RESUMO
Senescence is a degenerative process that occurs with ageing, and in the female reproductive system, senescence occurs earlier in the ovaries than in other tissues and organs, which implies a decrease in oocyte quality and exhaustion of the primordial follicular pool, leading to impaired ovarian function and an inability to maintain normal fertility. Unfortunately, the development of curative and effective treatments for ovarian senescence is still a considerable challenge. Currently, mesenchymal stem cells (MSCs)-based therapies for treating various refractory diseases, especially ovarian dysfunction, have been extensively studied and confirmed. However, the mechanisms by which MSCs improve ovarian senescence are not yet clear. Therefore, in this study, a mouse ageing model was generated via the intraperitoneal injection of a D-galactose (D-gal) solution, and the effects of menstrual blood-derived endometrial stem cells (MenSCs) transplantation on the ovarian follicle count, fibrosis level, and degree of apoptosis were evaluated. Subsequently, an ovarian granulosa cell ageing model was induced with H2O2, and CCK-8 assays, flow cytometry, mitochondrial membrane potential analysis and Western blotting were subsequently performed to further investigate the potential mechanism by which MenSCs ameliorate cellular oxidative damage. Overall, our findings demonstrated that MenSCs treatment can increase the cellular antioxidant capacity by activating the NRF2/HO-1 signalling pathway and further ameliorate the inflammatory ovarian microenvironment, apoptosis and dysfunction in ageing mice. These results provide reliable evidence and support for MenSCs-based therapy for ovarian senescence.
RESUMO
Polycystic ovary syndrome (PCOS) is a prevalent endocrine disorder in women, often leading to infertility due to anovulation. Recent advances suggest that endometrial stem cells (EnSCs) hold considerable promise for tissue regeneration, which could be pivotal in treating PCOS. To enhance the survival and stabilization of EnSCs within the ovary, the EnSCs were encapsulated in an injectable alginate/gelatin hydrogel (SC-H), which has excellent biocompatibility to support the survival of EnSCs. Polycystic ovary syndrome was induced in female Wistar rats using intraperitoneal injection of letrozole over 21 days. Then the rats were treated with SC, SC-H and clomiphene citrate for one-month post-PCOS induction. The effects of these treatments were evaluated based on changes in body and ovarian weights, inflammatory markers, endocrine profiles, and ovarian histology. The Induction of PCOS led to a significant increase in body and ovarian cyst weight, elevated serum levels of testosterone, luteinizing hormone (LH), and anti-Müllerian hormone (AMH), alongside reduced follicle-stimulating hormone (FSH) and progesterone levels. Histologically, there was a decrease in granulosa cells, immature follicles, and corpus luteum numbers. Treatment with SC and SC-H significantly mitigated these alterations, indicating improved PCOS conditions. Our findings demonstrate that SC and SC-H treatments can effectively ameliorate the symptoms of letrozole-induced PCOS in rats, primarily through their anti-inflammatory effects. This study lays the groundwork for potential clinical applications of EnSCs encapsulated in alginate/gelatin hydrogel as a novel therapeutic strategy for PCOS, highlighting the importance of biomaterials in stem cell-based therapies.
RESUMO
BACKGROUND: The human endometrium, lining the inner uterus, regenerates over 400 times uniquely during a woman's reproductive life. Endometrial stem cells (eSCs) enrich the tissue, resulting in a dense vascular network, significant angiogenic potential, and effective regeneration power. Being of natural angiogenic properties and proven effective in the treatment of vascular disorders, eSCs can be considered safe, reliable, and superior to other post-natal stem cells. Cluster of Differentiation 146 (CD146) has emerged as a pivotal marker associated with pericytes and endothelial cells for promoting angiogenesis. Endometrial cells with high CD146 expression could proliferate and differentiate into multiple lineages. This study will explore the role of CD146 in eSCs, focusing on the potential to boost the angiogenic and regenerative functions of the cells. The novelty of this study lies in the investigation of CD146 on eSC function, which may open new possibilities for eSC-based therapy in regenerative medicine and vascular disorders. METHODS: The study involved obtaining endometrial biopsies from active reproducing women to isolate and cultivate eSCs. eSCs were assessed for growth factor secretion pattern, characterized for their mesenchymal properties. Finally, eSCs were tested for their angiogenic potential by angiogenic gene expression profile and in-ovo chick embryo model. As aimed, to check the role of CD146 in eSC angiogenesis, CD146+ cells were magnetically sorted and cultured. The sorted cells underwent various analyses, including flowcytometry to identify mesenchymal markers and human growth factor panel to analyze growth factor secretion profiles The study evaluated the angiogenic potential of CD146 + cells using functional assays, including ring formation, endothelial differentiation, and wound scratch assays, to evaluate cell migration and healing capabilities. Molecular insights were obtained through chemokine and cytokine investigations In-ovo Chick model assay was conducted to check the angiogenic potential and evaluated through macroscopic as well as through immunohistochemistry. RESULT: Endometrial stem cells (eSCs) were successfully isolated using a combination of mechanical and enzymatic digestion, followed by culturing in complete DMEM media. The secretion profile of eSCs revealed significant production of various angiogenic growth factors, including Granulocyte macrophage colony-stimulating factor (GM-CSF), granulocyte colony stimulating factor (G-CSF), Vascular endothelial growth factor (VEGF), Fibroblast growth factors (FGF), and Platelet derived growth factor AA (PDGF-AA). The angiogenic gene profile indicated upregulation of several angiogenic genes in eSCs. The mesenchymal nature of eSCs was demonstrated through surface marker analysis (Cluster of differentiation 73, Cluster of differentiation 90, Cluster of differentiation 105) and trilineage differentiation. The in-ovo chick model confirmed the angiogenic potential of eSCs. CD146+ cells, isolated via magnetic sorting, exhibited enhanced angiogenic potential. These cells secreted significant levels of angiogenic growth factors such as VEGF. In Matrigel assays, CD146+ cells formed endothelial ring structures more rapidly and persistently than unsorted eSCs. Semi-quantitative PCR confirmed their endothelial differentiation. CD146+ cells express various angiogenic chemokines such as CXCL5, CXCL8, CCL3, and CCL20 and cytokines such as GM-CSF, Interleukin-1ß (IL-1ß), Interleukin-6 (IL-6), PDGF AA/BB, Epidermal growth factor (EGF), Endothelin 1, Angiopoietin. In-ovo chick model assay showed that CD146+ cells had superior angiogenesis, with more nodes, junctions, and segments compared to eSCs and controls. Immunohistochemistry confirmed increased expression of endothelial markers (Cluster of differentiation 31, VEGF, Vascular associated protein (VAP), Von Willebrand factor (vWF) in CD146+ cells. CONCLUSION: The study highlights the angiogenic potential of endometrial stem cells, particularly the CD146+ cell population. These cells promote angiogenesis, secreting growth factors and forming stable blood vessel structures. CD146+ cells have higher expression levels of VEGF and TGF-α, key factors in angiogenesis. This suggests CD146+ eSCs may be promising for therapeutic applications in vascular diseases requiring angiogenesis. Further research is needed.
Assuntos
Antígeno CD146 , Endométrio , Neovascularização Fisiológica , Feminino , Antígeno CD146/metabolismo , Antígeno CD146/genética , Endométrio/metabolismo , Endométrio/citologia , Endométrio/irrigação sanguínea , Humanos , Animais , Diferenciação Celular , Células-Tronco/metabolismo , Células-Tronco/citologia , Embrião de Galinha , Células Cultivadas , AdultoRESUMO
Stem cells have been documented as a new therapeutic method for ovarian injuries such as premature ovarian failure (POF). However, effects of exosomes (Exos) derived from human endometrial stem cells (EnSCs) on diminished ovarian failure remain to be carefully elucidated. Our study aims to investigate the mechanisms of EnSC-Exos in the recovery of the cisplatin-induced granulosa cell injury model in vitro or POF mouses model in vivo and whether the Hippo signaling pathway is involved in the regulation. In this study, we established successful construction of the cisplatin-induced granulosa cell injury model and evaluated Hippo signaling pathway activation in cisplatin-damaged granulosa cells (GCs). Furthermore, laser scanning confocal microscope and immunofluorescence demonstrated that EnSC-Exos can be transferred to cisplatin-damaged GCs to decrease apoptosis. In addition, the enhanced expression of YAP at the protein level as well as YAP/TEAD target genes, such as CTGF, ANKRD1, and the increase of YAP into the nucleus in immunofluorescence staining after the addition of EnSC-Exos to cisplatin-damaged GCs confirmed the suppression of Hippo signaling pathway. While in vivo, EnSC-Exos successfully remedied POF in a mouse model. Collectively, our findings suggest that chemotherapy-induced POF was associated with the activating of Hippo signaling pathway. Human EnSC-Exos significantly elevated the proliferation of ovarian GCs and the ovarian function by regulating Hippo signaling pathway. These findings provide new insights for further understanding of EnSC-Exos in the recovery of ovary function.
RESUMO
Menstrual blood-derived endometrial stem cells (MenSCs) have attracted increasing interest due to their excellent safety, and lack of ethical dilemma as well as their ability to be periodically obtained in a noninvasive manner. However, although preclinical research as shown the therapeutic potential of MenSCs in several diseases, their poor cell survival and low engraftment at disease sites reduce their clinical efficacy. Flotillins (including Flot1 and Flot2) are implicated in various cellular processes, such as vesicular trafficking, signal transduction, cell proliferation, migration and apoptosis. In this study, we aimed to determine the effects of Flotillins on MenSCs survival, proliferation and migration. Our experimental results show that MenSCs were modified to overexpress Flot1 and/or Flot2 without altering their intrinsic characteristics. Flot1 and Flot2 co-overexpression promoted MenSC viability and proliferation capacity. Moreover, Flot1 or Flot2 overexpression significantly promoted the migration and inhibited the apoptosis of MenSCs compared with the negative control group, and these effects were stronger in the Flot1 and Flot2 gene co-overexpression group. However, these effects were significantly reversed after Flot1 and/or Flot2 knockdown. In conclusion, our results indicate that Flot1 and Flot2 overexpression in MenSCs improved their proliferation and migration and inhibited their apoptosis, and this might be an effective approach to improve the efficiency of cell-based therapies.
Assuntos
Apoptose , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Proteínas de Membrana , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Feminino , Endométrio/citologia , Endométrio/metabolismo , Células-Tronco/metabolismo , Células-Tronco/citologia , Células Cultivadas , Transdução de SinaisRESUMO
Background: At menstruation, the functional layer of the human endometrium sheds off due to the trigger of the release of inflammatory factors, including interleukin 6 (IL-6), as a result of a sharp decline in progesterone levels, leading to tissue breakdown and bleeding. The endometrial mesenchymal stem-like cells (CD140b+CD146+ eMSC) located in the basalis are responsible for the cyclical regeneration of the endometrium after menstruation. Endometrial cells from the menstruation phase have been proven to secrete a higher amount of IL-6 and further enhance the self-renewal and clonogenic activity of eMSC. However, the IL-6-responsive mechanism remains unknown. Thus, we hypothesized that IL-6 secreted from niche cells during menstruation regulates the proliferation and self-renewal of eMSC through the WNT/ß-catenin signaling pathway. Methods: In this study, the content of IL-6 across the menstrual phases was first evaluated. Coexpression of stem cell markers (CD140b and CD146) with interleukin 6 receptor (IL-6R) was confirmed by immunofluorescent staining. In vitro functional assays were conducted to investigate the effect of IL-6 on the cell activities of eMSC, and the therapeutic role of these IL-6- and WNT5A-pretreated eMSC on the repair of injured endometrium was observed using an established mouse model. Results: The endometrial cells secrete a high amount of IL-6 under hypoxic conditions, which mimic the physiological microenvironment in the menstruation phase. Also, the expression of IL-6 receptors was confirmed in our eMSC, indicating their capacity to respond to IL-6 in the microenvironment. Exogenous IL-6 can significantly enhance the self-renewal, proliferation, and migrating capacity of eMSC. Activation of the WNT/ß-catenin signaling pathway was observed upon IL-6 treatment, while suppression of the WNT/ß-catenin signaling impaired the stimulatory role of IL-6 on eMSC activities. IL-6- and WNT5A-pretreated eMSC showed better performance during the regeneration of the injured mouse endometrium. Conclusion: We demonstrate that the high level of IL-6 produced by endometrial cells at menstruation can induce the stem cells in the human endometrium to proliferate and migrate through the activation of the WNT/ß-catenin pathway. Treatment of eMSC with IL-6 and WNT5A might enhance their therapeutic potential in the regeneration of injured endometrium.
Assuntos
Autorrenovação Celular , Endométrio , Interleucina-6 , Menstruação , Células-Tronco Mesenquimais , Via de Sinalização Wnt , Adulto , Animais , Feminino , Humanos , Camundongos , Proliferação de Células , Células Cultivadas , Endométrio/metabolismo , Endométrio/citologia , Interleucina-6/metabolismo , Interleucina-6/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismoRESUMO
BACKGROUND: Premature ovarian failure (POF) caused by cisplatin is a severe and intractable sequela for young women with cancer who received chemotherapy. Cisplatin causes the dysfunction of granulosa cells and mainly leads to but is not limited to its apoptosis and autophagy. Ferroptosis has been also reported to participate, while little is known about it. Our previous experiment has demonstrated that endometrial stem cells (EnSCs) can repair cisplatin-injured granulosa cells. However, it is still unclear whether EnSCs can play a repair role by acting on ferroptosis. METHODS: Western blotting and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) were applied to detect the expression levels of ferroptosis-related genes. CCK-8 and 5-Ethynyl-2'-deoxyuridine (EdU) assays were used to evaluate cell viability. Transmission electron microscopy (TEM) was performed to detect ferroptosis in morphology. And the extent of ferroptosis was assessed by ROS, GPx, GSSG and MDA indicators. In vivo, ovarian morphology was presented by HE staining and the protein expression in ovarian tissue was detected by immunohistochemistry. RESULTS: Our results showed that ferroptosis could occur in cisplatin-injured granulosa cells. Ferroptosis inhibitor ferrostatin-1 (Fer-1) and EnSCs partly restored cell viability and mitigated the damage of cisplatin to granulosa cells by inhibiting ferroptosis. Moreover, the repair potential of EnSCs can be markedly blocked by ML385. CONCLUSION: Our study demonstrated that cisplatin could induce ferroptosis in granulosa cells, while EnSCs could inhibit ferroptosis and thus exert repair effects on the cisplatin-induced injury model both in vivo and in vitro. Meanwhile, Nrf2 was validated to participate in this regulatory process and played an essential role.
Assuntos
Cisplatino , Ferroptose , Fator 2 Relacionado a NF-E2 , Feminino , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Células da Granulosa/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Células-Tronco/metabolismoRESUMO
Although memory functions of immune cells characterized by increased resistance to subsequent infections after initial pathogen exposure are well-established, it remains unclear whether non-immune cells, especially tissue-resident stem cells, exhibit similar memory mechanisms. The present study revealed that detrimental effects of initial viral antigen exposure (human papillomavirus [HPV]) on diverse stem cell functions were significantly exacerbated upon subsequent secondary exposure both in vitro and in vivo. Importantly, endometrial stem cells exhibited robust memory functions following consecutive HPV antigen exposures, whereas fully differentiated cells such as fibroblasts and vesicular cells did not show corresponding changes in response to the same antigen exposures. Deficiency of angiopoietin-like 4 (ANGPTL4) achieved through small hairpin RNA knockdown in vitro and knockout (KO) mice in vivo highlighted the critical role of ANGPTL4 in governing memory functions associated with various stem cell processes. This regulation occurred through histone H3 methylation alterations and PI3K/Akt signaling pathways in response to successive HPV antigen exposures. Furthermore, memory functions associated with various stem cell functions that were evident in wild-type mice following consecutive exposures to HPV antigen were not observed in ANGPTL4 KO mice. In summary, our findings strongly support the presence of memory mechanism in non-immune cells, particularly tissue-resident stem cells.
Assuntos
Proteína 4 Semelhante a Angiopoietina , Antígenos Virais , Endométrio , Papillomavirus Humano , Células-Tronco , Camundongos , Endométrio/citologia , Células-Tronco/citologia , Células-Tronco/imunologia , Células-Tronco/metabolismo , Vacinas contra Papillomavirus/imunologia , Papillomavirus Humano/imunologia , Antígenos Virais/imunologia , Memória Imunológica , Proteína 4 Semelhante a Angiopoietina/genética , Proteína 4 Semelhante a Angiopoietina/metabolismo , Análise da Expressão Gênica de Célula Única , Epigênese Genética , Transdução de Sinais , Técnicas de Inativação de Genes , Fenômenos Fisiológicos CelularesRESUMO
Adapted immune cells are known to develop memory functions that increase resistance to subsequent infections after initial pathogen exposure, however, it is unclear whether non-immune cells, like tissue-resident stem cells, have similar memory functions. Here, it is found that tissue-resident stem cells crucial for tissue regeneration show diminished adverse effects on diverse stem cell functions against successive exposure to foreign antigen (ß-glucan) to maintain tissue homeostasis and stability both in vitro and in vivo. These data suggest that endometrial stem cells may possess a robust memory function, in contrast, fully differentiated cells like fibroblasts and vesicular cells do not show these memory mechanisms upon consecutive antigen exposure. Moreover, the pivotal role of Angiopoietin-like 4 (ANGPTL4) in regulating the memory functions of endometrial stem cells is identified through specific shRNA knockdown in vitro and knockout mice in vivo experiments. ANGPTL4 is associated with the alteration of diverse stem cell functions and epigenetic modifications, notably through histone H3 methylation changes and two pathways (i.e., PI3K/Akt and FAK/ERK1/2 signaling) upon consecutive antigen exposure. These findings imply the existence of inherent self-defense mechanisms through which local stem cells can adapt and protect themselves from recurrent antigenic challenges, ultimately mitigating adverse consequences.
Assuntos
Proteína 4 Semelhante a Angiopoietina , Camundongos Knockout , Células-Tronco , Animais , Camundongos , Proteína 4 Semelhante a Angiopoietina/genética , Proteína 4 Semelhante a Angiopoietina/metabolismo , Proteína 4 Semelhante a Angiopoietina/imunologia , Células-Tronco/metabolismo , Células-Tronco/imunologia , Feminino , Camundongos Endogâmicos C57BL , Transdução de Sinais/imunologia , Memória Imunológica/imunologia , Diferenciação Celular/imunologiaRESUMO
BACKGROUND: Due to loss of peripheral nerve structure and/or function resulting from trauma, accidents, and other causes, peripheral nerve injuries continue to be a major clinical problem. These injuries can cause partial or total loss of sensory, motor, and autonomic capabilities as well as neuropathic pain. PNI affects between 13 and 23 out of every 100,000 people annually in developed countries. Regeneration of damaged nerves and restoration of function after peripheral nerve injury remain significant therapeutic challenges. Although autologous nerve graft transplantation is a viable therapy option in several clinical conditions, donor site morbidity and a lack of donor tissue often hinder full functional recovery. Biomimetic conduits used in tissue engineering to encourage and direct peripheral nerve regeneration by providing a suitable microenvironment for nerve ingrowth are only one example of the cutting-edge methods made possible by this field. Many innate extracellular matrix (ECM) structures of different tissues can be successfully mimicked by nanofibrous scaffolds. Nanofibrous scaffolds can closely mimic the surface structure and morphology of native ECMs of many tissues. METHODS: In this study, we have produced bilayer nanofibrous nerve conduit based on poly-lactic acid/polyurethane/multiwall carbon nanotube (PLA/PU/MWCNT), for application as composite scaffolds for static nerve tissue engineering. The contact angle was indicated to show the hydrophilicity properties of electrospun nanofibers. The SEM images were analyzed to determine the fiber's diameters, scaffold morphology, and endometrial stem cell adhesion. Moreover, MTT assay and DAPI staining were used to show the viability and proliferation of endometrial stem cells. RESULTS: The constructed bilayer PLA/PU/MWCNT scaffolds demonstrated the capacity to support cell attachment, and the vitality of samples was assessed using SEM, MTT assay, and DAPI staining technique. CONCLUSIONS: According to an in vitro study, electrospun bilayer PLA/PU/MWCNT scaffolds can encourage the adhesion and proliferation of human endometrial stem cells (hEnSCs) and create the ideal environment for increasing cell survival.
RESUMO
BACKGROUND: The monthly regeneration of human endometrial tissue is maintained by the presence of human endometrial mesenchymal stromal/stem cells (eMSC), a cell population co-expressing the perivascular markers CD140b and CD146. Endometrial regeneration is impaired in the presence of intrauterine adhesions, leading to infertility, recurrent pregnancy loss and placental abnormalities. Several types of somatic stem cells have been used to repair the damaged endometrium in animal models, reporting successful pregnancy. However, the ability of endometrial stem cells to repair the damaged endometrium remains unknown. METHODS: Electrocoagulation was applied to the left uterine horn of NOD/SCID mice causing endometrial injury. Human eMSC or PBS was then injected into the left injured horn while the right normal horn served as controls. Mice were sacrificed at different timepoints (Day 3, 7 and 14) and the endometrial morphological changes as well as the degree of endometrial injury and repair were observed by histological staining. Gene expression of various inflammatory markers was assessed using qPCR. The functionality of the repaired endometrium was evaluated by fertility test. RESULTS: Human eMSC successfully incorporated into the injured uterine horn, which displayed significant morphological restoration. Also, endometrium in the eMSC group showed better cell proliferation and glands formation than the PBS group. Although the number of blood vessels were similar between the two groups, gene expression of VEGF-α significantly increased in the eMSC group. Moreover, eMSC had a positive impact on the regeneration of both stromal and epithelial components of the mouse endometrium, indicated by significantly higher vimentin and CK19 protein expression. Reduced endometrial fibrosis and down-regulation of fibrosis markers were also observed in the eMSC group. The eMSC group had a significantly higher gene expression of anti-inflammatory factor Il-10 and lower mRNA level of pro-inflammatory factors Ifng and Il-2, indicating the role of eMSC in regulation of inflammatory reactions. The eMSC group showed higher implantation sites than the PBS group, suggesting better endometrial receptivity with the presence of newly emerged endometrial lining. CONCLUSIONS: Our findings suggest eMSC improves regeneration of injured endometrium in mice.
Assuntos
Células-Tronco Mesenquimais , Doenças Uterinas , Camundongos , Feminino , Humanos , Gravidez , Animais , Camundongos Endogâmicos NOD , Camundongos SCID , Placenta/patologia , Endométrio/metabolismo , Endométrio/patologia , Doenças Uterinas/terapia , Doenças Uterinas/metabolismo , Doenças Uterinas/patologia , FibroseRESUMO
BACKGROUND: The monthly regeneration of human endometrial tissue is maintained by the presence of human endometrial mesenchymal stromal/stem cells (eMSC), a cell population co-expressing the perivascular markers CD140b and CD146. Endometrial regeneration is impaired in the presence of intrauterine adhesions, leading to infertility, recurrent pregnancy loss and placental abnormalities. Several types of somatic stem cells have been used to repair the damaged endometrium in animal models, reporting successful pregnancy. However, the ability of endometrial stem cells to repair the damaged endometrium remains unknown. METHODS: Electrocoagulation was applied to the left uterine horn of NOD/SCID mice causing endometrial injury. Human eMSC or PBS was then injected into the left injured horn while the right normal horn served as controls. Mice were sacrificed at different timepoints (Day 3, 7 and 14) and the endometrial morphological changes as well as the degree of endometrial injury and repair were observed by histological staining. Gene expression of various inflammatory markers was assessed using qPCR. The functionality of the repaired endometrium was evaluated by fertility test. RESULTS: Human eMSC successfully incorporated into the injured uterine horn, which displayed significant morphological restoration. Also, endometrium in the eMSC group showed better cell proliferation and glands formation than the PBS group. Although the number of blood vessels were similar between the two groups, gene expression of VEGF-α significantly increased in the eMSC group. Moreover, eMSC had a positive impact on the regeneration of both stromal and epithelial components of the mouse endometrium, indicated by significantly higher vimentin and CK19 protein expression. Reduced endometrial fibrosis and down-regulation of fibrosis markers were also observed in the eMSC group. The eMSC group had a significantly higher gene expression of anti-inflammatory factor Il-10 and lower mRNA level of pro-inflammatory factors Ifng and Il-2, indicating the role of eMSC in regulation of inflammatory reactions. The eMSC group showed higher implantation sites than the PBS group, suggesting better endometrial receptivity with the presence of newly emerged endometrial lining. CONCLUSIONS: Our findings suggest eMSC improves regeneration of injured endometrium in mice.
Assuntos
Humanos , Animais , Feminino , Gravidez , Camundongos , Doenças Uterinas/metabolismo , Doenças Uterinas/patologia , Doenças Uterinas/terapia , Células-Tronco Mesenquimais , Placenta/patologia , Fibrose , Camundongos SCID , Camundongos Endogâmicos NOD , Endométrio/metabolismo , Endométrio/patologiaRESUMO
The endometrium is a dynamic tissue that undergoes cyclic changes in response to ovarian hormones during the menstrual cycle. These changes are crucial for pregnancy establishment and maintenance. Endometrial stem cells play a pivotal role in endometrial regeneration and repair by differentiating into various cell types within the endometrium. However, their involvement in endometrial disorders such as endometriosis, infertility, and endometrial cancer is still not fully understood yet. Traditional bulk sequencing methods have limitations in capturing heterogeneity and complexity of endometrial stem cell populations. To overcome these limitations, recent single-cell analysis techniques, including single-cell RNA sequencing (scRNA-Seq), single-cell ATAC sequencing (scATAC-Seq), and spatial transcriptomics, have emerged as valuable tools for studying endometrial stem cells. In this review, although there are still many technical limitations that require improvement, we will summarize the current state-of-the-art single-cell analysis techniques for endometrial stem cells and explore their relevance to related diseases. We will discuss studies utilizing various single-cell analysis platforms to identify and characterize distinct endometrial stem cell populations and investigate their dynamic changes in gene expression and epigenetic patterns during menstrual cycle and differentiation processes. These techniques enable the identification of rare cell populations, capture heterogeneity of cell populations within the endometrium, and provide potential targets for more effective therapies.
Assuntos
Endométrio , Doenças Uterinas , Feminino , Gravidez , Humanos , Células-Tronco , Doenças Uterinas/metabolismo , Ciclo Menstrual , Análise de Célula ÚnicaRESUMO
Chemotherapy can cause ovarian dysfunction and infertility since the ovary is extremely sensitive to chemotherapeutic drugs. Apart from the indispensable role of the ovary in the overall hormonal milieu, ovarian dysfunction also affects many other organ systems and functions including sexuality, bones, the cardiovascular system, and neurocognitive function. Although conventional hormone replacement therapy can partly relieve the adverse symptoms of premature ovarian insufficiency (POI), the treatment cannot fundamentally prevent deterioration of POI. Therefore, effective treatments to improve chemotherapy-induced POI are urgently needed, especially for patients desiring fertility preservation. Recently, mesenchymal stem cell (MSC)-based therapies have resulted in promising improvements in chemotherapy-induced ovary dysfunction by enhancing the anti-apoptotic capacity of ovarian cells, preventing ovarian follicular atresia, promoting angiogenesis and improving injured ovarian structure and the pregnancy rate. These improvements are mainly attributed to MSC-derived biological factors, functional RNAs, and even mitochondria, which are directly secreted or indirectly translocated with extracellular vesicles (microvesicles and exosomes) to repair ovarian dysfunction. Additionally, as a novel source of MSCs, menstrual blood-derived endometrial stem cells (MenSCs) have exhibited promising therapeutic effects in various diseases due to their comprehensive advantages, such as periodic and non-invasive sample collection, abundant sources, regular donation and autologous transplantation. Therefore, this review summarizes the efficacy of MSCs transplantation in improving chemotherapy-induced POI and analyzes the underlying mechanism, and further discusses the benefit and existing challenges in promoting the clinical application of MenSCs in chemotherapy-induced POI.
Assuntos
Antineoplásicos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Insuficiência Ovariana Primária , Gravidez , Humanos , Feminino , Transplante de Células-Tronco Mesenquimais/métodos , Atresia Folicular , Insuficiência Ovariana Primária/induzido quimicamente , Insuficiência Ovariana Primária/terapia , Antineoplásicos/efeitos adversosRESUMO
BACKGROUND: Although acetylsalicylic acid has been widely used for decades to treat and prevent various diseases, its potential effects on endometrial receptivity and subsequent pregnancy rates are still controversial due to conflicting data: many reports have shown positive effects of acetylsalicylic acid, whereas others have found that it has no effect. Furthermore, the direct effects of acetylsalicylic acid on various functions of normal endometrial cells, especially endometrial stem cells, and their underlying molecular mechanisms have not yet been proven. Recently, studies have revealed that a reduced number of active stem/progenitor cells within endometrial tissue limits cyclic endometrial regeneration and subsequently decreases pregnancy success rates, suggesting that endometrial stem cells play a critical role in endometrial regeneration and subsequent endometrial receptivity. METHODS: We assessed whether aspirin treatment can inhibit various endometrial stem cell functions related to regenerative capacity, such as self-renewal, migration, pluripotency/stemness, and differentiation capacity, in vitro. Next, we evaluated whether SERPINB2 regulates the effects of aspirin on endometrial stem cell functions by depleting SERPINB2 expression with specific shRNA targeting SERPINB2. To further investigate whether aspirin also inhibits various endometrial stem cell functions in vivo, aspirin was administered daily to mice through intraperitoneal (i.p.) injection for 7 days. RESULTS: In addition to its previously identified roles, to the best of our knowledge, we found for the first time that acetylsalicylic acid directly inhibits various human endometrial stem cell functions related to regenerative capacity (i.e., self-renewal, migration, differentiation, and capacity) through its novel target gene SERPINB2 in vitro. Acetylsalicylic acid exerts its function by suppressing well-known prosurvival pathways, such as Akt and/or ERK1/2 signaling, through a SERPINB2 signaling cascade. Moreover, we also found that acetylsalicylic acid markedly inhibits regenerative capacity-related functions in endometrial stem cells within tissue. CONCLUSIONS: We have found that acetylsalicylic acid has diverse effects on various endometrial stem cell functions related to regenerative capacity. Our findings are a critical step toward the development of more effective therapeutic strategies to increase the chances of successful pregnancy. Video Abstract.
Assuntos
Aspirina , Células-Tronco , Gravidez , Feminino , Animais , Camundongos , Humanos , Aspirina/farmacologia , Aspirina/metabolismo , Endométrio/metabolismo , Transdução de Sinais , Diferenciação CelularRESUMO
BACKGROUND: The occurrence of vaginal bleeding in early neonatal life has been observed for centuries and was considered a consequence of the sudden drop in circulating hormones following birth. As such, neonatal uterine bleeding was dismissed as having no clinical significance. Interest in the phenomenon was renewed when a new theory suggested a link between neonatal uterine bleeding (NUB) and accelerated endometrial maturation. This theory was based on the observation of a higher incidence of NUB in babies born post-term or after pregnancies complicated by intrauterine growth restriction, preeclampsia, or blood group incompatibility. OBJECTIVE: The objective of this study was to review of available evidence on the pathogenesis of NUB. METHOD: Review of available literature using Medline search (August 2022, no limit on start date or language) to identify articles that may link NUB with features of the uterus and/or endometrium. OUTCOME: The fetal endometrial responses differ from that of the adult. In the fetus, the endometrium features progestogenic response only in a minority of cases. The endometrium in most newborn girls does not exhibit secretory or decidual changes which indicate lack of progesterone response. Most newborn girls do not have visible bleeding. Animal studies linked exogenous progestogen exposure during the period of organogenesis to poor endometrial gland development, progesterone resistance, and to alterations of reproductive performance. Although the fetal endometrium may not exhibit a full proliferative response, it is clearly sensitive to circulating estrogens. Molecular mechanisms involved in NUB may include "ontogenetic progesterone resistance." CONCLUSION AND OUTLOOK: Endometrial development and its response to withdrawal of hormones at birth varies and may be affected by intrauterine stressors and gestational age. Factors that affect endometrial development during fetal life and in preterm neonates can have implications on future reproductive performance.
RESUMO
The endometrium is a dynamic tissue that undergoes extensive remodeling during the menstrual cycle and further gets modified during pregnancy. Different kinds of stem cells are reported in the endometrium. These include epithelial stem cells, endometrial mesenchymal stem cells, side population stem cells, and very small embryonic-like stem cells. Stem cells are also reported in the placenta which includes trophoblast stem cells, side population trophoblast stem cells, and placental mesenchymal stem cells. The endometrial and placental stem cells play a pivotal role in endometrial remodeling and placental vasculogenesis during pregnancy. The dysregulation of stem cell function is reported in various pregnancy complications like preeclampsia, fetal growth restriction, and preterm birth. However, the mechanisms by which it does so are yet elusive. Herein, we review the current knowledge of the different type of stem cells involved in pregnancy initiation and also highlight how their improper functionality leads to pathological pregnancy.
Assuntos
Placenta , Nascimento Prematuro , Recém-Nascido , Gravidez , Feminino , Humanos , Placenta/patologia , Nascimento Prematuro/patologia , Endométrio/patologia , Trofoblastos , Células-Tronco/fisiologiaRESUMO
Endometrial injury is one of the leading causes of female infertility and is caused by intrauterine surgery, endometrial infection, repeated abortion, or genital tuberculosis. Currently, there is little effective treatment to restore the fertility of patients with severe intrauterine adhesions and thin endometrium. Recent studies have confirmed the promising therapeutic effects of mesenchymal stem cell transplantation on various diseases with definite tissue injury. The aim of this study is to investigate the improvements of menstrual blood-derived endometrial stem cells (MenSCs) transplantation on functional restoration in the endometrium of mouse model. Therefore, ethanol-induced endometrial injury mouse models were randomly divided into two groups: the PBS-treated group, and the MenSCs-treated group. As expected, the endometrial thickness and gland number in the endometrium of MenSCs-treated mice were significantly improved compared to those of PBS-treated mice (P < 0.05), and fibrosis levels were significantly reduced (P < 0.05). Subsequent results revealed that MenSCs treatment significantly promoted angiogenesis in the injured endometrium. Simultaneously, MenSCs enhance the proliferation and antiapoptotic capacity of endometrial cells, which is likely contributed by activating the PI3K/Akt signaling pathway. Further tests also confirmed the chemotaxis of GFP-labeled MenSCs towards the injured uterus. Consequently, MenSCs treatment significantly improved the pregnant mice and the number of embryos in pregnant mice. This study confirmed the superior improvements of MenSCs transplantation on the injured endometrium and uncovered the potential therapeutic mechanism, which provides a promising alternative for patients with serious endometrial injury.
Assuntos
Proteínas Proto-Oncogênicas c-akt , Doenças Uterinas , Humanos , Gravidez , Feminino , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proliferação de Células/fisiologia , Endométrio/metabolismo , Doenças Uterinas/metabolismoRESUMO
This study aimed to treat dental injuries by utilizing one of the most advanced tissue engineering techniques. In this study, an in vitro model was employed to investigate the proliferation and odontogenic differentiation of canine endometrial stem cells (C-EnSCs). Furthermore, the dentin regeneration potential of odontoblast like-cells (OD) derived from C-EnSCs was assessed in rats. The C-EnSCs were isolated by the enzymatic method and identified by flow cytometry. The C-EnSCs were encapsulated in fibrin gel associated with signaling factors to create the proper conditions for cell growth and differentiation. Then, the OD cells were associated with bone morphologic protein-2 (BMP-2) to promote dentin formation in vivo. The animal model used to evaluate the regenerative effect of cells and biomaterials included the preparation of the left maxillary first molar of rats for direct pulp capping operation. Animals were divided into four groups: group 1, a control group without any treatment, group 2, which received fibrin, group 3, which received fibrin with ODs (fibrin/ODs), and group 4, which received fibrin with ODs and BMP-2 (fibrin/ODs/BMP-2). The morphological observations showed the differentiation of C-EnSCs into adipose, bone, neural cells, and ODs. Furthermore, the histomorphometric data of the treated teeth showed how fibrin gel and BMP2 at a concentration of 100 ng/mL provided an optimal microenvironment for regenerating dentin tissue in rats, which was increased significantly with the presence of OD cells within eight weeks. Our study showed that using OD cells derived from C-EnSCs encapsulated in fibrin gel associated with BMP2 can potentially be an appropriate candidate for direct pulp-capping and dentin regeneration.
RESUMO
BACKGROUND: The endometrium, the inner lining of the uterine cavity, plays essential roles in embryo implantation and its subsequent development. Although some positive results were preliminarily archived, the regeneration of damaged endometrial tissues by administrating stem cells only is very challenging due to the lack of specific microenvironments and their low attachment rates at the sites of injury. In this context, various biomaterial-based scaffolds have been used to overcome these limitations by providing simple structural support for cell attachment. However, these scaffold-based strategies also cannot properly reflect patient tissue-specific structural complexity and thus show only limited therapeutic effects. METHOD: Therefore, in the present study, we developed a customizable Lego-like multimodular endometrial tissue architecture by assembling individually fabricated tissue blocks. RESULTS: Each tissue block was fabricated by incorporating biodegradable biomaterials and certain endometrial constituent cells. Each small tissue block was effectively fabricated by integrating conventional mold casting and 3D printing techniques. The fabricated individual tissue blocks were properly assembled into a larger customized tissue architecture. This structure not only properly mimics the patient-specific multicellular microenvironment of the endometrial tissue but also properly responds to key reproductive hormones in a manner similar to the physiological functions. CONCLUSION: This customizable modular tissue assembly allows easy and scalable configuration of a complex patient-specific tissue microenvironment, thus accelerating various tissue regeneration procedures.