has been classified as toxic to reproduction and as an endocrine disruptor and was thus included in the candidate list of substances of very high concern (SVHC). On this basis, its use has been banned or restricted in some products. As a consequence, industries turned to bisphenol alternatives, such as bisphenol S (BPS) and bisphenol F (BPF), which are now found in various consumer products, as well as in human matrices at a global scale. However, due to their toxicity, these two bisphenols are in the process of being regulated. Other BPA alternatives, whose potential toxicity remains largely unknown due to a knowledge gap, have also started to be used in manufacturing processes. The gradual restriction of the use of BPA underscores the importance of understanding the potential risks associated with its alternatives to avoid regrettable substitutions. This review aims to summarize the current knowledge on the potential hazards related to BPA alternatives prioritized by European Regulatory Agencies based on their regulatory relevance and selected to be studied under the European Partnership for the Assessment of Risks from Chemicals (PARC): BPE, BPAP, BPP, BPZ, BPS-MAE, and TCBPA. The focus is on data related to toxicokinetic, endocrine disruption, immunotoxicity, developmental neurotoxicity, and genotoxicity/carcinogenicity, which were considered the most relevant endpoints to assess the hazard related to those substances. The goal here is to identify the data gaps in BPA alternatives toxicology and hence formulate the future directions that will be taken in the frame of the PARC project, which seeks also to enhance chemical risk assessment methodologies using new approach methodologies (NAMs).
RESUMO
BACKGROUND: Zearalenone (ZEN) is a mycotoxin contaminating grains and processed foods. ZEN alters nuclear estrogen receptor α/ß signaling earning its designation as a mycoestrogen. Experimental evidence demonstrates that mycoestrogen exposure during pregnancy is associated with altered maternal sex steroid hormones, changes in placental size, and decreases in fetal weight and length. While mycoestrogens have been detected in human biospecimens worldwide, exposure assessment of ZEN in US populations, particularly during pregnancy, is lacking. OBJECTIVE: To characterize urinary and placental concentrations of ZEN and its metabolites in healthy US pregnant people and examine demographic, perinatal, and dietary predictors of exposure. METHODS: Urine samples were collected in each trimester from pregnant participants in the UPSIDE study and placenta samples were collected at delivery (Rochester, NY, n = 317). We used high performance liquid chromatography and high-resolution tandem mass spectrometry to measure total urinary (ng/ml) and placental mycoestrogens (ng/g). Using linear regression and linear mixed effect models, we examined associations between mycoestrogen concentrations and demographic, perinatal, and dietary factors (Healthy Eating Index [HEI], ultra-processed food [UPF] consumption). RESULTS: Mycoestrogens were detected in 97% of urines (median 0.323 ng/ml) and 84% of placentas (median 0.012 ng/g). Stability of urinary mycoestrogens across pregnancy was low (ICC: 0.16-0.22) and did not correlate with placental levels. In adjusted models, parity (multiparous) and pre-pregnancy BMI (higher) predicted higher urinary concentrations. Birth season (fall) corresponded with higher placental mycoestrogens. Dietary analyses indicated that higher HEI (healthier diets) predicted lower exposure (e.g., Σmycoestrogens %∆ -2.03; 95%CI -3.23, -0.81) and higher percent calories from UPF predicted higher exposure (e.g., Σmycoestrogens %∆ 1.26; 95%CI 0.29, 2.24). IMPACT: The mycotoxin, zearalenone (ZEN), has been linked to adverse health and reproductive impacts in animal models and livestock. Despite evidence of widespread human exposure, relatively little is known about predictors of exposure. In a pregnant population, we observed that maternal ZEN concentrations varied by maternal pre-pregnancy BMI and parity. Consumption of ultra-processed foods, added sugars, and refined grains were linked to higher ZEN concentrations while healthier diets were associated with lower levels. Our research suggests disparities in exposure that are likely due to diet. Further research is needed to understand the impacts of ZEN on maternal and offspring health.
RESUMO
Persistent, mobile and toxic (PMT) compounds released to the environment are likely to pollute drinking water sources due to their slow environmental degradation (persistency) and high water solubility (mobility). The aim of the present study was to create in vitro hazard profiles for sixteen triazoles, nine triazines and eleven PFAS based on their agonistic and antagonistic effects in estrogen receptor (ER), androgen receptor (AR) and thyroid hormone receptor (TR) reporter gene assays, their ability to bind human transthyretin (TTR), and their effects on steroidogenesis. The triazole fungicides tetraconazole, bitertanol, fenbuconazole, tebuconazole, cyproconazole, difenoconazole, propiconazole, paclobutrazol and triadimenol had agonistic or antagonistic effects on the ER and AR. Difenoconazole, propiconazole and triadimenol were also found to be TR antagonists. The triazine herbicide ametryn was an ER, AR and TR antagonist. The same nine triazole fungicides and the triazines atrazine, deethyl-atrazine and ametryn affected the secretion of steroid hormones. Furthermore, PFAS compounds PFBS, PFHxS, PFHxA, PFOS, PFOA and GenX and the triazoles bitertanol, difenoconazole and 4-methyl benzotriazole were found to displace T4 from TTR. These results are in line with earlier in vitro and in vivo studies on the endocrine disrupting properties of triazines, triazoles and PFAS. The present study demonstrates that this battery of in vitro bioassays can be used to profile compounds from different classes based on their endocrine disrupting properties as a first step to prioritize them for further research, emission reduction, environmental remediation and regulatory purposes.
RESUMO
In a past study, we proposed a modified Comparative Thyroid Assay (CTA) with additional examinations of brain thyroid hormone (TH) concentrations and brain histopathology but with smaller group sizes. The results showed that the modified CTA in Sprague Dawley rats detected 10 ppm 6-propylthiouracil (6-PTU)-induced significant suppressions of serum/brain TH concentrations in offspring. To confirm the reliability of qualitative brain histopathology and identify the optimal testing time for heterotopia (a cluster of ectopic neurons) in the modified CTA, brain histopathology together with serum/brain TH concentrations were assessed in GD20 fetuses and PND2, 4, 21, and 28 pups using a similar study protocol but with a smaller number of animals (N=3-6/group/time). Significant hypothyroidism was observed and brain histopathology revealed cerebral heterotopia formation in PND21 and PND28 pups, with likely precursor findings in PND2 and PND4 pups but not in GD20 fetuses. This study confirmed that the optimal testing time for cerebral heterotopia in rat CTA was PND21 and thereafter. These findings suggest that cerebral heterotopia assessment at appropriate times may be a useful alternative to the original CTA design.
RESUMO
A growing body of evidence exhibits the ubiquitous presence and accumulation of micro- and nanoplastics (MNPs) in the air, drinking water, food, and even inside the body, which has raised concerns about their potential impact on reproductive and developmental health. To comprehensively examine the current state of knowledge regarding MNPs-induced reproductive and developmental toxicity, we conducted this systematic review by focusing on the prevalence of MNPs determined in reproductive tissues and their influences on parental reproduction and offspring development. Our findings demonstrate the detection of MNPs in various human reproductive tissues, including semen, placenta, and ovarian follicular fluid, as well as in reproductive tissues of diverse animal species. We show a potential relationship between MNP exposure and increased prevalence of infertility and adverse pregnancy outcomes based on the fact that MNPs exert detrimental effects on reproductive parameters, including sperm quality, ovarian function, and steroidogenesis. In male reproductive systems, MNPs disrupt testicular tissue structure, impair reproductive endocrinology, and reduce sperm quality. In females, MNPs affect ovarian tissue structure and function, interfere with hormone secretion, and impact the endometrium and embryo implantation. Additionally, MNPs cause developmental toxicity in animal models, affecting embryonic development and offspring health, and produce transgenerational effects. Notably, in-depth literature study suggests a crucial role for oxidative stress, inflammation, and epigenetic modification in MNPs-induced toxicity. In conclusion, we integrated systematic knowledge on MNPs-induced reproductive and developmental toxicity, and the systematic finding underscores future study to fully elucidate the risks posed by MNPs to reproductive and developmental health and to inform policy decisions and public health interventions aimed at mitigating their harmful effects.
RESUMO
Homosalate (HS) and octisalate (OS), which are used in sunscreen for the purpose of blocking ultraviolet rays, are frequently detected in water environment. Although effects on estrogens and androgens have been reported, studies on thyroid and growth hormone endocrine disruption are limited. In the present study, larval mortality was compared in wild-type and two knockout fish (thyroid hormone receptor alpha a knockout (thrαa-/-) and dre-miR-499 knockout (dre-miR-499-/-)) after 96â¯h of exposure to HS and OS (0, 0.003, 0.03, 0.3, 3, 30 and 300⯵g/L). To investigate the mechanisms of thyroid and growth hormone endocrine disruption, we measured the levels of triiodothyronine (T3), thyroxine (T4), thyroid stimulating hormone (TSH), growth hormone (GH), and insulin-like growth factor-1 (IGF-1), and the regulation of representative genes related to the hypothalamus-pituitary-thyroid (HPT) and GH/IGF axis in wild-type zebrafish exposed to target chemicals. The significantly lower larval survival rate of thrαa-/- and dre-miR-499-/- fish exposed to 300⯵g/L of HS and OS suggest that thyroid hormone receptors and dre-miR-499 play a crucial role in the toxic effects of HS and OS. The finding of a significant increase in T3 and T4 in zebrafish larvae exposed to HS and OS supports a significant decrease in the crh gene. The reduction of GH and IGF-1 in fish exposed to HS and OS is well supported by the regulation of genes involved in the GH/IGF axis. Our observations suggest that exposure to HS and OS affects not only thyroid hormone receptors and their associated miRNAs, but also the feedback routes of HPT and GH/IGF axes, ultimately leading to growth reduction.
RESUMO
Forskolin (FSK) is a potent adenylate cyclase activator and may display endocrine-disruptive effects via the disruption of steroidogenesis. Here, we tested this hypothesis by use of the in vitro H295R steroidogenesis assay and the in vivo long-term medaka (Oryzias latipes) exposure assay. The results from the H295R assay demonstrated that the transcriptional levels of a series of genes involved in steroidogenesis, including HSD3B2, CYP11A, CYP11B2, CYP17, CYP19, and CYP21, were remarkably up-regulated. Meanwhile, the productions of estrogens (17ß-estradiol (17ß-E2) and estrone (E1)) and progestins (progesterone (PGT) and 17-hydroxyprogesterone (17-HPT)) were significantly increased, and those of androgens (androstenedione (ADD) and testosterone (TTR)) were significantly inhibited. After waterborne exposure of medaka to FSK for 100 days, the gene expressions of HMGR, HSD17B1, CYP17B, CYP19A, and CYP21A were significantly enhanced in the gonads of male medaka. 17ß-E2 was remarkably induced, although without statistical significance. In addition, the biomarker genes for estrogenicity, including VTG-I, VTG-II, CHG-H, and CHG-L, were significantly induced in male medaka livers. Pathological damage to their gonads was further identified. Therefore, the results demonstrated that FSK modulates the transcriptions of steroidogenesis genes and alters hormone levels in vitro and in vivo, which is a mark of endocrine disruption in organisms.
RESUMO
The nonsteroidal anti-inflammatory drug naproxen (NPX) is among the most consumed pharmaceuticals worldwide, being detected in surface waters within the ng to µg/L range. Considering the limited chronic ecotoxicity data available for NPX in aquatic ecosystems, the present study aimed at evaluating its impact in the model organism Danio rerio, following a full life-cycle exposure to environmentally relevant concentrations (0.1 to 5.0 µg/L). An integration of apical endpoints, i.e., survival, growth, and reproduction, with gonad histopathology and gene transcription (RNA-seq) was performed to provide additional insights into the mode of action (MoA) of NPX. NPX decreased zebrafish growth and reproduction and led to histopathological alterations in gonads at concentrations as low as 0.1 µg/L. At the molecular level, 0.7 µg/L of NPX led to a disruption in gonads transcription of genes involved in several biological processes associated with reproduction, mainly involving steroid hormone biosynthesis and epigenetic/epitranscriptomic machineries. Collectively, these results show that environmentally realistic concentrations of NPX affect zebrafish reproduction and associated signaling pathways, indicating that current hazard and risk assessment data for NPX underestimate the environmental risk of this pharmaceutical.
RESUMO
In Arctic seabirds, positive correlations between per- and polyfluoroalkyl substances (PFAS) and thyroid hormones (THs) and resting metabolic rate (RMR) have been documented. Herein we investigated levels and patterns of PFAS in Arctic terns (Sterna paradisaea) nesting in Kongsfjorden, Svalbard (Norway), and if circulating concentrations of PFAS correlated with their circulating concentrations of TH and the RMR of the birds. The hypothesis was that there will be positive correlations between PFAS, TH, and RMR, indicating that PFAS-induced increases in plasma THs could be responsible for the increased RMR. The dominating PFAS in the terns were perfluorooctane sulfonate (PFOS), perfluoroundecanoate (PFUnDA) and perfluorotridecanoate (PFTrDA). The PFAS pattern was similar to what has been found in other seabirds in Kongsfjorden. There were positive correlations between several PFAS and total triiodothyronine (TT3) concentrations in the terns. When sex was accounted for there were significant correlations in female terns, but not in males. There were no correlations between PFAS and RMR or between TT3 and RMR. This indicates that there is no link between a PFAS-induced increase in plasma TT3 concentrations and a resultant increased RMR. The positive associations between blood PFAS concentrations and plasma TT3 concentrations may be a passive association, as both PFAS and T3 bind to thyroid hormone binding proteins (THBP). We recommend that interrelationships between circulating concentrations of PFAS, THs and THBP are investigated further to identify the role of PFAS as TH disrupting chemicals and chemicals that may affect the RMR in birds.
RESUMO
The antifoulant 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) is an emerging pollutant in the marine environment, which may disrupt the thyroid endocrine system. However, DCOIT toxicity in relation to thyroid endocrine disruption and the underlying mechanisms remains largely unclear. In this study, in vivo, in silico, in vitro, and ex vivo assays were performed to clarify DCOIT's thyroid toxicity. First, marine medaka (Oryzias melastigma) were exposed to environmentally realistic concentrations of DCOIT for an entire life cycle. The results demonstrated that DCOIT exposure potently stimulated the hypothalamic-pituitary-thyroid axis, characterized by hyperthyroidism symptom induction and prevalent key gene and protein upregulation in the brain. Moreover, the in silico and in vitro results evidenced that DCOIT could bind to thyroid hormone receptor ß (TRß) and interact synergistically with triiodothyronine, thus promoting GH3 cell proliferation. The CUT&Tag experiment found that DCOIT interfered with the affinity fingerprint of TRß to target genes implicated in thyroid hormone signaling cascade regulation. Furthermore, ex vivo, Chem-seq revealed that DCOIT directly bound to the genomic sequences of thyrotropin-releasing hormone receptor b and thyroid-stimulating hormone receptor in marine medaka brain tissues. In conclusion, the current multifaceted evidence confirmed that DCOIT has a strong potency for thyroid endocrine system disruption and provided comprehensive insights into its toxicity mechanisms.
RESUMO
While many plastic additives show endocrine disrupting properties, this has not been studied for micro- and nanoplastics (MNPs) particles despite their ubiquitous presence in humans. The objective of this study was to determine the effects of various sizes and concentrations of polystyrene (PS)-MNPs (50-10,000 nm, 0.01-100 µg/mL) on estrogen- and androgen receptor (ER and AR) activity and steroidogenesis in vitro. Fluorescent (F)PS-MNPs of ≤1000 nm were internalized in VM7 and H295R cells and FPS-MNPs ≤200 nm in AR-ecoscreen cells. H295R cells displayed the highest uptake and particles were closer to the nucleus than other cell types. None of the sizes and concentrations PS-MNPs tested affected ER or AR activity. In H295R cells, PS-MNPs caused some statistically significant changes in hormone levels, though these showed no apparent concentration or size-dependent patterns. Additionally, PS-MNPs caused a decrease in estriol (E3) with a maximum of 37.5 % (100 µg/mL, 50 nm) and an increase in gene expression of oxidative stress markers GPX1 (1.26-fold) and SOD1 (1.23-fold). Taken together, our data show limited endocrine-disrupting properties of PS-MNPs in vitro. Nevertheless the importance of E3 in the placenta warrants further studies in the potential effects of MNPs during pregnancy.
RESUMO
Per- and polyfluoroalkyl substances (PFAS) are widespread environmental contaminants with endocrine-disruptive properties. Their impact on puberty in boys is unclear. In this cross-sectional study, we investigated the association between PFAS exposure and pubertal timing in 300 Norwegian boys (9-16 years), enrolled in the Bergen Growth Study 2 during 2016. We measured 19 PFAS in serum samples and used objective pubertal markers, including ultrasound-measured testicular volume (USTV), Tanner staging of pubic hair development, and serum levels of testosterone, luteinizing hormone, and follicle-stimulating hormone. In addition to logistic regression of single pollutants and the sum of PFAS, Bayesian and elastic net regression were used to estimate the contribution of the individual PFAS. Higher levels of the sum of perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorohexanesulfonic acid (PFHxS) were associated with later pubertal onset according to USTV (age-adjusted odds ratio (AOR): 2.20, 95% confidence interval (CI): 1.29, 3.93) and testosterone level (AOR: 2.35, 95% CI: 1.34, 4.36). Bayesian modeling showed that higher levels of PFNA and PFHxS were associated with later pubertal onset by USTV, while higher levels of PFNA and perfluoroundecanoic acid (PFUnDA) were associated with later pubertal onset by testosterone level. Our findings indicate that certain PFAS were associated with delay in male pubertal onset.
Assuntos
Puberdade , Humanos , Masculino , Noruega , Adolescente , Criança , Fluorocarbonos/sangue , Poluentes Ambientais/sangue , Estudos Transversais , Exposição Ambiental , Ácidos Alcanossulfônicos/sangueRESUMO
Endocrine-disrupting chemicals (EDCs) are widespread pollutants known to interfere with hormonal pathways and to disrupt behaviours. Standardised behavioural procedures have been developed in common fish model species to assess the impact of various pollutants on behaviours such as locomotor activity and anxiety-like as well as social behaviours. These procedures need now to be adapted to improve our knowledge on the behavioural effects of EDCs on less studied marine species. In this context, the European sea bass (Dicentrarchus labrax) is emerging as a valuable species representative of the European marine environment. Here, we designed and validated a two-step procedure allowing to sequentially assess anxiety-like behaviours (novel tank test) and social preference (visual social preference test) in sea bass. Thereafter, using this procedure, we evaluated whether social behavioural disruption occurs in 2-month-old larvae after an 8-day exposure to a xenoestrogen, the 17α-ethinylestradiol (EE2 at 0.5 and 50 nM). Our results confirmed previous studies showing that exposure to 50 nM of EE2 induces a significant increase in anxiety-like behaviours in sea bass larvae. On the contrary, social preference seemed unaffected whatever the EE2 concentration, suggesting that social behaviour has more complex mechanical regulations than anxiety.
Assuntos
Ansiedade , Bass , Comportamento Animal , Disruptores Endócrinos , Etinilestradiol , Larva , Animais , Comportamento Animal/efeitos dos fármacos , Ansiedade/induzido quimicamente , Larva/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Comportamento Social , Poluentes Químicos da Água/toxicidadeRESUMO
Anthranilic diamides (AD) are a modern class of insecticides used as alternatives to pyrethroids and neonicotinoids, particularly against lepidopteran pests. Despite their widespread use and presence in surface waters, little is known regarding their effects on amphibians. The aim of this study was to examine the effects of environmentally-relevant concentrations of AD insecticides chlorantraniliprole (CHLO) and cyantraniliprole (CYAN) on metamorphosis of the toad Rhinella arenarum. Tadpoles were exposed to CHLO or CYAN at concentrations ranging from 5 and 5000 µg/L from stage 27 until metamorphosis completion. Both insecticides produced a non-monotonic acceleration of the time required for individuals to progress through development and a decrease in the proportion of individuals completing metamorphosis, although a delay in metamorphosis was also observed at 5 µg/L of CHLO. Snout-vent length and body weight of metamorphosed toads were not markedly affected by either insecticide. CHLO was more toxic than CYAN, with a lowest observed effect concentration (LOEC) for CHLO on time to metamorphosis defined as 5 µg/L compared to 5000 µg/L for CYAN. The LOEC for reduced metamorphic success defined as 50 µg/L for CHLO compared to 500 µg/L for CYAN. As most effects occurred after stage 39, when metamorphosis depends upon thyroid hormones, it is conceivable that that AD insecticides act as endocrine disruptors. These findings suggest that contamination of surface waters with CHLO and CYAN may disrupt amphibian development in the wild and warrant further research to investigate the possibility of endocrine-disruption by ADs.
Assuntos
Inseticidas , Larva , Metamorfose Biológica , Poluentes Químicos da Água , ortoaminobenzoatos , Animais , Metamorfose Biológica/efeitos dos fármacos , Inseticidas/toxicidade , Poluentes Químicos da Água/toxicidade , ortoaminobenzoatos/toxicidade , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Pirazóis/toxicidade , Bufonidae/crescimento & desenvolvimento , Relação Dose-Resposta a DrogaRESUMO
Air pollution, particularly fine particulate matter with an aerodynamic diameter of ≤ 2.5 µm (PM2.5), has been recognized for its adverse effects on multiple organs beyond the lungs. Among these, the bone began to garner significant attention. This review covers epidemiological, animal and cell studies on PM2.5 exposure and bone health as well as studies on PM2.5-induced diseases with skeletal complications. Emerging evidence from epidemiological studies indicates a positive association between PM2.5 exposure and the incidence of osteoporosis and fractures, along with a negative association with bone mineral density. Experimental studies have demonstrated that PM2.5 can disrupt the metabolic balance between osteoclasts and osteoblasts through inflammatory responses, oxidative stress, and endocrine disruption, thereby triggering bone loss and osteoporosis. Additionally, this review proposes a secondary mechanism by which PM2.5 may impair bone homeostasis via pathological alterations in other organs, offering new perspectives on the complex interactions between environmental pollutants and bone health. In conclusion, this contemporary review underscores the often-overlooked risk factors of PM2.5 in terms of its adverse effects on bone and elucidates the mechanisms of both primary and secondary toxicity. Further attention should be given to exploring the molecular mechanisms of PM2.5-induced bone impairment and developing effective intervention strategies. With global climate change, increasing ozone pollution, emerging pollutants, and multifactorial exposure to environmental factors, these issues are likely to become of greater concern in the near future.
RESUMO
Humans are exposed to a range of endocrine disrupting chemicals (EDCs). Many studies demonstrate that exposures to EDCs during critical windows of development can permanently affect endocrine health outcomes. Most experimental studies address changes in secretion of hormones produced by gonads, thyroid gland and adrenals, and little is known about the ability of EDCs to produce long-term changes in the hypothalamic-pituitary (HP) control axes. Here, we examined the long-term effects of three common EDCs on male mouse HP gene expression, following developmental exposures. Pregnant mice were exposed to 0.2 mg/ml solutions of bisphenol S (BPS), 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), or 3,3',5,5'-tetrabromobisphenol A (TBBPA) from pregnancy day 8 through lactation day 21 (weaning day). Male offspring were left untreated until postnatal day 140, where pituitaries and hypothalami were collected. Pituitaries were assed for gene expression via RNA sequencing, while specific genes were assessed for expression in hypothalami via RT-qPCR. Differential expression, as well as gene enrichment and pathway analysis, indicated that all three chemicals induced long-term changes, (mostly suppression) in pituitary genes involved in its endocrine function. BPS and BDE-47 produced effects overlapping significantly at the level of effected genes and pathways. All three chemicals altered pathways of gonad and liver HP axes, while BPS altered HP-adrenal and BDE-47 altered HP-thyroid pathways specifically. All three chemicals reduced expression of immune genes in the pituitaries. Targeted gene expression in the hypothalamus indicates down regulation of hypothalamic endocrine control genes by BPS and BDE-47 groups, concordant with changes in the pituitary, suggesting that these chemicals suppress overall HP endocrine function. Interestingly, all three chemicals altered pituitary genes of GPCR-mediated intracellular signaling molecules, key signalers common to many pituitary responses to hormones. The results of this study show that developmental exposures to common EDCs have long-term impacts on hormonal feedback control at the hypothalamic-pituitary level.