Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(14)2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39063209

RESUMO

'Duli' (Pyrus betulifolia Bunge) is one of the main rootstocks of pear trees in China. Gibberellin (GA) is a key plant hormone and the roles of GA in nitrate (NO3-) uptake and metabolism in plants remain unclear. In this study, we investigated the effects of exogenous GA3 on the N metabolism of 'Duli' seedlings under NO3- deficiency. The results showed that exogenous GA3 significantly improves 'Duli' growth under NO3- deficiency. On the one hand, GA3 altered the root architecture, increased the content of endogenous hormones (GA3, IAA, and ZR), and enhanced photosynthesis; on the other hand, it enhanced the activities of N-metabolizing enzymes and the accumulation of N, and increased the expression levels of N absorption (PbNRT2) and the metabolism genes (PbNR, PbGILE, PbGS, and PbGOGAT). However, GA3 did not delay the degradation of chlorophyll. Paclobutrazol had the opposite effect on growth. Overall, GA3 can increase NO3- uptake and metabolism and relieve the growth inhibition of 'Duli' seedlings under NO3- deficiency.


Assuntos
Giberelinas , Nitratos , Nitrogênio , Pyrus , Plântula , Plântula/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Nitratos/metabolismo , Giberelinas/metabolismo , Nitrogênio/metabolismo , Pyrus/metabolismo , Pyrus/genética , Pyrus/crescimento & desenvolvimento , Pyrus/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo , Clorofila/metabolismo
2.
Plants (Basel) ; 13(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38891239

RESUMO

Polyploidization produces abundant phenotypic variation. Little is currently known about adventitious root (AR) development variation due to polyploidization. In this study, we analyzed the morphological, cytological, and physiological variations in AR development between tetraploid and diploid Populus plants during in vitro rooting culture. Compared to the diploids, the AR formation times and rooting rates of the tetraploids' stem explants had non-significant changes. However, the tetraploid ARs exhibited significantly slower elongation growth than the diploid ARs. Cytological observation showed that the tetraploid ARs were characterized by shorter root meristems and reduced meristem cell numbers, suggesting the reasons for the slow AR elongation. Analysis of hormones and related metabolites during AR development demonstrated that the total auxin, cytokinin, and jasmonic acid contents were significantly lower in the tetraploid ARs than in those of the diploids, and that the ratio of total auxins to total CKs at 0 h of AR development was also lower in the tetraploids than in the diploids, whereas the total salicylic acid content of the tetraploids was consistently higher than that of the diploids. qPCR analysis showed that the expression levels of several hormone signaling and cell division-related genes in the tetraploid ARs significantly differed from those in the diploids. In conclusion, the slow elongation of the tetraploid ARs may be caused by the endogenous hormone-mediated meristem shortening. Our findings enhance the understanding of polyploidization-induced variation in AR development of forest trees.

3.
Pharmacol Res ; 205: 107253, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38862072

RESUMO

Melatonin, a versatile hormone produced by the pineal gland, has garnered considerable scientific interest due to its diverse functions. In the eye, melatonin regulates a variety of key processes like inhibiting angiogenesis by reducing vascular endothelial growth factor levels and protecting the blood-retinal barrier (BRB) integrity by enhancing tight junction proteins and pericyte coverage. Melatonin also maintains cell health by modulating autophagy via the Sirt1/mTOR pathways, reduces inflammation, promotes antioxidant enzyme activity, and regulates intraocular pressure fluctuations. Additionally, melatonin protects retinal ganglion cells by modulating aging and inflammatory pathways. Understanding melatonin's multifaceted functions in ocular health could expand the knowledge of ocular pathogenesis, and shed new light on therapeutic approaches in ocular diseases. In this review, we summarize the current evidence of ocular functions and therapeutic potential of melatonin and describe its roles in angiogenesis, BRB integrity maintenance, and modulation of various eye diseases, which leads to a conclusion that melatonin holds promising treatment potential for a wide range of ocular health conditions.


Assuntos
Oftalmopatias , Melatonina , Melatonina/uso terapêutico , Melatonina/metabolismo , Melatonina/farmacologia , Humanos , Animais , Oftalmopatias/tratamento farmacológico , Oftalmopatias/metabolismo , Olho/metabolismo , Olho/irrigação sanguínea , Olho/efeitos dos fármacos , Barreira Hematorretiniana/metabolismo , Barreira Hematorretiniana/efeitos dos fármacos
4.
Front Plant Sci ; 15: 1349202, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38855464

RESUMO

Introduction: Arbuscular mycorrhizal fungi (AMF) and dark septate endophytic fungi (DSEs) generally coexist in the roots of plants. However, our understanding of the effects of their coexistence on plant growth and stress resistance is limited. Methods: In the present study, the effects of single and dual inoculation of AMF and DSE on the growth, photosynthetic physiology, glutathione (GSH) metabolism, endogenous hormones, and cadmium (Cd) content of maize under 25 mg•kg-1 Cd stress were investigated. Results: Compared with that after the non-inoculation treatment, AMF+DSE co-inoculation significantly increased the photosynthetic rate (Pn) of maize leaves; promoted root GSH metabolism; increased the root GSH concentration and activity of γ-glutamyl cysteine synthase (γ-GCS), ATP sulfatase (ATPS) and sulfite reductase (SIR) by 215%, 117%, 50%, and 36%, respectively; and increased the concentration of endogenous hormones in roots, with increases in zeatin (ZR), indole-3 acetic acid (IAA), and abscisic acid (ABA) by 81%, 209%, and 72%, respectively. AMF inoculation, DSE inoculation and AMF+DSE co-inoculation significantly increased maize biomass, and single inoculation with AMF or DSE increased the Cd concentration in roots by 104% or 120%, respectively. Moreover, significant or highly significant positive correlations were observed between the contents of ZR, IAA, and ABA and the activities of γ-GCS, ATPS, and SIR and the glutathione (GSH) content. There were significant or highly significant positive interactions between AMF and DSE on the Pn of leaves, root GSH metabolism, and endogenous hormone contents according to two-way analysis of variance. Therefore, the coexistence of AMF and DSE synergistically enhanced the Cd tolerance of maize.

5.
BMC Genomics ; 25(1): 229, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429670

RESUMO

BACKGROUND: Alfalfa (Medicago sativa. L) is one of the best leguminous herbage in China and even in the world, with high nutritional and ecological value. However, one of the drawbacks of alfalfa is its sensitivity to dry conditions, which is a global agricultural problem. The objective of this study was to investigate the regulatory effects of endogenous nitric oxide (NO) on endogenous hormones and related miRNAs in alfalfa seedling leaves under drought stress. The effects of endogenous NO on endogenous hormones such as ABA, GA3, SA, and IAA in alfalfa leaves under drought stress were studied. In addition, high-throughput sequencing technology was used to identify drought-related miRNAs and endogenous NO-responsive miRNAs in alfalfa seedling leaves under drought stress. RESULT: By measuring the contents of four endogenous hormones in alfalfa leaves, it was found that endogenous NO could regulate plant growth and stress resistance by inducing the metabolism levels of IAA, ABA, GA3, and SA in alfalfa, especially ABA and SA in alfalfa. In addition, small RNA sequencing technology and bioinformatics methods were used to analyze endogenous NO-responsive miRNAs under drought stress. It was found that most miRNAs were enriched in biological pathways and molecular functions related to hormones (ABA, ETH, and JA), phenylpropane metabolism, and plant stress tolerance. CONCLUSION: In this study, the analysis of endogenous hormone signals and miRNAs in alfalfa leaves under PEG and PEG + cPTIO conditions provided an important basis for endogenous NO to improve the drought resistance of alfalfa at the physiological and molecular levels. It has important scientific value and practical significance for endogenous NO to improve plant drought resistance.


Assuntos
MicroRNAs , Plântula , Plântula/genética , Plântula/metabolismo , Medicago sativa/genética , Óxido Nítrico/metabolismo , Secas , MicroRNAs/genética , MicroRNAs/metabolismo , Hormônios/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
6.
Plants (Basel) ; 13(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38498538

RESUMO

When plants are exposed to salt stress, endogenous hormones are essential for their responses through biosynthesis and signal transduction pathways. However, the roles of endogenous hormones in two cliff species (Opisthopappus taihangensis and Opisthopappus longilobus (Opisthopappus genus)) in the Taihang Mountains under salt stress have not been investigated to date. Following different time treatments under 500 mM salt concentrations, 239 differentially expressed gene (DEG)-related endogenous hormones were identified that exhibited four change trends, which in Profile 47 were upregulated in both species. The C-DEG genes of AUX, GA, JA, BR, ETH, and ABA endogenous hormones were significantly enriched in Opisthopappus taihangensis (O. taihangensis) and Opisthopappus longilobus (O. longilobus). During the responsive process, mainly AUX, GA, and JA biosynthesis and signal transduction were triggered in the two species. Subsequently, crosstalk further influenced BR, EHT, ABA, and MAPK signal transduction pathways to improve the salt resistance of the two species. Within the protein-protein interactions (PPI), seven proteins exhibited the highest interactions, which primarily involved two downregulated genes (SAUR and GA3ox) and eight upregulated genes (ACX, MFP2, JAZ, BRI1, BAK1, ETR, EIN2, and SNRK2) of the above pathways. The more upregulated expression of ZEP (in the ABA biosynthesis pathway), DELLA (in the GA signaling pathway), ABF (in the ABA signaling pathway), and ERF1 (in the ETH signaling pathway) in O. taihangensis revealed that it had a relatively higher salt resistance than O. longilobus. This revealed that the responsive patterns to salt stress between the two species had both similarities and differences. The results of this investigation shed light on the potential adaptive mechanisms of O. taihangensis and O. longilobus under cliff environments, while laying a foundation for the study of other cliff species in the Taihang Mountains.

7.
Plant Physiol Biochem ; 210: 108548, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552263

RESUMO

Salt stress is an important abiotic stress that seriously affects plant growth. In order to research the salt tolerance of walnut rootstocks so as to provide scientific basis for screening salt-tolerant walnut rootstocks, two kinds of black walnut seedlings, Juglans microcarpa L. (JM) and Juglans nigra L. (JN), were treated under salt stress with different concentrations of NaCl (0, 50, 100, and 200 mM) and the growth situation of seedlings were observed. The physiological indexes of JM and JN seedlings were also measured in different days after treatment. Our study showed salt stress inhibited seedlings growth and limited biomass accumulation. Walnut mainly increased osmotic adjustment ability by accumulation Pro and SS. Furthermore, with the duration of treatment time increased, SOD and APX activities decreased, TPC and TFC contents increased. Walnut accumulated Na mostly in roots and transported more K and Ca to aboveground parts. The growth and physiological response performance differed between JM and JN, specifically, the differences occurred in the ability to absorb minerals, regulate osmotic stress, and scavenge ROS. Salt tolerance of JM and JN was assessed by principal component analysis (PCA) and resulted in JN > JM. In conclusion, our results indicated that JN has higher salt tolerance than JM, and JN might be used as a potential germplasm resource for the genetic breeding of walnuts.


Assuntos
Juglans , Tolerância ao Sal , Plântula , Juglans/fisiologia , Juglans/metabolismo , Juglans/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/fisiologia , Plântula/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/fisiologia , Superóxido Dismutase/metabolismo , Cloreto de Sódio/farmacologia
8.
Planta ; 259(3): 71, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38353793

RESUMO

MAIN CONCLUSION: Plant growth regulators, sucrose concentration, and light quality significantly impact in vitro regeneration of 'Harmony'. Blue light promotes photomorphogenesis by enhancing light energy utilization, adjusting transcription of light signal genes, and altering hormone levels. Hydrangea quercifolia cv. 'Harmony', celebrated for lush green foliage and clusters of white flowers, has been extensively researched for its regenerative properties. Regeneration in stem segments, leaves, and petioles is facilitated by exogenous auxin and cytokinins (CTKs), with the concentration of sucrose (SC) being a key determinant for shoot regeneration from leaves. The study also highlights the significant impact of light conditions on photomorphogenesis. With an increase in the proportion of red (R) light, there is an inhibitory effect, leading to a reduction in leaf area, a decrease in the quantum yield of PSII (ΦPSII), and an increase in non-photochemical quenching (ΦNPQ) and non-regulated energy dissipation in PSII (ΦNO). Conversely, blue (B) light enhances growth, characterized by an increase in leaf area, elevated ΦPSII, and stable ΦNPQ and ΦNO levels. Additionally, B light induces the upregulation of HqCRYs, HqHY5-like, HqXTH27-like, and HqPHYs genes, along with an increase in endogenous CTKs levels, which positively influence photomorphogenesis independent of HqHY5-like regulation. This light condition also suppresses the synthesis of endogenous gibberellins (GA) and brassinosteroids (BR), further facilitating photomorphogenesis. In essence, B light is fundamental in expediting photomorphogenesis in 'Harmony', demonstrating the vital role in plant growth and development.


Assuntos
Hydrangea , Reguladores de Crescimento de Plantas , Luz Azul , Citocininas , Sacarose , Expressão Gênica
9.
Tree Physiol ; 44(1)2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-37847604

RESUMO

Root pruning hinders the absorption and utilization of nutrients and water by seedlings in the short term. Arbuscular mycorrhizal fungi (AMF) are an important source of nutrient and water for seedlings except for the root system. However, the mechanism by which AMF affect the physiological growth of seedlings after root pruning has rarely been studied. In this study, a pot experiment was conducted through a three-compartment partition system to clarify the effects of Funneliformis mosseae (F. mosseae) strain BGC XJ07A on the physiological growth of root-pruned Robinia pseudoacacia seedlings. Five root pruning treatments (zero, one-fifth, one-fourth, one-third and one-half of the taproot length were removed) were applied to noninoculated seedlings and those inoculated with F. mosseae. The results showed that the presence of F. mosseae significantly increased the shoot and root biomasses, leaf photosynthetic rate, stomatal conductance and transpiration rate. The root projected area, root surface area, average root diameter, root density, root volume and number of root tips of the inoculated seedlings were higher than those without inoculation in all root pruning treatments. The root cytokinin, gibberellins and indole-3-acetic acid concentrations, but root abscisic acid concentration, were higher than those measured in the absence of inoculation in all root pruning treatments. Moreover, the changes in the root endogenous hormone concentrations of the seedlings were closely related to the root morphological development and seedling biomass. The AMF increased the soil available nitrogen, soil available phosphorus, soil available potassium and soil organic matter concentrations compared with the noninoculated treatment. These results indicate that AMF can alleviate the adverse effects of root pruning on the physiological growth of R. pseudoacacia and soil properties, and can provide a basis for AMF application to forest cultivation and the sustainable development of forest ecosystems.


Assuntos
Fungos , Micorrizas , Robinia , Micorrizas/fisiologia , Plântula , Ecossistema , Fotossíntese , Água , Solo
10.
Plant Signal Behav ; 18(1): 2251750, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-37639213

RESUMO

Accumulating experimental data have shown that endogenous hormones play important roles in regulating seed dormancy and germination. Zanthoxylum nitidum is a medicinal plant that propagates via seeds, which require a long dormancy period for normal germination, and complex changes in metabolites occur during the germination process. However, the regulatory network of endogenous hormones and metabolites during the germination of Z. nitidum seeds remains unclear. This study investigated the dynamic changes in the levels of metabolites and endogenous hormones during the germination of Z. nitidum seeds. The results revealed an increase in the levels of gibberellin 3 (GA3), 12-oxophytodienoic acid (OPDA), 1-aminocyclopropane-1-carboxylic acid (ACC) and trans-zeatin (TZ) and decrease in the levels of abscisic acid (ABA), jasmonic acid (JA), N-[(-)-jasmonoyl]-(S)-isoleucine (JA-Ile) and trans-zeatin riboside (TZR). Overall, 112 differential metabolites (DAMs) were screened from 3 seed samples (Sa, Sb and Sc), most of which are related to primary metabolism. A total of 16 DAMs (including 3 monosaccharides, 3 phosphate lipids, 3 carboxylic acids, 1 amino acid, 2 pyrimidines, and 4 nucleotides) were identified in the three sample comparison pairs (Sa vs Sb, Sa vs Sc, and Sb vs Sc); these DAMs were significantly enriched in purine metabolism; glycerophospholipid metabolism, citrate cycle (TCA cycle), alanine, aspartate and glutamate metabolism and pyruvate metabolism. OPDA, ACC and GAs were significantly positively correlated with upregulated metabolites, whereas ABA and JA were significantly positively correlated with downregulated metabolites. Finally, a hypothetical metabolic network of endogenous hormones that regulate seed germination was constructed. This study deepens our understanding of the importance of endogenous hormonal profiles that mediate seed germination.


Assuntos
Germinação , Zanthoxylum , Ácido Abscísico , Aminoácidos , Sementes
11.
BMC Genomics ; 24(1): 380, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37415142

RESUMO

BACKGROUND: Microspore embryogenesis is an extraordinarily complicated process, comprehensively regulated by a composite network of physiological and molecular factors, among which hormone is one of the most crucial factors. Auxin is required for stress-induced microspore reprogramming, however, the mechanism of its regulation of microspore embryogenesis is still unclear. RESULTS: In this study, we found exogenously spraying 100 mg·L- 1 IAA on the buds of Wucai significantly increased the rate of microspore embryogenesis, and moreover accelerated the process of embryogenesis. Physiological and biochemical tests showed that the contents of amino acids, soluble total sugar, soluble protein, and starch were significantly increased after IAA treatment. Furthermore, exogenously spraying 100 mg·L- 1 IAA significantly enhanced IAA, GA4, and GA9 content, increased catalase (CAT) and malondialdehyde (MDA) activity, and reduced abscisic acid (ABA), MDA and soluble protopectin content, H2O2 and O2·- production rate in the bud with the largest population of late-uninucleate-stage microspores. Transcriptome sequencing was performed on buds respectively treated with 100 mg·L- 1 IAA and fresh water. A total of 2004 DEGs were identified, of which 79 were involved in micropores development, embryonic development and cell wall formation and modification, most of which were upregulated. KEGG and GO analysis revealed that 9.52% of DEGs were enriched in plant hormone synthesis and signal transduction pathways, pentose and glucuronic acid exchange pathways, and oxidative phosphorylation pathways. CONCLUSIONS: These findings indicated that exogenous IAA altered the contents of endogenous hormone content, total soluble sugar, amino acid, starch, soluble protein, MDA and protopectin, the activities of CAT and peroxidase (POD), and the production rate of H2O2 and O2·-. Combined with transcriptome analysis, it was found that most genes related to gibberellin (GA) and Auxin (IAA) synthesis and signal transduction, pectin methylase (PME) and polygalacturonase (PGs) genes and genes related to ATP synthesis and electron transport chain were upregulated, and genes related to ABA synthesis and signal transduction were downregulated. These results indicated that exogenous IAA treatment could change the balance of endogenous hormones, accelerate cell wall degradation, promote ATP synthesis and nutrient accumulation, inhibit ROS accumulation, which ultimately promote microspore embryogenesis.


Assuntos
Brassica , Brassica/metabolismo , Peróxido de Hidrogênio/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Amido/metabolismo , Metabolismo Energético , Hormônios/metabolismo , Parede Celular/metabolismo , Trifosfato de Adenosina/metabolismo
12.
PeerJ ; 11: e15150, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065700

RESUMO

Elymus sibiricus L. is a perennial forage species that has potential to serve as a forage source in livestock grazing systems. However, E. sibiricus has been shown to have a rapid and substantial reduction of aboveground biomass and seed yield after 3 or 4 years and an accelerated aging process. To determine possible aging mechanisms, we planted E. sibiricus seeds in triplicate blocks in 2012, 2015, and 2016, respectively, and harvested samples of leaves and roots at the jointing and heading stages in 2018 and 2019 to determine oxidative indices and endogenous hormones. The fresh aboveground biomass of 4- and 5-year old plants declined by 34.2% and 52.4% respectively compared with 3-year old plants, and the seed yield declined by 12.7% and 34.1%, respectively. The water content in leaves was 51.7%, 43.3%, and 35.6%, and net photosynthesis was 7.73, 6.35, and 2.08 µmol/m2·s in 3-, 4-, and 5-year old plants, respectively. The superoxide anion radical generation rate in leaves and roots did not show any aging pattern. There was a non-significant increase in malondialdehyde concentration with plant age, particularly in leaves and roots at the heading stage in 2019. The superoxide dismutase activity showed a declining trend with age of plant roots at the jointing stage in both 2018 and 2019. The peroxidase activity declined with plant age in both leaves and roots, for example, and the catalase activity in roots 4- and 7-year old plants declined by 13.8% and 0.85%, respectively, compared to 3-year old plants at the heading stage in 2018. Therefore, the reduced capacity of the antioxidant system may lead to oxidative stress during plant aging process. Overall, the concentrations of plant hormones, auxin (IAA), gibberellin (GA), zeatin (ZT), and abscisic acid (ABA) were significantly lower in roots than in leaves. The IAA concentration in leaves and roots exhibited different patterns with plant age. The ZT concentrations in leaves of 3-year old plants was 2.39- and 2.62-fold of those in 4- and 7-year old plants, respectively at the jointing stage, and in roots, the concentration declined with plant age. The changes in the GA concentration with plant age varied between the physiological stages and between years. The ABA concentrations appeared to increase with plant age, particularly in leaves. In conclusion, the aging process of E. sibiricus was apparently associated with an increase in oxidative stress, a decrease of ZT and an increase of ABA, particularly in roots. These findings highlight the effects of plant age on the antioxidant and endogenous hormone activity of E. sibiricus. However, these plant age-related trends showed variations between plant physiological stages and between harvest years that needs to be researched in the future to develop strategies to manage this forage species.


Assuntos
Antioxidantes , Elymus , Elymus/fisiologia , Tibet , Reguladores de Crescimento de Plantas , Ácido Abscísico , Zeatina , Hormônios
13.
Front Plant Sci ; 14: 1149182, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035086

RESUMO

As the main flavor components of tea, the contents of epigallocatechin-3-gallate (EGCG), theanine and caffeine are regulated by ambient temperature. However, whether the biosynthesis of EGCG, theanine and caffeine in response to temperature is regulated by endogenous hormones and its mechanism is still unclear. In this study, tea cuttings cultivated in the phytotron which treated at different temperatures 15℃, 20℃, 25℃ and 30℃, respectively. The UPLC and ESI-HPLC-MS/MS were used to determine the contents of EGCG, theanine, caffeine and the contents of phytohormones in one leaf and a bud. The results showed that indoleacetic acid (IAA), gibberellin 1(GA1) and gibberellin 3 (GA3) were significantly correlated with the content of EGCG; Jasmonic acid (JA), jasmonate-isoleucine (JA-Ile) and methyl jasmonate (MeJA) were strongly correlated with theanine content; IAA, GA1 and gibberellin 4 (GA4) were significantly correlated with caffeine content at different temperatures. In order to explore the internal intricate relationships between the biosynthesis of these three main taste components, endogenous hormones, and structural genes in tea plants, we used multi-omics and multidimensional correlation analysis to speculate the regulatory mechanisms: IAA, GA1 and GA3 up-regulated the expressions of chalcone synthase (CsCHS) and trans-cinnamate 4-monooxygenase (CsC4H) mediated by the signal transduction factors auxin-responsive protein IAA (CsIAA) and DELLA protein (CsDELLA), respectively, which promoted the biosynthesis of EGCG; IAA, GA3 and GA1 up-regulated the expression of CsCHS and anthocyanidin synthase (CsANS) mediated by CsIAA and CsDELLA, respectively, via the transcription factor WRKY DNA-binding protein (CsWRKY), and promoted the biosynthesis of EGCG; JA, JA-Ile and MeJA jointly up-regulated the expression of carbonic anhydrase (CsCA) and down-regulated the expression of glutamate decarboxylase (CsgadB) mediated by the signal transduction factors jasmonate ZIM domain-containing protein (CsJAZ), and promoted the biosynthesis of theanine; JA, JA-Ile and MeJA also jointly inhibited the expression of CsgadB mediated by CsJAZ via the transcription factor CsWRKY and AP2 family protein (CsAP2), which promoted the biosynthesis of theanine; IAA inhibited the expression of adenylosuccinate synthase (CspurA) mediated by CsIAA via the transcription factor CsWRKY; GA1 and gibberellin 4 (GA4) inhibited the expression of CspurA mediated by CsDELLA through the transcription factor CsWRKY, which promoted the biosynthesis of caffeine. In conclusion, we revealed the underlying mechanism of the biosynthesis of the main taste components in tea plant in response to temperature was mediated by hormone signal transduction factors, which provided novel insights into improving the quality of tea.

14.
Front Plant Sci ; 14: 1121259, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37077643

RESUMO

Introduction: Ormosia henryi is a rare and endangered plant growing in southern China. Somatic embryo culture is an effective measure for the rapid propagation of O. henryi. It has not been reported how regulatory genes induce somatic embryogenesis by regulating endogenous hormone changes during the process of somatic embryogenesis in O. henryi. Methods: In this study, we analysed the endogenous hormone levels and transcriptome data of nonembryogenic callus (NEC), embryogenic callus (EC), globular embryo (GE) and cotyledon embryo (CE) in O. henryi. Results: The results showed that the indole-3-acetic acid (IAA) content was higher and the cytokinins (CKs) content was lower in EC than in NEC, and the gibberellins (GAs) and abscisic acid (ABA) contents were significantly higher in NEC than in EC. The contents of IAA, CKs, GAs and ABA increased significantly with EC development. The expression patterns of differentially expressed genes (DEGs) involved in the biosynthesis and signal transduction of auxin (AUX) (YUCCA and SAUR), CKs (B-ARR), GAs (GA3ox, GA20ox, GID1 and DELLA) and ABA (ZEP, ABA2, AAO3, CYP97A3, PYL and ABF) were consistent with the levels of endogenous hormones during somatic embryogenesis (SE). In this study, 316 different transcription factors (TFs) regulating phytohormones were detected during SE. AUX/IAA were downregulated in the process of EC formation and GE differentiation into CE, but other TFs were upregulated and downregulated. Conclusion: Therefore, we believe that relatively high IAA content and low CKs, GAs and ABA contents contribute to EC formation. The differential expression of AUX, CKs, GAs and ABA biosynthesis and signal transduction genes affected the endogenous hormone levels at different stages of SE in O. henryi. The downregulated expression of AUX/IAA inhibited NEC induction, promoted EC formation and GE differentiation into CE.

15.
Front Plant Sci ; 14: 1104948, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875586

RESUMO

Introduction: Alfalfa (Medicago sativa L.) has significant feed value and ecological improvement function of marginal land. The difference in the maturity period of seeds in the same lots may be a mechanism of environmental adaptation. Seed color is a morphological trait associated with seed maturity. A clear understanding of the relationship between the seed color and seed stress resistance is helpful for seed selection for marginal land. Methods: This study evaluated the seed germination parameters (germinability and final germination percentage) and subsequent seedling growth (sprout height, root length, fresh and dry weight) of alfalfa under different salt stress, measured the electrical conductivity, water uptake, seed coat thickness, and endogenous hormone content in alfalfa seeds with different colors (green, yellow and brown). Results: The results showed that seed color significantly influenced the seed germination and seedling growth. The germination parameters and seedling performance of brown seeds were significantly lower than that of green and yellow seeds under different salt stress. The germination parameters and seedling growth of brown seed declined most obviously with the aggravation of salt stress. The results suggested that brown seeds were less resistant to salt stress. Seed color had a significant effect on electrical conductivity, and it indicated that the yellow seeds had higher vigor. The seed coat thickness of various colors did not differ significantly. The seed water uptake rate and hormone content (IAA, GA3, ABA) in brown seeds were higher than that in green and yellow seeds, while the (IAA+GA3)/ ABA in yellow seeds were higher than green and brown seeds. The alterations in seed germination and seedling performance among seed colors are likely due to the combination effect of the content and balance between IAA+GA3 and ABA. Discussion: These results could improve the understanding of stress adaptation mechanisms of alfalfa and provide a theoretical basis for screening alfalfa seeds with high stress resistance.

16.
Tree Physiol ; 43(1): 118-129, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36150026

RESUMO

Hybrid larch is an excellent afforestation species in northern China. The instability of seed yield is an urgent problem to be solved. The biological characteristics related to seed setting in larch are different from those in angiosperms and other gymnosperms. Studying the developmental mechanism of the larch sporophyll can deepen our understanding of conifer reproductive development and help to ensure an adequate supply of seeds in the seed orchard. The results showed that the formation of microstrobilus primordia in hybrid larch could be observed in anatomical sections collected in the middle of July. The contents of endogenous gibberellin 3 (GA3) and abscisic acid (ABA) were higher and the contents of GA4, GA7, jasmonic acid and salicylic acid were lower in multiseeded larch. Transcriptome analysis showed that transcription factors were significantly enriched in the AP2 family. There were 23 differentially expressed genes in the buds of the multiseeded and less-seeded types, and the expression of most of these genes was higher in the buds than in the needles. We conclude that mid-July is the early stage of reproductive organ development in hybrid larch and is suitable for the study of reproductive development. GA3 and ABA may be helpful for improving seed setting in larch, and 23 AP2/EREBP family genes are involved in the regulation of reproductive development in larch.


Assuntos
Larix , Larix/fisiologia , Perfilação da Expressão Gênica , Ácido Abscísico/metabolismo , China
17.
Tree Physiol ; 43(3): 467-485, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36331330

RESUMO

In many perennial fruit species, including grapevine (Vitis vinifera L.), the highly complex process of somatic embryogenesis (SE) can result in the formation of a deformed embryo, although the underlying reasons are still poorly understood. Here, V. vinifera cv. 'Chardonnay' cotyledonary embryos with distinct morphologies were used to address this issue. Normal cotyledonary embryos (NCEs) and elongated cotyledonary embryos (ECEs) were observed to have better-developed vasculature and shoot meristems than the vitrified cotyledonary embryos (VCEs) and fused cotyledonary embryos (FCEs), but ECEs were less developed. We determined that the morphological differences in these phenotypically abnormal embryos were likely associated with endogenous hormone levels, since concentrations of the phytohormones indoleacetic acid (IAA) and abscisic acid (ABA) in NCEs were higher than in the other three types. Comparative transcriptome analysis revealed large differences in gene expression of the hormone signaling pathways in normal and abnormal cotyledonary embryos. Weighted gene co-expression network analysis of the different cotyledonary types allowed the identification of co-regulated gene modules associated with SE, suggesting a role for ERF family genes and other transcription factors (TFs) in regulating morphology. Moreover, an analysis of morphology-specific gene expression indicated that the activation of a specific protein kinase, small heat shock proteins (sHSPs) and certain TFs was closely associated with the formation of normal cotyledonary embryos. Our comparative analyses provide insights into the gene networks regulating somatic cotyledon development and open new avenues for research into plant regeneration and functional genomic studies of malformed embryos.


Assuntos
Cotilédone , Vitis , Cotilédone/metabolismo , Transcriptoma , Vitis/fisiologia , Reguladores de Crescimento de Plantas , Hormônios/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
18.
Front Plant Sci ; 14: 1332517, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38259946

RESUMO

The content of kernel starch (STC), which is a fundamental indicator of the nutritional value of maize, is directly correlated with the grain's taste and aroma. Both calcium (Ca) and magnesium (Mg) are critical nutrients that play a significant role in the growth and development of maize, as well as in the synthesis of STC. To determine the physiological driving mechanisms of Ca and Mg effects on the accumulation of STC synthesis in maize kernels and the characteristics of their effects on endogenous hormones and enzymes of STC synthesis in maize leaves, our study applied foliar Ca and Mg fertilizers at various levels to maize prior to pollination. (1) The levels of Ca, Mg, indole-3-acetic acid (IAA), gibberellin (GA), and zeatin riboside (ZR) in maize leaves increased and then decreased after the supplementation of Ca and Mg. They peaked on the 32nd day after pollination. In contrast, the levels of abscisic acid (ABA) initially decreased and then increased. Ca and Mg had a negative correlation with ABA and a positive correlation with IAA, GA, and ZR. (2) As the levels of Ca and Mg increased, correspondingly rose the activities of enzymes responsible for STC synthesis and the content of STC and its components. Principally influencing the synthesis of STC were ABA, IAA, uridine diphosphate-glucose pyrophosphorylase (UDPG), granule-bound starch synthase (GBSS), and soluble starch synthase (SSS). (3) "IAA-UDPG or GBSS-STC" was the predominant physiological regulation pathway of Ca on kernel STC, whereas "IAA-GBSS-STC" was the dominant physiological regulation pathway of Mg on kernel STC. The regulatory impact of STC by UDPG and GBSS was positive, as were the effects of IAA on UDPG and GBSS. In conclusion, the accumulation of kernel starch was significantly enhanced by Ca and Mg supplementation via the modulation of endogenous hormone levels and key enzyme activities. This research identifies a viable approach to improve the nutritional composition of maize.

19.
Front Plant Sci ; 13: 954788, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36061797

RESUMO

Dacrydium pectinatum de Laubenfels is a perennial dioeciously gymnosperm species dominant in tropical montane rain forests. Due to deforestation, natural disasters, long infancy, and poor natural regeneration ability, the population of this species has been significantly reduced and listed as an endangered protected plant. To better understand the female cone development in D. pectinatum, we examined the morphological and anatomical changes, analyzed the endogenous hormone dynamics, and profiled gene expression. The female reproductive structures were first observed in January. The morpho-histological observations suggest that the development of the D. pectinatum megaspore can be largely divided into six stages: early flower bud differentiation, bract primordium differentiation, ovule primordium differentiation, dormancy, ovule maturity, and seed maturity. The levels of gibberellins (GA), auxin (IAA), abscisic acid (ABA), and cytokinin (CTK) fluctuate during the process of female cone development. The female cones of D. pectinatum need to maintain a low level of GA3-IAA-ABA steady state to promote seed germination. The first transcriptome database for female D. pectinatum was generated, revealing 310,621 unigenes. Differential expression analyses revealed several floral (MADS2, AGL62, and LFY) and hormone biosynthesis and signal transduction (CKX, KO, KAO, ABA4, ACO, etc.) genes that could be critical for female cone development. Our study provides new insights into the cone development in D. pectinatum and the foundation for female cone induction with hormones.

20.
Int J Mol Sci ; 23(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36142386

RESUMO

Cold stress is known to influence tomato growth, development, and yield. In this study, we analyzed the germination of tomato seeds treated with exogenous glycine betaine (GB) at a low temperature (14 °C). The results showed that cold stress inhibited tomato seed germination, and pretreatment with exogenous GB reduced this inhibition and enhanced the germination rate (GR), germination index (GI), and viability of tomato seeds at low temperatures. Analysis of gene expression and metabolism revealed that GB positively regulated endogenous hormone gibberellin (GA) content and negatively regulated abscisic acid (ABA) content, while GB reduced the starch content in the seeds by up-regulating the amylase gene expression. Gene expression analysis showed that the key genes (SlSOD, SlPOD, and SlchlAPX) involved in reactive oxygen species (ROS) scavenging systems were up-regulated in GB-pretreated tomato seeds compared with the control. At the same time, levels of malondialdehyde and hydrogen peroxide were significantly lower, while the proline content and peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) levels were elevated compared with those in the control. These results demonstrate that exogenous GB as a positive regulator effectively alleviated the inhibition of tomato seed germination under cold stress by different signal pathways.


Assuntos
Germinação , Solanum lycopersicum , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Amilases/metabolismo , Betaína/metabolismo , Betaína/farmacologia , Catalase/metabolismo , Resposta ao Choque Frio , Giberelinas/metabolismo , Giberelinas/farmacologia , Hormônios/metabolismo , Peróxido de Hidrogênio/metabolismo , Solanum lycopersicum/genética , Malondialdeído/metabolismo , Peroxidases/metabolismo , Prolina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sementes/genética , Amido/metabolismo , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA