Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 232
Filtrar
1.
Ecol Evol Physiol ; 97(3): 129-143, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38875140

RESUMO

AbstractTemperate reptiles are often considered to be low-energy systems, with their discrete use of time and energy making them model systems for the study of time-energy budgets. However, the semifrequent replacement and sloughing of the epidermis is a ubiquitous feature of squamate reptiles that is often overlooked when accounting for time and energy budgets in these animals. We used open-flow respirometry to measure both the energetic effort of ecdysis and the duration of the associated metabolic upregulation (likely related to behavioral changes often reported for animals in shed) in wild-caught timber rattlesnakes (Crotalus horridus). We hypothesized that total effort of skin biosynthesis and physical removal would be related to body mass and expected the duration of the process to remain static across individuals at a fixed temperature (25°C). We provide both the first measurements of the cost of skin biosynthesis and physical removal in a reptile and the highest-resolution estimate of process duration recorded to date. We found that skin biosynthesis, but not the cost of physical removal of the epidermis, was related to body mass. Shed cycle duration was consistent across individuals, taking nearly 4 wk from process initiation to physical removal of the outermost epidermal layer. Total energetic effort of ecdysis was of sizeable magnitude, requiring ∼3% of the total annual energy budget of a timber rattlesnake. Energetic effort for a 500-g snake was equivalent to the amount of metabolizable energy acquired from the consumption of approximately two adult mice. Ecdysis is a significant part of the time-energy budgets of snakes, necessitating further attention in studies of reptilian energetics.


Assuntos
Crotalus , Metabolismo Energético , Muda , Animais , Metabolismo Energético/fisiologia , Crotalus/metabolismo , Muda/fisiologia , Masculino , Feminino
2.
Environ Pollut ; : 124388, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38897281

RESUMO

Understanding the impact of environmental pollution on organismal energy budgets is crucial for predicting adaptive responses and potential maladaptation to stressors. However, the regulatory mechanism governing the trade-off between energy intake and consumption remains largely unknown, particularly considering the diverse adaptations influenced by exposure history in realistic field conditions. In the present study, we conducted a simulated field reciprocal transplant experiment to compare the energy budget strategies of Strauchbufo raddei tadpoles exposed to heavy metal. The simulated heavy metal concentrations (0.29 mg/L Cu, 1.17 mg/L Zn, 0.47 mg/L Pb, 0.16 mg/L Cd) mirrored the actual environmental exposure concentrations observed in the field habitat. This allowed for a comparison between tadpoles with parental chronic exposure to heavy metal pollutants in their habitat and those without such exposure. Results revealed that under heavy metal exposure, tadpoles originating from unpolluted areas exhibited heightened vulnerability, characterized by reduced food intake, diminished nutrient absorption, increased metabolism cost, reduced energy reserves, and increased mortality rates. In contrast, tadpoles originating from areas with long-term heavy metal pollution demonstrated adaptive strategies, manifested through adjustments in liver and small intestine phenotypes, optimizing energy allocation, and reducing energy consumption to preserve energy, thus sustaining survival. However, tadpoles from polluted areas exhibited certain maladaptive such as growth inhibition, metabolic suppression, and immune compromise due to heavy metal exposure. In conclusion, while conserving energy consumption has proven to be an effective way to deal with long-term heavy metal stress, it poses a threat to individual survival and population development in the long run.

3.
J Anim Ecol ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38932441

RESUMO

Unravelling the intricate mechanisms that govern community coexistence remains a daunting challenge, particularly amidst ongoing environmental change. Individual physiology and metabolism are often studied to understand the response of individual animals to environmental change. However, this perspective is currently largely lacking in community ecology. We argue that the integration of individual metabolism into community theory can offer new insights into coexistence. We present the first individual-based metabolic community model for a terrestrial mammal community to simulate energy dynamics and home range behaviour in different environments. Using this model, we investigate how ecologically similar species coexist and maintain their energy balance under food competition. Only if individuals of different species are able to balance their incoming and outgoing energy over the long-term will they be able to coexist. After thoroughly testing and validating the model against real-world patterns such as of home range dynamics and field metabolic rates, we applied it as a case study to scenarios of habitat fragmentation - a widely discussed topic in biodiversity research. First, comparing single-species simulations with community simulations, we find that the effect of habitat fragmentation on populations is strongly context-dependent. While populations of species living alone in the landscape were mostly positively affected by fragmentation, the diversity of a community of species was highest under medium fragmentation scenarios. Under medium fragmentation, energy balance and reproductive investment were also most similar among species. We therefore suggest that similarity in energy balance among species promotes coexistence. We argue that energetics should be part of community ecology theory, as the relative energetic status and reproductive investment can reveal why and under what environmental conditions coexistence is likely to occur. As a result, landscapes can potentially be protected and designed to maximize coexistence. The metabolic community model presented here can be a promising tool to investigate other scenarios of environmental change or other species communities to further disentangle global change effects and preserve biodiversity.

4.
Glob Chang Biol ; 30(5): e17346, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38798167

RESUMO

Photosynthetically active radiation (PAR) is typically defined as light with a wavelength within 400-700 nm. However, ultra-violet (UV) radiation within 280-400 nm and far-red (FR) radiation within 700-750 nm can also excite photosystems, though not as efficiently as PAR. Vegetation and land surface models (LSMs) typically do not explicitly account for UV's contribution to energy budgets or photosynthesis, nor FR's contribution to photosynthesis. However, whether neglecting UV and FR has significant impacts remains unknown. We explored how canopy radiative transfer (RT) and photosynthesis are impacted when explicitly implementing UV in the canopy RT model and accounting for UV and FR in the photosynthesis models within a next-generation LSM that can simulate hyperspectral canopy RT. We validated our improvements using photosynthesis measurements from plants under different light sources and intensities and surface reflection from an eddy-covariance tower. Our model simulations suggested that at the whole plant level, after accounting for UV and FR explicitly, chlorophyll content, leaf area index (LAI), clumping index, and solar radiation all impact the modeling of gross primary productivity (GPP). At the global scale, mean annual GPP within a grid would increase by up to 7.3% and the increase is proportional to LAI; globally integrated GPP increases by 4.6 PgC year-1 (3.8% of the GPP without accounting for UV + FR). Further, using PAR to proxy UV could overestimate surface albedo by more than 0.1, particularly in the boreal forests. Our results highlight the importance of improving UV and FR in canopy RT and photosynthesis modeling and the necessity to implement hyperspectral or multispectral canopy RT schemes in future vegetation and LSMs.


Assuntos
Fotossíntese , Raios Ultravioleta , Folhas de Planta/efeitos da radiação , Modelos Teóricos , Clorofila/metabolismo , Modelos Biológicos , Plantas/efeitos da radiação , Plantas/metabolismo
5.
Ecotoxicol Environ Saf ; 277: 116355, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38669871

RESUMO

The neonicotinoid insecticide thiamethoxam (TMX) is widely used to protect crops against insect pests. Despite some desirable properties such as its low toxicity to birds and mammals, concerns have been raised about its toxicity to non-target arthropods, including freshwater insects like chironomids. Whereas multiple studies have investigated chronic effects of neonicotinoids in chironomid larvae at standardized laboratory conditions, a better understanding of their chronic toxicity under variable temperatures and exposure is needed for coherent extrapolation from the laboratory to the field. Here, we developed a quantitative mechanistic effect model for Chironomus riparius, to simulate the species' life history under dynamic temperatures and exposure concentrations of TMX. Laboratory experiments at four different temperatures (12, 15, 20, 23 °C) and TMX concentrations between 4 and 51 µg/L were used to calibrate the model. Observed concentration-dependent effects of TMX in C. riparius included slower growth, later emergence, and higher mortality rates with increasing concentrations. Furthermore, besides a typical accelerating effect on the organisms' growth and development, higher temperatures further increased the effects associated with TMX. With some data-informed modeling decisions, most prominently the inclusion of a size dependence that makes larger animals more sensitive to TMX, the model was parametrized to convincingly reproduce the data. Experiments at both a constant (20 °C) and a dynamically increasing temperature (15-23 °C) with pulsed exposure were used to validate the model. Finally, the model was used to simulate realistic exposure conditions using two reference exposure scenarios measured in Missouri and Nebraska, utilizing a moving time window (MTW) and either a constant temperature (20 °C) or the measured temperature profiles belonging to each respective scenario. Minimum exposure multiplication factors leading to a 10% effect (EP10) in the survival at pupation, i.e., the most sensitive endpoint found in this study, were 25.67 and 21.87 for the Missouri scenario and 38.58 and 44.64 for the Nebraska scenario, when using the respective temperature assumptions. While the results illustrate that the use of real temperature scenarios does not systematically modify the EPx in the same direction (making it either more or less conservative when used as a risk indicator), the advantage of this approach is that it increases the realism and thus reduces the uncertainty associated with the model predictions.


Assuntos
Chironomidae , Inseticidas , Larva , Temperatura , Tiametoxam , Animais , Tiametoxam/toxicidade , Chironomidae/efeitos dos fármacos , Inseticidas/toxicidade , Larva/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Estágios do Ciclo de Vida/efeitos dos fármacos , Neonicotinoides/toxicidade
6.
J Anim Ecol ; 93(3): 348-366, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38303132

RESUMO

Variation in life history traits in animals and plants can often be structured along major axes of life history strategies. The position of a species along these axes can inform on their sensitivity to environmental change. For example, species with slow life histories are found to be less sensitive in their long-term population responses to environmental change than species with fast life histories. This provides a tantalizing link between sets of traits and population responses to change, contained in a highly generalizable theoretical framework. Life history strategies are assumed to reflect the outcome of life history tradeoffs that, by their very nature, act at the individual level. Examples include the tradeoff between current and future reproductive success, and allocating energy into growth versus reproduction. But the importance of such tradeoffs in structuring population-level responses to environmental change remains understudied. We aim to increase our understanding of the link between individual-level life history tradeoffs and the structuring of life history strategies across species, as well as the underlying links to population responses to environmental change. We find that the classical association between lifehistory strategies and population responses to environmental change breaks down when accounting for individual-level tradeoffs and energy allocation. Therefore, projecting population responses to environmental change should not be inferred based only on a limited set of species traits. We summarize our perspective and a way forward in a conceptual framework.


Assuntos
Características de História de Vida , Animais , Reprodução/fisiologia , Plantas
7.
J Therm Biol ; 120: 103808, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38387224

RESUMO

Individual variation in energetics, environment, and genetics can influence population-level processes. However, it is often assumed that locally measured thermal and bioenergetic responses apply among broadly related species. Even closely related taxa may differ in the thermal sensitivity of performance, which in turn influences population persistence, population vital rates, and the ability to respond to environmental changes. The objectives of this project were to quantify the thermal sensitivity of digestive physiology in an Sceloporus lizards, to compare closely related, but geographically distinct, populations. Sceloporus lizards are a model organism, as they are known to exhibit thermally dependent physiologies and are geographically widespread. Digestive passage time, food consumption, fecal and urate production, metabolizable energy intake (MEI), and assimilated energy (AE) were compared for Sceloporus consobrinus in Arkansas and S. undulatus in South Carolina and New Jersey. Published data were acquired for NJ and SC lizards, while original data were collected for S. consobrinus. Comparisons of digestion among populations were made at 30 °C, 33 °C, or 36 °C. Results suggest that digestive physiology differs among populations, with S. consobrinus being more efficient at warmer temperatures. In contrast, NJ and SC lizards had quicker passage times and lower fecal and urate production at 30 °C in comparison to AR. The results of the current study exemplify how closely related organisms can differ in thermal sensitivity of performance. Such data are important for understanding how individual-level processes can vary in response to climate, with implications for understanding variation in physiological traits across the range of Sceloporus lizards.


Assuntos
Lagartos , Ácido Úrico , Animais , Temperatura , Clima , Lagartos/fisiologia , Digestão
8.
Proc Biol Sci ; 291(2017): 20232152, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38378146

RESUMO

Many ectothermic organisms counter harsh abiotic conditions by seeking refuge in underground retreats. Variations in soil hydrothermal properties within these retreats may impact their energy budget, survival and population dynamics. This makes retreat site choice a critical yet understudied component of their strategies for coping with climate change. We used a mechanistic modelling approach to explore the implications of behavioural adjustments and seasonal acclimation of metabolic rate on retreat depth and the energy budget of ectotherms, considering both current and future climate conditions. We used a temperate amphibian, the alpine newt (Ichthyosaura alpestris), as a model species. Our simulations predict an interactive influence of different thermo- and hydroregulatory strategies on the vertical positioning of individuals in underground refuges. The adoption of a particular strategy largely determines the impact of climate change on retreat site choice. Additionally, we found that, given the behavioural thermoregulation/hydroregulation and metabolic acclimation patterns considered, behaviour within the retreat has a greater impact on ectotherm energetics than acclimation of metabolic rate under different climate change scenarios. We conclude that further empirical research aimed at determining ectotherm behavioural strategies during both surface activity and inactivity is needed to understand their population dynamics and species viability under climate change.


Assuntos
Aclimatação , Mudança Climática , Humanos , Animais , Regulação da Temperatura Corporal , Comportamento Animal/fisiologia , Solo , Temperatura
9.
Ecol Lett ; 27(2): e14392, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38400796

RESUMO

Trade-offs between current and future reproduction manifest as a set of co-varying life history and metabolic traits, collectively referred to as 'pace of life' (POL). Seasonal migration modulates environmental dynamics and putatively affects POL, however, the mechanisms by which migratory behaviour shapes POL remain unclear. We explored how migratory behaviour interacts with environmental and metabolic dynamics to shape POL. Using an individual-based model of movement and metabolism, we compared fitness-optimized trade-offs among migration strategies. We found annual experienced seasonality modulated by migratory movements and distance between end-points primarily drove POL differentiation through developmental and migration phenology trade-offs. Similarly, our analysis of empirically estimated metabolic data from 265 bird species suggested seasonal niche tracking and migration distance interact to drive POL. We show multiple viable life-history strategies are conducive to a migratory lifestyle. Overall, our findings suggest metabolism mediates complex interactions between behaviour, environment and life history.


Assuntos
Características de História de Vida , Animais , Estações do Ano , Reprodução , Aves , Fenótipo , Migração Animal
10.
Sci Total Environ ; 920: 171046, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38369151

RESUMO

Food security, water scarcity, and excessive fossil energy use pose considerable challenges to sustainable agriculture. To understand how rain-fed farming systems on the Loess Plateau, China, reconcile yield increases with ecological conservation, we conducted an integrated evaluation based on the denitrification-decomposition (DNDC) model, agricultural statistics data using the Food-Energy-Water (FEW) nexus indicator. The results showed that maize yields with ridge-furrow plastic film mulching (PFM) were 3479, 8942, and 11,124 kg ha-1 under low (50 kg N ha-1), medium (200 kg N ha-1), and high (350 kg N ha-1) nitrogen (N) fertilizer rates, respectively, and that PFM increased yield and water use efficiency (WUE) by 110-253 % and 166-205 % compared to using no mulching (control, CK), respectively. Plastic film mulching also increased net energy (126-436 %), energy use efficiency (81-578 %), energy productivity (100-670 %), and energy profitability (126-994 %), and nitrogen fertilizer, compound fertilizer, and diesel fuel consumption by agricultural machinery were the main energy inputs. The PFM system reduced water consumption during the maize growing season and the green water footprint and gray water footprint decreased by 66-74 % and 44-68 %, respectively. The FEW nexus indicator, based on a high production at low environmental cost scenario, was greater under the PFM system and had the widest spatial distribution area at the medium-N application rate. Among the environmental factors, the nexus indicator was negatively correlated with precipitation (-0.37), air temperature (-0.36), and the aridity index (-0.36), but positively correlated with elevation (0.17). Our results suggest that the PFM system promotes resource-saving while increasing yields and moves dryland agriculture in an environmentally friendly direction, thus promoting the sustainable development of agroecosystems.


Assuntos
Solo , Água , Água/análise , Fertilizantes , Agricultura/métodos , Zea mays , China , Nitrogênio/análise , Plásticos
11.
Insects ; 15(1)2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38249042

RESUMO

Animals with different life histories budget their intake energy differently when food availability is low. It has been shown previously that hornworm (larva of Manduca sexta), a holometabolous insect species with a short development stage, prioritizes growth at the price of metabolism under food restriction, but it is unclear how hemimetabolous insect species with a relatively long development period budget their intake energy under food scarcity. Here, we use orange head cockroaches (Eublaberus posticus) to investigate this question. We found that for both species under food restriction, rates of metabolism and growth were suppressed, but the degree of reduction was more severe in growth than that of metabolism for cockroaches. Under both free-feeding and food restriction conditions, hornworms allocated a larger fraction of assimilated energy to growth than to metabolism, and cockroaches were the opposite. More importantly, when food availability was low, the fraction of assimilated energy allocated to growth was reduced by 120% in cockroaches, and the energy from growth was channeled to compensate for the reduction in metabolism; but, the fraction of assimilated energy allocated to growth was only reduced by 14% in hornworms. These results suggest that, compared to hornworms, cockroaches prioritize metabolism over growth.

13.
Sci Total Environ ; 912: 169096, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38092208

RESUMO

Effects on the growth and reproduction of birds are important endpoints in the environmental risk assessment (ERA) of pesticides. Toxicokinetic-toxicodynamic models based on dynamic energy budget theory (DEB) are promising tools to predict these effects mechanistically and make extrapolations relevant to ERA. However, before DEB-TKTD models are accepted as part of ERA for birds, ecotoxicological case studies are required so that stakeholders can assess their capabilities. We present such a case-study, modelling the effects of the fluopyram metabolite benzamide on the northern bobwhite quail (Colinus virginianus). We parametrised a DEB-TKTD model for the embryo stage on the basis of an egg injection study, designed to provide data for model development. We found that information on various endpoints, such as survival, growth, and yolk utilisation were needed to clearly distinguish between the performance of model variants with different TKTD assumptions. The calibration data were best explained when it was assumed that chemical uptake occurs via the yolk and that benzamide places stress on energy assimilation and mobilisation. To be able to bridge from the in vitro tests to real-life exposure, we developed a physiologically-based toxicokinetic (PBK) model for the quail and used it to predict benzamide exposure inside the eggs based on dietary exposure in a standard reproductive toxicity study. We then combined the standard DEB model with the TKTD module calibrated to the egg injection studies and used it to predict effects on hatchling and 14-day chick weight based on the exposure predicted by the PBK model. Observed weight reductions, relative to controls, were accurately predicted. Thus, we demonstrate that DEB-TKTD models, in combination with suitable experimental data and, if necessary, with an exposure model, can be used in bird ERA to predict chemical effects on reproduction.


Assuntos
Colinus , Reprodução , Animais , Codorniz , Metabolismo Energético , Benzamidas
14.
Environ Toxicol Chem ; 43(2): 440-449, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38051527

RESUMO

The extrapolation of effects from controlled standard laboratory tests to real environmental conditions is a major challenge facing ecological risk assessment (ERA) of chemicals. Toxicokinetic-toxicodynamic (TKTD) models, such as those based on dynamic energy budget (DEB) theory, can play an important role in filling this gap. Through the years, different practical TKTD models have been derived from DEB theory, ranging from the full "standard" DEB animal model to simplified "DEBtox" models. It is currently unclear what impact a different level of model complexity can have on the regulatory risk assessment. In the present study, we compare the performance of two DEB-TKTD models with different levels of complexity, focusing on model calibration on standard test data and on forward predictions for untested time-variable exposure profiles. The first model is based on the standard DEB model with primary parameters, whereas the second is a reduced version with compound parameters, based on DEBkiss. After harmonization of the modeling choices, we demonstrate that these two models can achieve very similar performances both in the calibration step and in the forward prediction step. With the data presented in the present study, selection of the most suitable TKTD model for ERA therefore cannot be based alone on goodness-of-fit or on the precision of model predictions (within current ERA procedures for pesticides) but would likely be based on the trade-off between ease of use and model flexibility. We also stress the importance of modeling choices, such as how to fill gaps in the information content of experimental toxicity data and how to accommodate differences in growth and reproduction between different data sets for the same chemical-species combination. Environ Toxicol Chem 2024;43:440-449. © 2023 ibacon GmbH. Bayer AG and The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Praguicidas , Animais , Medição de Risco , Praguicidas/toxicidade , Ecotoxicologia
15.
Mar Pollut Bull ; 198: 115788, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056289

RESUMO

Climate change is acidifying and warming our oceans, at an unprecedented rate posing a challenge for marine invertebrates vital across the globe for ecological services and food security. Here we show it is possible for resilience to climate change in an ecologically and economically significant oyster without detrimental effects to the energy budget. We exposed 24 pair-mated genetically distinct families of the Sydney rock oyster, Saccostrea glomerata to ocean acidification and warming for 4w and measured their resilience. Resilience was identified as the capacity to defend their acid-base balance without a loss of energy available for Scope for Growth (SFG). Of the 24 families, 13 were better able to defend their acid-base balance while eight had no loss of energy availability with a positive SFG. This study has found oyster families with reslience against climate change without a loss of SFG, is an essential mitigation strategy, in a critical mollusc.


Assuntos
Ostreidae , Resiliência Psicológica , Animais , Água do Mar , Concentração de Íons de Hidrogênio , Mudança Climática , Alimentos Marinhos
16.
Environ Toxicol Chem ; 43(2): 324-337, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37888879

RESUMO

Ecological risk assessment (ERA) of metals typically starts from standardized toxicity tests, the data from which are then extrapolated to derive safe concentrations for the envisioned protection goals. Because such extrapolation in conventional ERA lacks ecological realism, ecological modeling is considered as a promising new approach for extrapolation. Many published population models are complex, that is, they include many processes and parameters, and thus require an extensive dataset to calibrate. In the present study, we investigated how individual-based models based on a reduced version of the Dynamic Energy Budget theory (DEBkiss IBM) could be applied for metal effects on the rotifer Brachionus calyciflorus. Data on survival over time and reproduction at different temperatures and food conditions were used to calibrate and evaluate the model for copper effects. While population growth and decline were well predicted, the underprediction of population density and the mismatch in the onset of copper effects were attributed to the simplicity of the approach. The DEBkiss IBM was applied to toxicity datasets for copper, nickel, and zinc. Predicted effect concentrations for these metals based on the maximum population growth rate were between 0.7 and 3 times higher in all but one case (10 times higher) than effect concentrations based on the toxicity data. The size of the difference depended on certain characteristics of the toxicity data: both the steepness of the concentration-effect curve and the relative sensitivity of lethal and sublethal effects played a role. Overall, the present study is an example of how a population model with reduced complexity can be useful for metal ERA. Environ Toxicol Chem 2024;43:324-337. © 2023 SETAC.


Assuntos
Rotíferos , Poluentes Químicos da Água , Animais , Cobre/análise , Níquel/análise , Zinco/análise , Reprodução , Poluentes Químicos da Água/análise
17.
Environ Toxicol Chem ; 43(2): 338-358, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37921584

RESUMO

Mechanistic effect modeling is a promising tool to improve the ecological realism of environmental risk assessment. An open question for the mechanistic modeling of metal toxicity is whether the same physiological mode of action (PMoA) could be assumed for closely related species. The implications of various modeling choices, such as the use of parameter point estimates and assumption of simplistic toxicodynamic models, are largely unexplored. We conducted life-table experiments with Daphnia longispina, Daphnia magna, and Daphnia pulex exposed to the single metals Cu, Ni, and Zn, and calibrated toxicokinetic-toxicodynamic (TKTD) models based on dynamic energy budget theory. We developed TKTD models with single and combined PMoAs to compare their goodness-of-fit and predicted population-level sensitivity. We identified the PMoA reproduction efficiency as most probable in all species for Ni and Zn, but not for Cu, and found that combined-PMoA models predicted higher population-level sensitivity than single-PMoA models, which was related to the predicted individual-level sensitivity, rather than to mechanistic differences between models. Using point estimates of parameters, instead of sampling from the probability distributions of parameters, could also lead to differences in the predicted population-level sensitivity. According to model predictions, apical chronic endpoints (cumulative reproduction, survival) are conservative for single-metal population effects across metals and species. We conclude that the assumption of an identical PMoA for different species of Daphnia could be justified for Ni and Zn, but not for Cu. Single-PMoA models are more appropriate than combined-PMoA models from a model selection perspective, but propagation of the associated uncertainty should be considered. More accurate predictions of effects at low concentrations may nevertheless motivate the use of combined-PMoA models. Environ Toxicol Chem 2024;43:338-358. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Metais , Poluentes Químicos da Água , Humanos , Animais , Incerteza , Daphnia/fisiologia , Reprodução , Zinco/toxicidade , Poluentes Químicos da Água/toxicidade
18.
Environ Res ; 242: 117710, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37996001

RESUMO

The conventional wheat-maize systems in the North China Plain are energy and water intensive with high carbon emissions. It is imperative to find cleaner production technologies for sustainable food-water-energy-carbon synergism. Here, a three-year field experiment was performed to explore the effects of two tillage modes and four irrigation regimes during wheat season on crop yield, economic profile, water use efficiency, energy utilization, and carbon footprint in typical wheat-maize cropping systems in the North China Plain. Pre-sowing irrigation resulted in the lowest crop yield and benefit profile. Pre-sowing + anthesis irrigation decreased economic benefit and water use efficiency with higher carbon footprint. Pre-sowing + jointing + anthesis irrigation led to the greatest energy consumption and greenhouse gas emissions. However, pre-sowing + jointing irrigation increased yield by 2.3-8.7%, economic benefit by 4.0-11.1%, water use efficiency by 7.4-10.9%, and net energy by 6.5-12.0% but reduced carbon footprint by 9.8-14.3% compared to pre-sowing + anthesis irrigation and pre-sowing + jointing + anthesis irrigation. The corresponding metrics in rotary tillage improved by 9.6%, 13.9%, 7.0%, and 14.2%, respectively, relative to subsoiling, whereas carbon footprint decreased by 12.4-17.2%. Besides, rotary tillage coupled with additional jointing irrigation obtained the highest value based on a Z-score method, which was recommended as a cleaner management practice to improve benefit return and water use efficiency with lower energy consumption and carbon footprint. This work provides valuable insights into food-water-energy-carbon nexus for ensuring food security and achieving environmental sustainability in the wheat-maize cropping systems.


Assuntos
Triticum , Zea mays , Água , Carbono , Tecnologia , China , Solo , Agricultura/métodos , Irrigação Agrícola/métodos
19.
Am J Primatol ; 86(1): e23564, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37839049

RESUMO

Insufficient physical activity is a major risk factor for cardiometabolic disease (i.e., unhealthy weight gain, heart disease, and diabetes) in humans and may also negatively affect health of primates in human care. Effects of physical activity on energy expenditure and cardiometabolic health are virtually unstudied in nonhuman primates. We investigated physical activity and metabolic markers in 15 adult ring-tailed lemurs (Lemur catta) and 11 Coquerel's sifakas (Propithecus coquereli) at the Duke Lemur Center during a period of low activity in winter when the animals were housed in buildings (with outdoor access) and a period of high activity when individuals were free-ranging in large, outdoor, forested enclosures. We compared body mass, blood glucose, triglycerides, HDL- and LDL-cholesterol, physical activity via accelerometry, and total energy expenditure (TEE) via the doubly labeled water method (in ring-tailed lemurs only) between both conditions. Both species were more active and had a lower body mass in summer. Ring-tailed lemurs had a higher TEE and lower triglyceride levels in summer, whereas sifaka had higher triglyceride levels in summer. Individuals that increased their activity more, also lost more body mass. Individuals that lost more body mass, also had a positive change in HDL-cholesterol (i.e., higher values in summer). Changes in activity were not associated with changes in markers of metabolic health, body fat percentage and TEE (both unadjusted and adjusted for body composition). Older age was associated with lower activity in both species, and decreased glucose in ring-tailed lemurs, but was otherwise unrelated to metabolic markers and, for ring-tailed lemurs, adjusted TEE. Overall, body mass was lower during summer but the increase in physical activity did not strongly influence metabolic health or TEE in these populations.


Assuntos
Doenças Cardiovasculares , Lemur , Lemuridae , Condicionamento Físico Animal , Animais , Humanos , Primatas , Triglicerídeos , Colesterol
20.
Biol Rev Camb Philos Soc ; 99(2): 478-495, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37987237

RESUMO

Foraging is risk sensitive if choices depend on the variability of returns from the options as well as their mean return. Risk-sensitive foraging is important in behavioural ecology, psychology and neurophysiology. It has been explained both in terms of mechanisms and in terms of evolutionary advantage. We provide a critical review, evaluating both mechanistic and evolutionary accounts. Some derivations of risk sensitivity from mechanistic models based on psychophysics are not convincing because they depend on an inappropriate use of Jensen's inequality. Attempts have been made to link risk sensitivity to the ecology of a species, but again these are not convincing. The field of risk-sensitive foraging has provided a focus for theoretical and empirical work and has yielded important insights, but we lack a simple and empirically defendable general account of it in either mechanistic or evolutionary terms. However, empirical analysis of choice sequences under theoretically motivated experimental designs and environmental settings appears a promising avenue for mapping the scope and relative merits of existing theories. Simply put, the devil is in the sequence.


Assuntos
Evolução Biológica , Comportamento de Escolha , Comportamento de Escolha/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA