Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38976206

RESUMO

Polycomb group proteins (PcGs) add repressive post translational histone modifications such as H2AK119ub1, and histone H2A deubiquitinases remove it. Mice lacking histone H2A deubiquitinases such as Usp16 and Bap1 die in embryonic stage, while mice lacking Usp3, Mysm1, Usp12, and Usp21 have been shown to be deficient in hematopoietic lineage differentiation, cell cycle regulation, and DNA repair. Thus, it is likely that histone deubiquitinases may also be required for human endothelial cell differentiation; however, there are no reports about the role of histone H2A deubiquitinase BAP1 in human endothelial cell development. We differentiated human pluripotent stem cells into the endothelial lineage which expressed stable inducible shRNA against BAP1. Our results show that BAP1 is required for human endothelial cell differentiation.

2.
FASEB J ; 38(10): e23682, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38780524

RESUMO

Gliomas are highly vascularized malignancies, but current anti-angiogenic treatments have not demonstrated practical improvements in patient survival. Studies have suggested that glioma-derived endothelial cell (GdEC) formed by glioma stem cell (GSC) differentiation may contribute to the failure of this treatment. However, the molecular mechanisms involved in GSC endothelial differentiation remain poorly understood. We previously reported that vasorin (VASN) is highly expressed in glioma and promotes angiogenesis. Here, we show that VASN expression positively correlates with GdEC signatures in glioma patients. VASN promotes the endothelial differentiation capacity of GSC in vitro and participates in the formation of GSC-derived vessels in vivo. Mechanistically, vascular endothelial growth factor receptor 2 (VEGFR2) is a critical factor that mediates the regulation of VASN on GSC endothelial differentiation. Separation of cell chromatin fractionation and chromatin immunoprecipitation-sequencing analysis show that VASN interacts with Notch1 and co-translocates into the cell nuclei, where VASN binds to the VEGFR2 gene promoter to stimulate its transcription during the progression of GSC differentiation into GdEC. Together, these findings elucidate the role and mechanisms of VASN in promoting the endothelial differentiation of GSC and suggest VASN as a potential target for anti-angiogenic therapy based on intervention in GdEC formation in gliomas.


Assuntos
Diferenciação Celular , Células Endoteliais , Glioma , Células-Tronco Neoplásicas , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Glioma/metabolismo , Glioma/patologia , Glioma/genética , Humanos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Animais , Camundongos , Células Endoteliais/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Neovascularização Patológica/metabolismo , Neovascularização Patológica/genética , Camundongos Nus , Transcrição Gênica , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética
3.
Acta Histochem ; 125(6): 152059, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37329849

RESUMO

Diabetic patients are characterized by long wound healing time, and adipose stem cells (ADSCs) can secrete growth factors to promote angiogenesis and improve diabetic wound healing. In this research, we attempted to interrogate the impact of platelet-rich fibrin (PRF) on ADSCs in diabetic wound healing. ADSCs were harvested from human adipose tissues and identified through flow cytometry. After pretreatment with cultured medium supplemented with different concentrations of PRF (2.5%, 5%, and 7.5%), proliferation and differentiation capacity of ADSCs were assessed by CCK-8 assay, qRT-PCR and immunofluorescence (IF), respectively. Tube formation assay measured angiogenesis. Western blot analysis analyzed expression of endothelial markers and the extracellular signal-regulated kinase (ERK) and serine/threonine kinase (Akt) pathways in PRF-induced ADSCs. The CCK-8 experiment indicated that PRF enhanced proliferation of ADSCs in dose-dependent manner, relative to normal control group. The expression of endothelial markers and the capacity of tube formation were significantly promoted by 7.5% PRF. The release of growth factors containing vascular endothelial grow factor (VEGF) and insulin-like growth factor-1 (IGF-1) from PRF was increased with the extension of detection time. When the receptors of VEGF or/and IGF-1 were neutralized, ADSCs differentiation into endothelial cells were obviously inhibited. Additionally, PRF stimulated ERK and Akt pathways, and the inhibitors of ERK and Akt attenuated PRF-induced differentiation of ADSCs into endothelial cells. In conclusion, PRF promoted endothelial cell differentiation and angiogenesis induced by ADSCs in diabetic wound healing, which appears to give guidance for treating patients.


Assuntos
Diabetes Mellitus , Fibrina Rica em Plaquetas , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Fibrina Rica em Plaquetas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sincalida/metabolismo , Células-Tronco , Diferenciação Celular , Tecido Adiposo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo
4.
Biomed Pharmacother ; 162: 114654, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37018988

RESUMO

Accidental exposure to phosgene can cause acute lung injury (ALI), characterized by uncontrolled inflammation and impaired lung blood-gas barrier. CD34+CD45+ cells with high pituitary tumor transforming gene 1 (PTTG1) expression were identified around rat pulmonary vessels through single-cell RNA sequencing, and have been shown to attenuate P-ALI by promoting lung vascular barrier repair. As a transcription factor closely related to angiogenesis, whether PTTG1 plays a role in CD34+CD45+ cell repairing the pulmonary vascular barrier in rats with P-ALI remains unclear. This study provided compelling evidence that CD34+CD45+ cells possess endothelial differentiation potential. Rats with P-ALI were intratracheally administered with CD34+CD45+ cells transfected with or without PTTG1-overexpressing and sh-PTTG1 lentivirus. It was found that CD34+CD45+ cells reduced the pulmonary vascular permeability and mitigated the lung inflammation, which could be reversed by knocking down PTTG1. Although PTTG1 overexpression enhanced the ability of CD34+CD45+ cells to attenuate P-ALI, no significant difference was found. PTTG1 was found to regulate the endothelial differentiation of CD34+CD45+ cells. In addition, knocking down of PTTG1 significantly reduced the protein levels of VEGF and bFGF, as well as their receptors, which in turn inhibited the activation of the PI3K/AKT/eNOS signaling pathway in CD34+CD45+ cells. Moreover, LY294002 (PI3K inhibitor) treatment inhibited the endothelial differentiation of CD34+CD45+ cells, while SC79 (AKT activator) yielded the opposite effect. These findings suggest that PTTG1 can promote the endothelial differentiation of CD34+CD45+ cells by activating the VEGF-bFGF/PI3K/AKT/eNOS signaling pathway, leading to the repair of the pulmonary vascular barrier in rats with P-ALI.


Assuntos
Lesão Pulmonar Aguda , Fosgênio , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Transdução de Sinais
5.
Stem Cell Rev Rep ; 19(4): 1019-1033, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36627432

RESUMO

Accumulating evidence indicates that adipose tissue-derived mesenchymal stem cells (ADSCs) are an effective treatment for diabetic refractory wounds. However, the application of ADSCs to diabetic wounds is still limited, indicating that we still lack sufficient knowledge regarding regulators/mediators of ADSCs during wound healing. Rab37, a member of RabGTPase, may function as regulator of vesicle trafficking, which is a crucial event for the secretion of cytokines by ADSCs. Our previous study indicated that Rab37 promotes the adiopogenic differentiation of ADSCs. In this study, we explored the role of Rab37 in ADSC-mediated diabetic wound healing. An in vivo study in db/db diabetic mice showed that Rab37-expressing ADSCs shortened the wound closure time, improved re-epithelialization and collagen deposition, and promoted angiogenesis during wound healing. An in vitro study showed that Rab37 promoted the proliferation, migration and endothelial differentiation of ADSCs. LC-MS/MS analysis identified Hsp90α and TIMP1 as up-regulated cytokines in conditioned media of Rab37-ADSCs. The up-regulation of Rab37 enhanced the secretion of Hsp90α and TIMP1 during endothelial differentiation and under high-glucose exposure. Interestingly, Rab37 promoted the expression of TIMP1, but not Hsp90α, during endothelial differentiation. PLA showed that Rab37 can directly bind to Hsp90α orTIMP1 in ADSCs. Moreover, Hsp90α and TIMP1 knockdown compromised the promoting effects of Rab37 on the proliferation, migration and endothelial differentiation of ADSCs. In conclusion, Rab37 promotes the proliferation, migration and endothelial differentiation of ADSCs and accelerates ADSC-mediated diabetic wound healing through regulating the secretion of Hsp90α and TIMP1.


Assuntos
Diabetes Mellitus Experimental , Camundongos , Animais , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Experimental/metabolismo , Cromatografia Líquida , Tecido Adiposo , Espectrometria de Massas em Tandem , Cicatrização/genética , Diferenciação Celular , Citocinas/metabolismo
6.
Appl Biochem Biotechnol ; 195(7): 4196-4214, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36662424

RESUMO

Adipose-derived stem cells (ADSCs) are a type of adult mesenchymal stem cell that show a repair effect on ischemic tissues owing to their capacity for endothelial differentiation. MicroRNA-221/222 (miR-221/222) has been extensively studied in endothelial cells (ECs). However, the mechanism that regulates ADSCs differentiation into ECs remains unknown. In this study, we investigated the effects of miR-221/222-overexpression/silence in ADSCs on endothelial differentiation by constructing lentiviral vectors. Differentiation capacity was assessed by measuring the expression of endothelial markers (CD31, CD34, and CD144). In addition, low-density lipoprotein (LDL) uptake and tube-like formation were performed for evaluation of functional characterization. The PTEN/PI3K/AKT/mTOR signaling pathway was investigated using western blotting to clarify the action mechanism of this gene. The revascularization of miR-221/222-transfeted ADSCs was further verified in a rat hind limb ischemia model. The results confirmed that transfection with miR-221/222 promoted the expression of endothelial markers, LDL uptake, and tube-like formation. As expected, the PI3K/AKT signaling pathway was effectively activated when ADSCs showed high expression of miR-221/222 during endothelial differentiation. Furthermore, injection of miR-221/222 transfected ADSCs significantly improved rat hindlimb ischemia, as evidenced by increased blood flow and structural integrity and reduce inflammatory infiltration. The results of this study suggest that miR-221/222 is essential for endothelial differentiation of ADSCs and provides a novel strategy for modulating vascular formation and ischemic tissue regeneration.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Células Endoteliais , Diferenciação Celular/genética , Serina-Treonina Quinases TOR/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Tecido Adiposo
7.
FASEB J ; 37(2): e22770, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36688807

RESUMO

The search for reliable human blood-brain barrier (BBB) models represents a challenge for the development/testing of strategies aiming to enhance brain delivery of drugs. Human-induced pluripotent stem cells (hiPSCs) have raised hopes in the development of predictive BBB models. Differentiating strategies are thus required to generate endothelial cells (ECs), a major component of the BBB. Several hiPSC-based protocols have reported the generation of in vitro models with significant differences in barrier properties. We studied in depth the properties of iPSCs byproducts from two protocols that have been established to yield these in vitro barrier models. Our analysis/study reveals that iPSCs derivatives endowed with EC features yield high permeability models while the cells that exhibit outstanding barrier properties show principally epithelial cell-like (EpC) features. We found that models containing EpC-like cells express tight junction proteins, transporters/efflux pumps and display a high functional tightness with very low permeability, which are features commonly shared between BBB and epithelial barriers. Our study demonstrates that hiPSC-based BBB models need extensive characterization beforehand and that a reliable human BBB model containing EC-like cells and displaying low permeability is still needed.


Assuntos
Barreira Hematoencefálica , Células-Tronco Pluripotentes Induzidas , Humanos , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/metabolismo , Permeabilidade
8.
Biomedicines ; 10(10)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36289846

RESUMO

Adipose-derived mesenchymal stromal cells (ASCs) hold great potential for cellular therapies by having immunomodulatory behavior and tissue regenerative properties. Due to the capability of ASCs to differentiate into endothelial cells (ECs) and other angiogenic cell types, such as pericytes, ASCs are a highly valuable source for stimulating angiogenesis. However, cellular therapies in tissue engineering have faced challenges in poor survival of the cells after transplantation, which is why a protective biomaterial scaffold is required. In this work, we studied the potential of nanofibrillated cellulose (NFC) hydrogel to be utilized as a suitable matrix for three-dimensional (3D) cell culturing of human-derived ASCs (hASCs) and studied their angiogenic properties and differentiation potential in ECs and pericytes. In addition, we tested the effect of hASC-conditioned medium and stimulation with angiopoietin-1 (Ang-1) on human umbilical vein endothelial cells (HUVECs) to induce blood vessel-type tube formation in NFC hydrogel. The hASCs were successfully 3D cell cultured in NFC hydrogel as they formed spheroids and had high cell viability with angiogenic features. Most importantly, they showed angiogenic potential by having pericyte-like characteristics when differentiated in EC medium, and their conditioned medium improved HUVEC viability and tube formation, which recalls the active paracrine properties. This study recommends NFC hydrogel for future use as an animal-free biomaterial scaffold for hASCs in therapeutic angiogenesis and other cell therapy purposes.

9.
Stem Cell Res Ther ; 13(1): 391, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35918720

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) have a great potential ability for endothelial differentiation, contributing to an effective means of therapeutic angiogenesis. Placenta-derived mesenchymal stem cells (PMSCs) have gradually attracted attention, while the endothelial differentiation has not been fully evaluated in PMSCs. Metabolism homeostasis plays an important role in stem cell differentiation, but less is known about the glycometabolic reprogramming during the PMSCs endothelial differentiation. Hence, it is critical to investigate the potential role of glycometabolism reprogramming in mediating PMSCs endothelial differentiation. METHODS: Dil-Ac-LDL uptake assay, flow cytometry, and immunofluorescence were all to verify the endothelial differentiation in PMSCs. Seahorse XF Extracellular Flux Analyzers, Mito-tracker red staining, Mitochondrial membrane potential (MMP), lactate secretion assay, and transcriptome approach were to assess the variation of mitochondrial respiration and glycolysis during the PMSCs endothelial differentiation. Glycolysis enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) was considered a potential modulator for endothelial differentiation in PMSCs by small interfering RNA. Furthermore, transwell, in vitro Matrigel tube formation, and in vivo Matrigel plug assays were performed to evaluate the effect of PFKFB3-induced glycolysis on angiogenic capacities in this process. RESULTS: PMSCs possessed the superior potential of endothelial differentiation, in which the glycometabolic preference for glycolysis was confirmed. Moreover, PFKFB3-induced glycometabolism reprogramming could modulate the endothelial differentiation and angiogenic abilities of PMSCs. CONCLUSIONS: Our results revealed that PFKFB3-mediated glycolysis is important for endothelial differentiation and angiogenesis in PMSCs. Our understanding of cellular glycometabolism and its regulatory effects on endothelial differentiation may propose and improve PMSCs as a putative strategy for clinical therapeutic angiogenesis.


Assuntos
Células-Tronco Mesenquimais , Diferenciação Celular , Células Cultivadas , Glicólise , Humanos , Células-Tronco Mesenquimais/metabolismo , Neovascularização Patológica/metabolismo , Fosfofrutoquinase-2/genética , Fosfofrutoquinase-2/metabolismo
10.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35806285

RESUMO

In recent decades, the use of adult multipotent stem cells has paved the way for the identification of new therapeutic approaches for the treatment of monogenic diseases such as Haemophilia A. Being already studied for regenerative purposes, adipose-derived mesenchymal stem cells (Ad-MSCs) are still poorly considered for Haemophilia A cell therapy and their capacity to produce coagulation factor VIII (FVIII) after proper stimulation and without resorting to gene transfection. In this work, Ad-MSCs were in vitro conditioned towards the endothelial lineage, considered to be responsible for coagulation factor production. The cells were cultured in an inductive medium enriched with endothelial growth factors for up to 21 days. In addition to significantly responding to the chemotactic endothelial stimuli, the cell populations started to form capillary-like structures and up-regulated the expression of specific endothelial markers (CD34, PDGFRα, VEGFR2, VE-cadherin, CD31, and vWF). A dot blot protein study detected the presence of FVIII in culture media collected from both unstimulated and stimulated Ad-MSCs. Remarkably, the activated partial thromboplastin time test demonstrated that the clot formation was accelerated, and FVIII activity was enhanced when FVIII deficient plasma was mixed with culture media from the untreated/stimulated Ad-MSCs. Overall, the collected evidence supported a possible Ad-MSC contribution to HA correction via specific stimulation by the endothelial microenvironment and without any need for gene transfection.


Assuntos
Hemofilia A , Células-Tronco Mesenquimais , Adulto , Testes de Coagulação Sanguínea , Diferenciação Celular , Células Cultivadas , Meios de Cultura/metabolismo , Hemofilia A/genética , Hemofilia A/metabolismo , Hemofilia A/terapia , Humanos , Células-Tronco Mesenquimais/metabolismo , Tempo de Tromboplastina Parcial
11.
Mol Biol Rep ; 49(9): 8495-8505, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35802277

RESUMO

BACKGROUND: The present study aimed to investigate the mechanisms through which long non-coding RNA (lncRNA) maternally expressed 3 (MEG3) affected the endothelial differentiation of mouse derived adipose-derived stem cells (ADSCs). MATERIALS AND METHODS: ADSCs were isolated and identified by specific surface marker detection. The effects of lncRNA MEG3 on endothelial differentiation of ADSCs were also detected via quantitative PCR, western blotting, immunofluorescence and Matrigel angiogenesis assays. In addition, using target gene prediction tools and luciferase reporter assays, the downstream target gene was demonstrated. RESULTS: LncRNA MEG3 targeted and reduced the expression levels of microRNA-145-5p (miR-145-5p), which upregulated the expression levels of Krüppel like factor 4 (KLF4), promoting endothelial differentiation of ADSCs. CONCLUSION: LncRNA MEG3 induced endothelial differentiation of ADSCs by targeting miR-145-5p/KLF4, which may provide novel insights to illustrate the mechanism of endothelial differentiation of ADSCs.


Assuntos
Endotélio , Fator 4 Semelhante a Kruppel , MicroRNAs , RNA Longo não Codificante , Células-Tronco , Tecido Adiposo/citologia , Animais , Diferenciação Celular/genética , Endotélio/citologia , Fator 4 Semelhante a Kruppel/genética , Camundongos , MicroRNAs/genética , RNA Longo não Codificante/genética , Células-Tronco/metabolismo
12.
Int J Stem Cells ; 15(4): 372-383, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-35769057

RESUMO

Background and Objectives: Low-intensity pulsed ultrasound (LIPUS) promotes differentiation and regulates biological functions of various stem cells, but its effect on the endothelial differentiation of periodontal ligament stem cells (PDLSCs) is unclear. This study investigated the effect of LIPUS on endothelial differentiation and angiogenesis in PDLSCs and the role of the mechanically sensitive ion channel Piezo1 in this process. Methods and Results: PDLSCs obtained from healthy people were used for endothelial induction, and 10 µg/ml lipopolysaccharide (LPS) was used to simulate the inflammatory state. The induced cells were treated with LIPUS (50 mW/cm2, 1.5 MHz) to study its effect on the endothelial differentiation of PDLSCs and the tube formation of differentiated cells. PCR, flow cytometry, immunofluorescence, and Matrigel tube formation assays were used to detect the differentiation and tube formation of PDLSCs. GsMTx4 was used to inhibit the expression of Piezo1, and the role of the Piezo1 pathway in the endothelial differentiation and microvascular formation of PDLSCs after LIPUS treatment was studied. The data showed that LIPUS increased endothelial differentiation and angiogenesis in PDLSCs under inflammatory or noninflammatory conditions. The use of an inhibitor weakened the effect of LIPUS. Conclusions: This study demonstrated that LIPUS can activate the expression of Piezo1 and promote the endothelial differentiation and microvascular formation of PDLSCs.

13.
Stem Cell Res Ther ; 13(1): 254, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35715824

RESUMO

BACKGROUND: hPSC-derived endothelial and hematopoietic cells (ECs and HCs) are an interesting source of cells for tissue engineering. Despite their close spatial and temporal embryonic development, current hPSC differentiation protocols are specialized in only one of these lineages. In this study, we generated a hematoendothelial population that could be further differentiated in vitro to both lineages. METHODS: Two hESCs and one hiPSC lines were differentiated into a hematoendothelial population, hPSC-ECs and blast colonies (hPSC-BCs) via CD144+-embryoid bodies (hPSC-EBs). hPSC-ECs were characterized by endothelial colony-forming assay, LDL uptake assay, endothelial activation by TNF-α, nitric oxide detection and Matrigel-based tube formation. Hematopoietic colony-forming cell assay was performed from hPSC-BCs. Interestingly, we identified a hPSC-BC population characterized by the expression of both CD144 and CD45. hPSC-ECs and hPSC-BCs were analyzed by flow cytometry and RT-qPCR; in vivo experiments have been realized by ischemic tissue injury model on a mouse dorsal skinfold chamber and hematopoietic reconstitution in irradiated immunosuppressed mouse from hPSC-ECs and hPSC-EB-CD144+, respectively. Transcriptomic analyses were performed to confirm the endothelial and hematopoietic identity of hESC-derived cell populations by comparing them against undifferentiated hESC, among each other's (e.g. hPSC-ECs vs. hPSC-EB-CD144+) and against human embryonic liver (EL) endothelial, hematoendothelial and hematopoietic cell subpopulations. RESULTS: A hematoendothelial population was obtained after 84 h of hPSC-EBs formation under serum-free conditions and isolated based on CD144 expression. Intrafemorally injection of hPSC-EB-CD144+ contributed to the generation of CD45+ human cells in immunodeficient mice suggesting the existence of hemogenic ECs within hPSC-EB-CD144+. Endothelial differentiation of hPSC-EB-CD144+ yields a population of > 95% functional ECs in vitro. hPSC-ECs derived through this protocol participated at the formation of new vessels in vivo in a mouse ischemia model. In vitro, hematopoietic differentiation of hPSC-EB-CD144+ generated an intermediate population of > 90% CD43+ hPSC-BCs capable to generate myeloid and erythroid colonies. Finally, the transcriptomic analyses confirmed the hematoendothelial, endothelial and hematopoietic identity of hPSC-EB-CD144+, hPSC-ECs and hPSC-BCs, respectively, and the similarities between hPSC-BC-CD144+CD45+, a subpopulation of hPSC-BCs, and human EL hematopoietic stem cells/hematopoietic progenitors. CONCLUSION: The present work reports a hPSC differentiation protocol into functional hematopoietic and endothelial cells through a hematoendothelial population. Both lineages were proven to display characteristics of physiological human cells, and therefore, they represent an interesting rapid source of cells for future cell therapy and tissue engineering.


Assuntos
Células-Tronco Embrionárias Humanas , Células-Tronco Pluripotentes Induzidas , Animais , Diferenciação Celular/fisiologia , Corpos Embrioides , Células Endoteliais/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Camundongos
14.
Int J Mol Sci ; 23(3)2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35163699

RESUMO

Endometrial mesenchymal stromal cells (E-MSCs) extensively contribute to the establishment and progression of endometrial ectopic lesions through formation of the stromal vascular tissue, and support to its growth and vascularization. As E-MSCs lack oestrogen receptors, endometriosis eradication cannot be achieved by hormone-based pharmacological approaches. Quinagolide is a non-ergot-derived dopamine receptor 2 agonist reported to display therapeutic effects in in vivo models of endometriosis. In the present study, we isolated E-MSCs from eutopic endometrial tissue and from ovarian and peritoneal endometriotic lesions, and we tested the effect of quinagolide on their proliferation and matrix invasion ability. Moreover, the effect of quinagolide on E-MSC endothelial differentiation was assessed in an endothelial co-culture model of angiogenesis. E-MSC lines expressed dopamine receptor 2, with higher expression in ectopic than eutopic ones. Quinagolide inhibited the invasive properties of E-MSCs, but not their proliferation, and limited their endothelial differentiation. The abrogation of the observed effects by spiperone, a dopamine receptor antagonist, confirmed specific dopamine receptor activation. At variance, no involvement of VEGFR2 inhibition was observed. Moreover, dopamine receptor 2 activation led to downregulation of AKT and its phosphorylation. Of interest, several effects were more prominent on ectopic E-MSCs with respect to eutopic lines. Together with the reported effects on endometrial and endothelial cells, the observed inhibition of E-MSCs may increase the rationale for quinagolide in endometriosis treatment.


Assuntos
Aminoquinolinas/farmacologia , Proliferação de Células , Endometriose/tratamento farmacológico , Células-Tronco Mesenquimais/efeitos dos fármacos , Adulto , Aminoquinolinas/uso terapêutico , Agonistas de Dopamina/farmacologia , Endometriose/fisiopatologia , Endométrio/efeitos dos fármacos , Feminino , Humanos , Células-Tronco Mesenquimais/fisiologia , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas c-akt , Receptor 2 de Fatores de Crescimento do Endotélio Vascular
15.
Cardiovasc Res ; 118(10): 2354-2366, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34406379

RESUMO

AIMS: Despite increasing evidence that monocytes may acquire endothelial features, it remains unclear how monocytes participate in angiogenesis after ischaemic damage. We investigated whether ischaemic cells can release microvesicles (MVs) and promote neovascularization in a model of peripheral artery disease (PAD). METHODS AND RESULTS: To model PAD, we used an in vivo experimental model of hind-limb ischaemia (HLI) in mice. MVs were isolated from the ischaemic muscle and from peripheral blood at different times after unilateral femoral artery ligation. MVs were phenotypically characterized to identify cell origin. HLI in mice induced the release of MVs with a much higher content of tissue factor (TF) than non-HLI control mice both in the MVs isolated from the affected limb muscle area and from blood. MVs were mainly released from endothelial cells (ECs) and induced Mo differentiation to endothelial cell-like (ECL) cells. Differentiation to ECL cells encompassed highly strict hierarchical transcription factor activation, initiated by ETS1 activation. MVs secreted by microvascular ECs over-expressing TF (upTF-EMVs), were injected in the ischaemic hind-limb in parallel with control EMVs (from random siRNA-treated cells) or EMVs released by silenced TF ECs. In animals treated with upTF-EMVs in the ischaemic zone, there was a highly significant increase in functional new vessels formation (seen by magnetic resonance angiography), a concomitant increase in the pool of circulating Ly6Clow Mo expressing vascular EC markers, and a significantly higher number of Mo/macrophages surrounding and integrating the newly formed collaterals. CONCLUSION: Ischaemia-activated ECs release EMVs rich in TF that induce monocyte differentiation into ECL cells and the formation of new vessels in the ischaemic zone. TF by this mechanism of formation of new blood microvessels can contribute to ischaemic tissue repair.


Assuntos
Micropartículas Derivadas de Células , Tromboplastina , Animais , Células Endoteliais , Isquemia , Camundongos , Monócitos
16.
Angiogenesis ; 25(1): 113-128, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34478025

RESUMO

Embryonic stem cells (ES) are a valuable source of endothelial cells. By co-culturing ES cells with the stromal PA6 cells, the endothelial commitment can be achieved by adding exogenous FGF2 or BMP4. In this work, the molecular pathways that direct the differentiation of ES cells toward endothelium in response to FGF2 are evaluated and compared to those activated by BMP4. To this purpose the genes expression profiles of both ES/PA6 co-cultures and of pure cultures of PA6 cells were obtained by microarray technique at different time points. The bioinformatics processing of the data indicated TGFß1 as the most represented upstream regulator in FGF2-induced endothelial commitment while WNT pathway as the most represented in BMP4-activated endothelial differentiation. Loss of function experiments were performed to validate the importance of TGFß1 and WNT6 respectively in FGF2 and BMP4-induced endothelial differentiation. The loss of TGFß1 expression significantly impaired the accomplishment of the endothelial commitment unless exogenous recombinant TGFß1 was added to the culture medium. Similarly, silencing WNT6 expression partially affected the endothelial differentiation of the ES cells upon BMP4 stimulation. Such dysfunction was recovered by the addition of recombinant WNT6 to the culture medium. The ES/PA6 co-culture system recreates an in vitro complete microenvironment in which endothelial commitment is accomplished in response to alternative signals through different mechanisms. Given the importance of WNT and TGFß1 in mediating the crosstalk between tumor and stromal cells this work adds new insights in the mechanism of tumor angiogenesis and of its possible inhibition.


Assuntos
Células Endoteliais , Fator 2 de Crescimento de Fibroblastos , Fator de Crescimento Transformador beta1/fisiologia , Animais , Proteína Morfogenética Óssea 4 , Diferenciação Celular , Células-Tronco Embrionárias , Fator 2 de Crescimento de Fibroblastos/farmacologia , Camundongos , Proteínas Proto-Oncogênicas , Células Estromais , Fator de Crescimento Transformador beta1/genética , Proteínas Wnt
17.
Methods Mol Biol ; 2375: 1-12, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34591294

RESUMO

Vasculature plays a vital role in human biology as blood vessels transport nutrients and oxygen throughout the body. Endothelial cells (ECs), specifically, are key as they maintain barrier functions between the circulating blood and the surrounding tissues. ECs derived from human pluripotent stem cells (hPSCs) are utilized to study vascular development and disease mechanisms within in vitro models. Additionally, ECs derived from induced pluripotent stem cells (iPSCs) hold great promise for advancing personalized medicine, cell therapies, and tissue-engineered constructs by creating patient-specific cell populations. Here, we describe a xeno-free, serum-free differentiation protocol for deriving ECs from hPSCs. In brief, mesoderm progenitor cells are derived via WNT pathway activation. Following this, EC maturation is achieved with exogenous vascular endothelial growth factor A (VEGFA) and basic fibroblast growth factor 2 (bFGF2). We have characterized these cells as expressing mature EC markers and have illustrated their functionality in vitro.


Assuntos
Células-Tronco Pluripotentes , Diferenciação Celular , Células Endoteliais , Humanos , Células-Tronco Pluripotentes Induzidas , Medicina Regenerativa , Engenharia Tecidual , Fator A de Crescimento do Endotélio Vascular
18.
Int J Mol Sci ; 22(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34502171

RESUMO

The engineering of vascular regeneration still involves barriers that need to be conquered. In the current study, a novel nanocomposite comprising of fibronectin (denoted as FN) and a small amount of silver nanoparticles (AgNP, ~15.1, ~30.2 or ~75.5 ppm) was developed and its biological function and biocompatibility in Wharton's jelly-derived mesenchymal stem cells (MSCs) and rat models was investigated. The surface morphology as well as chemical composition for pure FN and the FN-AgNP nanocomposites incorporating various amounts of AgNP were firstly characterized by atomic force microscopy (AFM), UV-Visible spectroscopy (UV-Vis), and Fourier-transform infrared spectroscopy (FTIR). Among the nanocomposites, FN-AgNP with 30.2 ppm silver nanoparticles demonstrated the best biocompatibility as assessed through intracellular ROS production, proliferation of MSCs, and monocytes activation. The expression levels of pro-inflammatory cytokines, TNF-α, IL-1ß, and IL-6, were also examined. FN-AgNP 30.2 ppm significantly inhibited pro-inflammatory cytokine expression compared to other materials, indicating superior performance of anti-immune response. Mechanistically, FN-AgNP 30.2 ppm significantly induced greater expression of vascular endothelial growth factor (VEGF) and stromal-cell derived factor-1 alpha (SDF-1α) and promoted the migration of MSCs through matrix metalloproteinase (MMP) signaling pathway. Besides, in vitro and in vivo studies indicated that FN-AgNP 30.2 ppm stimulated greater protein expressions of CD31 and von Willebrand Factor (vWF) as well as facilitated better endothelialization capacity than other materials. Furthermore, the histological tissue examination revealed the lowest capsule formation and collagen deposition in rat subcutaneous implantation of FN-AgNP 30.2 ppm. In conclusion, FN-AgNP nanocomposites may facilitate the migration and proliferation of MSCs, induce endothelial cell differentiation, and attenuate immune response. These finding also suggests that FN-AgNP may be a potential anti-inflammatory surface modification strategy for vascular biomaterials.


Assuntos
Anti-Inflamatórios/administração & dosagem , Diferenciação Celular/efeitos dos fármacos , Fibronectinas/administração & dosagem , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Nanopartículas Metálicas , Prata , Animais , Proliferação de Células , Células Cultivadas , Citoesqueleto , Células Endoteliais/metabolismo , Imuno-Histoquímica , Metaloproteinases da Matriz/metabolismo , Células-Tronco Mesenquimais/citologia , Nanopartículas Metálicas/ultraestrutura , Tamanho da Partícula , Ratos , Espécies Reativas de Oxigênio/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier
19.
Histochem Cell Biol ; 156(5): 423-436, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34370052

RESUMO

Periodontitis is a common inflammatory disease that affects the teeth-supporting tissue and causes bone and tooth loss. Moreover, in a worldwide population, periodontal disease is often associated with cardiovascular diseases. Emerging studies have reported that one of the major pathogens related to periodontitis is Porphyromonas gingivalis (P. gingivalis), which triggers the inflammatory intracellular cascade. Here, we hypothesized a possible protective effect of ascorbic acid (AA) in the restoration of the physiological molecular pathway after exposure to lipopolysaccharide derived from P. gingivalis (LPS-G). In particular, human gingiva-derived mesenchymal stem cells (hGMSCs) and endothelial-differentiated hGMSCs (e-hGMSCs) exposed to LPS-G showed upregulation of p300 and downregulation of DNA methyltransferase 1 (DNMT1), proteins associated with DNA methylation and histone acetylation. The co-treatment of AA and LPS-G showed a physiological expression of p300 and DNMT1 in hGMSCs and e-hGMSCs. Moreover, the inflammatory process triggered by LPS-G was demonstrated by evaluation of reactive oxygen species (ROS) and their intracellular localization. AA exposure re-established the physiological ROS levels. Despite the limitations of in vitro study, these findings collectively expand our knowledge regarding the molecular pathways involved in periodontal disease, and suggest the involvement of epigenetic modifications in the development of periodontitis.


Assuntos
Ácido Ascórbico/farmacologia , Células Endoteliais/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Porphyromonas gingivalis/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Ácido Ascórbico/química , Células Endoteliais/metabolismo , Epigênese Genética/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/metabolismo , Porphyromonas gingivalis/metabolismo , Substâncias Protetoras/química
20.
Front Bioeng Biotechnol ; 9: 591775, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34222206

RESUMO

The long-term co-culture of mouse embryonic stem cells (mESC) with rat endothelial cells (EC) was tested for contact differentiation into the endothelial lineage. Serial passaging of rat ECs mixed with mESC in ratio 10:1 resulted in the emergence of a homogeneous cell population expressing mouse endothelial surface markers CD102, CD29, CD31. Rat endothelial surface marker RECA-1 completely disappeared from the co-cultured population after 2 months of weekly passaging. Co-incubation of mESC with rat ECs without cell-to-cell contact did not result in the conversion of mESC into ECs. After co-cultivation of adult mesenchymal stem cells from human endometrium (eMSC) with pre-hepatocyte-like cells of human hepatocarcinoma Huh7 the resulting co-culture expressed mature liver markers (oval cell antigen and cytokeratin 7), none of which were expressed by any of co-cultivated cultures, thus proving that even an immature (proliferating) pre-hepatocyte-like line can induce hepatic differentiation of stem cells. In conclusion, we have developed conditions where long-term co-proliferation of embryonic or adult SC with fully or partially differentiated cells results in stem cell progeny expressing markers of target tissue. In the case of endothelial differentiation, the template population quickly disappeared from the resulted culture and the pure endothelial population of stem cell progeny emerged. This approach demonstrates the expected fate of stem cells during various in vivo SC-therapies and also might be used as an effective in vitro differentiation method to develop the pure endothelium and, potentially, other tissue types of desirable genetic background.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA