Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 360
Filtrar
1.
Animals (Basel) ; 14(18)2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39335281

RESUMO

Vaccination is an essential method of immunological preventive care required for the health management of all animals, including fish. More particularly, immunization is necessary for in-land aquaculture to manage diseases in fish broodstocks and healthy seed production. According to the latest statistics in 2020, 90.3 million tons of capture fishery production was achieved from the aquaculture sector. Out of the above, 78.8 million tons were from marine water aquaculture sectors, and 11.5 million tons were from inland water aquaculture sectors. About a 4% decline in fish production was achieved in 2020 in comparison to 2018 from inland aquaculture sectors. On the other hand, the digestive protein content, healthy fats, and nutritional values of fish products are comparatively more affordable than in other meat sources. In 2014, about 10% of aquatic cultured animals were lost (costing global annual losses > USD 10 billion) due to infectious diseases. Therefore, vaccination in fish, especially in broodstocks, is one of the essential approaches to stop such losses in the aquaculture sector. Fish vaccines consist of whole-killed pathogens, protein subunits, recombinant proteins, DNA, or live-attenuated vaccines. Challenges persist in the adaption of vaccination in the aquaculture sector, the route of administration, the use of effective adjuvants, and, most importantly, the lack of effective results. The use of autogenous vaccines; vaccination via intramuscular, intraperitoneal, or oral routes; and, most importantly, adding vaccines in feed using top dressing methods or as a constituent in fish feed are now emerging. These methods will lower the risk of using antibiotics in cultured water by reducing environmental contamination.

2.
J Hazard Mater ; 479: 135701, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39217942

RESUMO

Hydrazine is volatile and highly toxic, causing severe harm to water, soil, air, and organisms. Therefore, real-time detection and long-term monitoring of hydrazine are crucial for environmental protection and human health. Herein, an "OFF-ON" fluorescent probe 5-((10-ethyl-2-methoxy-10 H-phenothiazin-3-yl)methylene)-2,2-dimethyl-1,3-dioxane-4,6-dione (MPD) for hydrazine detection through a nucleophilic addition reaction was developed. MPD could exclusively identify hydrazine through colorimetric and fluorescent dual-channel responses within 30 s, which also demonstrated high sensitivity (detection limit, 12 nM) and a wide pH range (6 -12). The sensing mechanism of MPD was confirmed using theoretical calculations, where fluorescence was emitted following the recognition of hydrazine because of the disappearance of the photoinduced electron transfer (PET) process. Using a smartphone, MPD enabled the quantitative detection of hydrazine in real water samples and sandy soil. Notably, in the process of detecting hydrazine in actual water samples, the establishment of analytical methods and the completion of rapid quantitative detection only required a smartphone and built-in apps. Additionally, we showed that MPD could recognize hydrazine in various environmental samples, including plants, food, hydrazine vapors, and cells. We believe that the fluorescent probe MPD developed in this study and the established smartphone visualization platform will provide a convenient and effective tool for detecting hydrazine in environmental monitoring, food safety assessment, biological system safety, and other fields.


Assuntos
Corantes Fluorescentes , Hidrazinas , Smartphone , Corantes Fluorescentes/química , Hidrazinas/análise , Hidrazinas/química , Humanos , Poluentes do Solo/análise , Poluentes Químicos da Água/análise , Plantas/química , Solo/química , Contaminação de Alimentos/análise
3.
Molecules ; 29(15)2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39124939

RESUMO

The detection of pathogens in medical wastewater is crucial due to the high content of pathogenic microorganisms that pose significant risks to public health and the environment. Medical wastewater, which includes waste from infectious disease and tuberculosis facilities, as well as comprehensive medical institutions, contains a variety of pathogens such as bacteria, viruses, fungi, and parasites. Traditional detection methods like nucleic acid detection and immunological assays, while effective, are often time-consuming, expensive, and not suitable for rapid detection in underdeveloped areas. Electrochemical biosensors offer a promising alternative with advantages including simplicity, rapid response, portability, and low cost. This paper reviews the sources of pathogens in medical wastewater, highlighting specific bacteria (e.g., E. coli, Salmonella, Staphylococcus aureus), viruses (e.g., enterovirus, respiratory viruses, hepatitis virus), parasites, and fungi. It also discusses various electrochemical biosensing techniques such as voltammetry, conductometry, impedance, photoelectrochemical, and electrochemiluminescent biosensors. These technologies facilitate the rapid, sensitive, and specific detection of pathogens, thereby supporting public health and environmental safety. Future research may should pay more attention on enhancing sensor sensitivity and specificity, developing portable and cost-effective devices, and innovating detection methods for diverse pathogens to improve public health protection and environmental monitoring.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Águas Residuárias , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Águas Residuárias/virologia , Águas Residuárias/microbiologia , Águas Residuárias/análise , Vírus/isolamento & purificação , Bactérias/isolamento & purificação , Humanos , Monitoramento Ambiental/métodos , Fungos/isolamento & purificação
4.
Indian J Occup Environ Med ; 28(2): 159-162, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39114109

RESUMO

Introduction: The environment poses an important risk in the causation of injuries in children. Simple measures in improving the safety of the domestic and peri-domestic environment can go a long way in preventing injuries. This study was conducted to assess the effect of training of the adolescents in the families, on the household environmental safety regarding childhood injuries. Materials and Methods: A pre- and post-intervention study was conducted over 16 months, on 116 families of two villages of Delhi. Data were collected regarding domestic and peri-domestic environments along with danger points with respect to injuries, of the enrolled houses, during the pre- and post-intervention phases of 4 months each. The intervention comprised training of the eldest adolescent of the family, on causes of common injuries and role of environment in injury causation. Scores were assigned to all relevant aspects, and the total environmental safety scores were calculated. The comparison was made between pre- and post-intervention scores of the two areas. Results: Environmental safety scores were more than 70% in both areas at the baseline with no difference between the two areas. In the intervention area, there was statistically significant improvement of scores after the intervention, in the domestic environment and danger signs within the houses. Conclusion: Training adolescents about the prevention of injuries and motivating them to remain vigilant over domestic environment are effective in bringing about significant change in the household environment with regard to safety from injuries in children. Repeated visits by health workers also increase awareness and change the household environment making it safer for children.

5.
Chemosphere ; 363: 142855, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39019195

RESUMO

This study aimed to design an efficient and easily collected/regenerated adsorbent for trace concentration sulfamethoxazole (SMX) removal to eliminate its negative impacts on human health, reduce the risk of adsorbed SMX release and boost the reusability of adsorbent. Various multiple modified sludge-derived biochars (SBC) were synthesized in this work and applied to adsorb trace level SMX. The results demonstrated that hydrothermal N-doping, magnetization coupled with ball milling co-functionalized SBC (BMNSBC) displayed the greater adsorption ability for SMX. The maximum adsorption capacity of BMNSBC for SMX calculated by Langmuir model was 1.02 × 105 µg/g, which was 12.9 times of SBC. Characterization combined with adsorption experiments (e.g., models fitting) and DFT calculation confirmed that π-π conjugation, Lewis acid-base, pore filling and Fe3O4 complexation were the primary forces driving SMX binding to BMNSBC. These diversified physicochemical forces contributed to the fine anti-interference of BMNSBC to background substances (e.g., inorganic compounds and organic matter) and its remarkable adsorption ability for SMX in diverse real waters. The great magnetization strength of BMNSBC was advantage for its collection and efficient regeneration by NaOH desorption. Additionally, BMNSBC exhibited an outstanding security in view of its low leaching levels of iron (Fe) and total nitrogen (TN). The multiple superiority of BMNSBC enable it to be a prospective material for emerging contaminants (e.g., SMX) purification, also offering a feasible disposal approach for municipal waste (e.g., sludge).


Assuntos
Carvão Vegetal , Esgotos , Sulfametoxazol , Poluentes Químicos da Água , Sulfametoxazol/química , Sulfametoxazol/análise , Adsorção , Carvão Vegetal/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Esgotos/química , Purificação da Água/métodos
6.
Colloids Surf B Biointerfaces ; 242: 114077, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39003849

RESUMO

The off-target loss of pesticide formulations caused by volatilization and leaching has reduced effective utilization and increased risks to the ecological environment and human health. Self-assembly of pesticides has been widely concerned due to the improved bioactivity and environmental compatibility. Herbicidal ionic liquids (HILs) could effectively decrease off-target loss and increase efficacy and environmental safety by improving the physicochemical properties of herbicides. Herein, HILs were prepared by pairing dicamba with quaternary ammonium salts containing different alkyl chain lengths and aromatic groups and subsequently self-assembled into spherical nanoparticles (HIL NPs) via electrostatic interaction and hydrophobic effect. Compared with dicamba, the obtained HIL NPs with an average particle size of 6-55 nm exhibited improved physicochemical properties, including high zeta potential values (+20.3 to +27.8 mV), low volatilization rate (2.4-3.9 %) and surface tension (22.83-33.07 mN m-1), decreased contact angle (32.25-41.55°) and leaching potential (76.2-86.5 %), and high soil adsorption (12.1-23.8 %), suggesting low risks to the environment. The control efficacy against Amaranthus retroflexus of HIL3 NPs pairing dicamba with octadecyl-trimethyl ammonium chloride was better than that of dicamba sodium salt at different concentrations. Therefore, the ionic liquid self-assembly developed by a facile and green preparation approach to reduce the volatility and leaching of pesticides would have enormous potential in sustainable agriculture.


Assuntos
Dicamba , Herbicidas , Líquidos Iônicos , Tamanho da Partícula , Líquidos Iônicos/química , Líquidos Iônicos/farmacologia , Herbicidas/química , Herbicidas/farmacologia , Dicamba/química , Dicamba/farmacologia , Nanopartículas/química , Propriedades de Superfície , Eletricidade Estática , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/farmacologia , Adsorção
7.
Int J Mol Sci ; 25(11)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38891947

RESUMO

Esterquats constitute a unique group of quaternary ammonium salts (QASs) that contain an ester bond in the structure of the cation. Despite the numerous advantages of this class of compounds, only two mini-reviews discuss the subject of esterquats: the first one (2007) briefly summarizes their types, synthesis, and structural elements required for a beneficial environmental profile and only briefly covers their applications whereas the second one only reviews the stability of selected betaine-type esterquats in aqueous solutions. The rationale for writing this review is to critically reevaluate the relevant literature and provide others with a "state-of-the-art" snapshot of choline-type esterquats and betaine-type esterquats. Hence, the first part of this survey thoroughly summarizes the most important scientific reports demonstrating effective synthesis routes leading to the formation of both types of esterquats. In the second section, the susceptibility of esterquats to hydrolysis is explained, and the influence of various factors, such as the pH, the degree of salinity, or the temperature of the solution, was subjected to thorough analysis that includes quantitative components. The next two sections refer to various aspects associated with the ecotoxicity of esterquats. Consequently, their biodegradation and toxic effects on microorganisms are extensively analyzed as crucial factors that can affect their commercialization. Then, the reported applications of esterquats are briefly discussed, including the functionalization of macromolecules, such as cotton fabric as well as their successful utilization on a commercial scale. The last section demonstrates the most essential conclusions and reported drawbacks that allow us to elucidate future recommendations regarding the development of these promising chemicals.


Assuntos
Betaína , Cátions , Colina , Betaína/química , Betaína/análogos & derivados , Colina/química , Colina/análogos & derivados , Cátions/química , Ésteres/química , Compostos de Amônio Quaternário/química , Humanos
8.
Des Monomers Polym ; 27(1): 35-50, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903406

RESUMO

The C3-symmetry ionic polymer PPyTri has been designed with multi-walled carbon nanotubes (MWCNTs) or graphene nanoplatelets (GNPs) and studied as an ultrasensitive electrochemical sensor for trace Hg(II) detection. The synthesis approach incorporated attaching three pyridinium cationic components with chloride anions to the triazine core. The precursors, BPy, were synthesized using a condensation process involving 4-pyridine carboxaldehyde and focused nicotinic hydrazide. The polymer PPyTri was further modified with either MWCNTs or GNPs. The resulting ionic polymer PPyTri and its fabricated nanocomposites were characterized using infrared (IR), nuclear magnetic resonance (NMR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and powder X-ray diffraction (XRD). The analysis revealed that both the polymer and its nanocomposites have semi-crystalline structures. The electroactivity of the designed nanocomposites toward Hg + 2 ions revealed that among the nanocomposites and bare copolymer, the glassy carbon electrode (GCE) adapted with the PPyTri GNPs-5% exhibited the greatest current response over a wide range of Hg + 2 concentrations. The nanocomposite-modified electrode presented an excellent sensitivity of 83.33 µAµM - 1 cm - 2, a low detection limit of 0.033 nM, and a linear dynamic range of 0.1 nM to 0.01 mM (R2 = 0.9945).

9.
ACS Appl Mater Interfaces ; 16(24): 30847-30859, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38853353

RESUMO

Antibacterial formulations based on zinc oxide nanoparticles (ZnO NPs) are widely used for antibiotic replacement in veterinary medicine and animal nutrition. However, the undesired environmental impact of ZnO NPs triggers a search for alternative, environmentally safer solutions. Here, we show that Zn2+ in its ionic form is a more eco-friendly antibacterial, and its biocidal action rivals that of ZnO NPs (<100 nm size), with a minimal biocidal concentration being 41(82) µg mL-1 vs 5 µg mL-1 of ZnO NPs, as determined for 103(106) CFU mL-1 E. coli. We demonstrate that the biocidal activity of Zn2+ ions is primarily associated with their uptake by E. coli and spontaneous in vivo transformation into insoluble ZnO nanocomposites at an internal bacterial pH of 7.7. Formed in vivo nanocomposite then damages E. coli membrane and intracellular components from the inside, by forming insoluble biocomposites, whose formation can also trigger ZnO characteristic reactions damaging the cells (e.g., by generation of high-potential reactive oxygen species). Our study defines a special route in which Zn2+ metal ions induce the death of bacterial cells, which might be common to other metal ions capable of forming semiconductor oxides and insoluble hydroxides at a slightly alkaline intracellular pH of some bacteria.


Assuntos
Antibacterianos , Escherichia coli , Óxido de Zinco , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Escherichia coli/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Zinco/química , Zinco/farmacologia , Íons/química , Testes de Sensibilidade Microbiana , Espécies Reativas de Oxigênio/metabolismo , Concentração de Íons de Hidrogênio , Nanocompostos/química
10.
Mar Pollut Bull ; 205: 116576, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38875969

RESUMO

The objective of this study was to determine microplastic-antibiotic interaction by examining how heat-activated persulfate decomposed polyamide adsorbed antibiotics and explored the environmental consequences of treated water. Sulfate radicals roughened the microplastic surfaces, significantly enhancing the adsorption capacity of polyamide. The kinetic and isotherm studies provided confirmation that electrostatic interactions were the primary mechanisms, with a minor contribution from H-bonding, highlighting that antibiotic adsorption was prone to occur, especially on the aged surface. Thermodynamic data indicated that the process was spontaneous and exothermic. The results showed significant negative effects of treated water on seed germination, copepod survival, and cell lines at only a higher concentration, due to a decrease in pH and the potential presence of polymer degradates. Our findings revealed the significant impact of decomposed polyamide on the antibiotic adsorption and offered insight into the potential harm that microplastic-treated water might cause to aquatic and marine ecosystems.


Assuntos
Antibacterianos , Microplásticos , Poluentes Químicos da Água , Poluentes Químicos da Água/toxicidade , Adsorção , Antibacterianos/química , Microplásticos/toxicidade , Temperatura Alta , Animais , Sulfatos/química
11.
ACS Appl Mater Interfaces ; 16(27): 35525-35540, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38934269

RESUMO

Nowadays, volatile organic compound (VOC) detection is imperative to ensure environmental safety in industry and indoor environments, as well as to monitor human health in medical diagnosis. Gas sensors with the best sensor response, selectivity, and stability are in high demand. Simultaneously, the advancement of nanotechnology facilitates novel nanomaterial-based gas sensors with superior sensor characteristics and low power consumption. Recently, boron nitride, a 2D material, has emerged as an excellent candidate for gas sensing and demonstrated exceptional sensing characteristics for new-generation gas sensing devices. Herein, ultrathin porous boron nitride nanosheets (BNNSs) with large lateral sizes were synthesized using a facile synthesis approach, and their material characteristics were investigated utilizing a variety of analytical techniques, including X-ray diffraction, Fourier transform infrared spectroscopy, ultraviolet spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy. A BNNS-coated cladding-modified fiber optic sensor (FOS) probe was prepared and employed for VOC (ammonia, ethanol, and acetone) sensing across concentrations varying from 0 to 300 ppm. The BNNSs-coated FOS demonstrated better selectivity toward 300 ppm ammonia, and specifically annealed BNNSs displayed a maximum sensor response of 55% along with a response/recovery times of 15 s/34 s compared to its counterparts. The superior ammonia sensing performances could be attributed to the formation of ultrathin nanosheets and a porous surface with slit-like features in hexagonal boron nitride.

12.
Can J Occup Ther ; 91(3): 244-255, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38783783

RESUMO

Background. Increase in hospitalizations of older adults emphasizes the need for efficient hospital discharge planning to enable optimal reentry upon returning home. Yet few assessments offer an extensive picture of the older adult's functional-cognitive state. A comprehensive assessment for discharge planning together with a written summary can be beneficial to the older adult and family. Purpose. This quantitative study compared a modified version of a previously validated tool COFEE (cognitive OT functional evaluation of elders), for use in the hospital, HD (hospital discharge) with standard hospitals assessments. Methods. Of the 77 participants recruited in hospital, home assessments were conducted 4 months later on 64 participants. Findings. The COFEE-HD scores (physical functioning, personal and environmental safety and meta cognitive functioning) were significantly correlated with standard hospital measures and with the home assessment. Implications. The COFEE-HD was found to have a high level of validity in a hospital setting, and the resulting evaluation can provide important insights into function, safety and cognitive function for post-discharge behaviors.


Assuntos
Cognição , Alta do Paciente , Humanos , Idoso , Feminino , Masculino , Idoso de 80 Anos ou mais , Avaliação Geriátrica/métodos , Terapia Ocupacional/organização & administração , Reprodutibilidade dos Testes , Atividades Cotidianas
13.
Drug Chem Toxicol ; : 1-18, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658397

RESUMO

Industrial expansion and inadequate environmental safety measures are major contributors to environmental contamination, with heavy metals (HMs) and pharmaceutical waste playing crucial roles. Their negative effects are most noticeable in aquatic species and vegetation, where they accumulate in tissues and cause harmful results. Interactions between HMs and pharmaceutical molecules result in the production of metal-drug complexes (MDCs), which have the potential to disturb diverse ecosystems and their interdependence. However, present studies frequently focus on individual pollutants and their effects on specific environmental parameters, leaving out the cumulative effects of pollutants and their processes across several environmental domains. To address this gap, this review emphasizes the environmental sources of HMs, elucidates their emission pathways during anthropogenic activities, investigates the interactions between HMs and pharmaceutical substances, and defines the mechanisms underlying the formation of MDCs across various ecosystems. Furthermore, this review underscores the simultaneous occurrence of HMs and pharmaceutical waste across diverse ecosystems, including the atmosphere, soil, and water resources, and their incorporation into biotic organisms across trophic levels. It is important to note that these complex compounds represent a higher risk than individual contaminants.

14.
Environ Sci Pollut Res Int ; 31(20): 30112-30125, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38602637

RESUMO

People are increasingly using black soldier fly larvae (BSFL) as a sustainable waste management solution. They are high in protein and other essential nutrients, making them an ideal food source for livestock, poultry, and fish. Prior laboratory studies with BSFL developed on pure mushroom root waste (MRW) showed poor conversion efficiency compared to a regular artificial diet. Therefore, we mixed the nutrient-rich soybean curd residues (SCR) with MRW in different ratios (M2-M5). Pure mushroom root waste (M1, MRW 100%) had the lowest survival rate (86.2%), but it increased up to 96.9% with the SCR percentage increasing. M1 had the longest developmental period (31.1 days) and the lowest BSFL weight (7.4 g). However, the addition of SCR reduced the development time to 22.0 and 21.5 days in M4 (MRW 40%, SCR 60%) and M5 (MRW 20%, SCR 80%), respectively, and improved the larval weight to 10.9 g in M4 and 11.8 g in M5. Other groups did not have as much feed conversion ratio (FCR) (8.4 for M4 and M5), bioconversion (M4 5.4%; M5 5.9%), or lipid content (M4 25.2%; M5 24.3%). These mixtures did. Compare this to M1. We observed better results, with no significant differences between the M4 and M5 groups and their parameters. In the present study, our main target was to utilize more MRW. Therefore, we preferred the M4 group in our nutritional and safety investigation and further compared it with the artificial diet (M7). The heavy metals and essential amino acids (histidine 3.6%, methionine 2.7%, and threonine 3.8%) required for human consumption compared to WHO/FAO levels showed satisfactory levels. Furthermore, fatty acids (capric acid 1.9%, palmitic acid 15.3%, oleic acid 17.3%, and arachidonic acid 0.3%) also showed higher levels in M4 than M7. The SEM images and FT-IR spectra from the residues showed that the BSFL in group M4 changed the structure of the compact fiber to crack and remove fibers, which made the co-conversion mixture better.


Assuntos
Biomassa , Glycine max , Larva , Animais , Agaricales , Dípteros
15.
Molecules ; 29(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38338305

RESUMO

Pesticides have become an integral part of modern agricultural practices, but their widespread use poses a significant threat to human health. As such, there is a pressing need to develop effective methods for detecting pesticides in food and environmental samples. Traditional chromatography methods and common rapid detection methods cannot satisfy accuracy, portability, long storage time, and solution stability at the same time. In recent years, photoelectrochemical (PEC) sensing technology has gained attention as a promising approach for detecting various pesticides due to its salient advantages, including high sensitivity, low cost, simple operation, fast response, and easy miniaturization, thus becoming a competitive candidate for real-time and on-site monitoring of pesticide levels. This review provides an overview of the recent advancements in PEC methods for pesticide detection and their applications in ensuring food and environmental safety, with a focus on the categories of photoactive materials, from single semiconductor to semiconductor-semiconductor heterojunction, and signaling mechanisms of PEC sensing platforms, including oxidation of pesticides, steric hindrance, generation/decrease in sacrificial agents, and introduction/release of photoactive materials. Additionally, this review will offer insights into future prospects and confrontations, thereby contributing novel perspectives to this evolving domain.


Assuntos
Técnicas Biossensoriais , Praguicidas , Humanos , Praguicidas/análise , Oxirredução , Técnicas Biossensoriais/métodos
16.
Sci Total Environ ; 920: 170951, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38367722

RESUMO

Rapid urbanization and industrialization have significantly contributed to the contamination of the environment through the discharge of wastewater containing various pollutants. The development of high-performance surface functional nanostructured adsorbents is of wide interest for researchers. Therefore, we explore the significant advancements in this field, focusing on the efficiency of nanostructured materials, as well as their nanocomposites, for wastewater treatment applications. The crucial role of surface modification in enhancing the affinity of these nanostructured adsorbents towards targeted pollutants, addressing a key bottleneck in the utilization of nanomaterials for wastewater treatment, was specifically emphasized. In addition to highlighting the advantages of surface engineering in enhancing the efficiency of nanostructured adsorbents, this review also provides a comprehensive overview of the limitations and challenges associated with surface-modified nanostructured adsorbents, including high cost, low stability, poor scalability, and potential nanotoxicity. Addressing these limitations is essential for realizing the commercial viability of these state-of-the-art materials for large-scale wastewater treatment applications. This review also thoroughly discusses the potential scalability and environmental safety aspects of surface-modified nanostructured adsorbents, offering insights into their future prospects for wastewater treatment. It is believed that this review will contribute significantly to the existing body of knowledge in the field and provide valuable information for researchers and practitioners working in the area of environmental remediation and nanomaterials.

17.
Ecotoxicol Environ Saf ; 273: 116120, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38401200

RESUMO

The ability to employ waste products, such as vegetable scraps, as raw materials for the synthesis of new promising adsorbing materials is at the base of the circular economy and end of waste concepts. Dextrin-based nanosponges (D_NS), both cyclodextrin (CD) and maltodextrin (MD), have shown remarkable adsorption abilities in the removal of toxic compounds from water and wastewater, thus representing a bio-based low-cost solution which is establishing itself in the market. Nevertheless, their environmental safety for either aquatic or terrestrial organisms has been overlooked, raising concern in terms of potential hazards to natural ecosystems. Here, the environmental safety (ecosafety) of six newly synthesized batches of D_NS was determined along with their full characterization by means of dynamic light scattering (DLS), thermogravimetric analysis (TGA), Fourier transformed infrared spectroscopy with attenuated total reflection (FTIR-ATR) and transmission electron microscopy (SEM). Ecotoxicity evaluation was performed using a battery of model organisms and ecotoxicity assays, such as the microalgae growth inhibition test using the freshwater Raphidocelis subcapitata and the marine diatom Dunaliella tertiolecta, regeneration assay using the freshwater cnidarian Hydra vulgaris and immobilization assay with the marine brine shrimp Artemia franciscana. Impact on seedling germination of a terrestrial plant of commercial interest, Cucurbita pepo was also investigated. Ecotoxicity data showed mild to low toxicity of the six batches, up to 1 mg/mL, in the following order: R. subcapitata > H. vulgaris > D. tertiolecta > A. franciscana > C. pepo. The only exception was represented by one batch (NS-Q+_BDE_(GLU2) which resulted highly toxic for both freshwater species, R. subcapitata and H. vulgaris. Those criticalities were solved with the synthesis of a fresh new batch and were hence attributed to the single synthesis and not to the specific D_NS formulation. No effect on germination of pumpkin but rather more a stimulative effect was observed. To our knowledge this is the first evaluation of the environmental safety of D_ NS. As such we emphasize that current formulations and exposure levels in the range of mg/mL do not harm aquatic and terrestrial species thus representing an ecosafe solution also for environmental applications.


Assuntos
Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/química , Dextrinas , Ecossistema , Plantas , Águas Residuárias/toxicidade , Artemia
18.
Talanta ; 272: 125829, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38422907

RESUMO

Development of efficient and intelligent method for detecting harmful agrochemicals in resource-limited settings remains an urgent need to ensure food and environmental safety. Herein, a novel dual-emitting Tb3+-modified hydrogen-bonded organic framework (Tb@TBTC, TBTC is the ligand of HOF-TBTC.) with visible green fluorescence has been prepared through coordination post-synthetic modification. Tb@TBTC can be designed as a fluorescence sensor for the identification of two harmful carcinogenic pesticides, thiabendazole (TBZ) and 2-chlorophenol (2-CP) with high sensitivity, high efficiency and excellent selectivity. Tb@TBTC can also adsorb 2-CP with high adsorption rate. In realistic fruit juice and river water samples, the detection limits of Tb@TBTC toward TBZ and 2-CP are as low as 2.73 µM and 2.18 µM, respectively, demonstrating the feasibility in practical application. Furthermore, an intelligent real-time and on-site monitoring platform for 2-CP detection is constructed based on Tb@TBTC-agarose hydrogel films with the assistance of back propagation neural network, which can efficiently and accurately determine the concentration of 2-CP from fluorescence images through human-machine interaction. This work presents a facile pathway to prepare Tb@HOF fluorescent sensor for food and ecological environment safety, which is highly promising for preventing human disease and improving global public health.


Assuntos
Clorofenóis , Alimentos , Tiabendazol , Humanos , Tiabendazol/análise , Sucos de Frutas e Vegetais
19.
Sci Total Environ ; 922: 171062, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38401717

RESUMO

The following research provides novel and relevant insights into potential environmental consequences of combination of various organic cations with commercial systemic herbicide (dicamba), in accordance with a 'herbicidal ionic liquids' (HILs) strategy. Toxicity assays of five dicamba-based HILs comprising different hydrophobic and hydrophilic cations, namely choline [CHOL][DIC], ethyl betainate [BETC2][DIC], decyl betainate [BETC10][DIC], hexadecyl betainate [BETC16][DIC] and didecyldimethylammonium [DDA][DIC]), have been tested towards bacteria (Pseudomonas putida, Escherichia coli, Bacillus subtilis), algae (Chlorella vulgaris), fresh and marine water crustaceans (Daphnia magna, Artemia franciscana). The structure of respective substituents in the cation emerged as a decisive determinant of toxicity in the case of tested species. In consequence, small ions of natural origin ([CHOL] and [BETC2]) demonstrated toxicity numerous orders of magnitude lower compared to fully synthetic [DDA]. These results emphasize the role of cations' hydrophobicity, as well as origin, in the observed acute toxic effect. Time-dependent toxicity assays also indicated that betaine-type cations comprising an ester bond can rapidly transform into less harmful substances, which can generally result in a reduction in toxicity by even several orders of magnitude. Nonetheless, these findings challenge the concept of ionic liquids with herbicidal activity and give apparent parallels to adjuvant-dependent toxicity issues recently noted in typical herbicidal formulations.


Assuntos
Chlorella vulgaris , Herbicidas , Líquidos Iônicos , Pseudomonas putida , Herbicidas/toxicidade , Herbicidas/química , Dicamba/química , Líquidos Iônicos/toxicidade , Líquidos Iônicos/química , Cátions/química
20.
Environ Geochem Health ; 46(3): 84, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38367079

RESUMO

Heavy metals can play an important biological role as micronutrients but also as potentially toxic elements (PTEs). Understanding the natural concentrations of PTEs-Pb and Zn included-in soils allows for the identification and monitoring of contaminated areas and their role in environmental risk assessment. In this study, we aim to determine semi-total or natural and available concentrations of Pb and Zn in topsoils (0-20 cm depth) from 337 samples under native vegetation in the State of Minas Gerais, Brazil. Additionally, we sought to interpret the spatial geochemical variability using geostatistical techniques and quality reference values for these elements in soils were established. The semi-total concentrations were determined by flame and graphite furnace atomic absorption after microwave-assisted nitric acid digestion method. The available concentrations were extracted using the Mehlich-I extractor and determined by atomic absorption spectrometer. Spatial variability was modeled using semivariance estimators: Matheron's classic, Cressie and Hawkins' robust, and Cressie median estimators, the last two being less sensitive to extreme values. This allowed the construction of digital maps through kriging of semi-total Pb and Zn contents using the median estimator, as well as other soil properties by the robust estimator. The dominance of acidic pH and low CEC values reflects highly weathered low-fertility soils. Semi-total Pb contents ranged from 2.1 to 278 mg kg-1 (median: 9.35 mg kg-1) whereas semi-total Zn contents ranged from 2.7 to 495 mg kg-1 (median: 7.7 mg kg-1). The available Pb contents ranged from 0.1 to 6.92 mg kg-1 (median: 0.54 mg kg-1) whereas available Zn contents ranged from 0.1 to 78.2 mg kg-1 (median: 0.32 mg kg-1). The highest Pb and Zn concentrations were observed near Januária, in the northern part of the territory, probably on limestone rocks from the Bambuí group. Finally, the QRVs for Pb and Zn in natural soils were lower than their background values from other Brazilian region and below the prevention values suggested by Brazilian environmental regulations.


Assuntos
Metais Pesados , Poluentes do Solo , Solo/química , Brasil , Chumbo , Poluentes do Solo/análise , Monitoramento Ambiental/métodos , Metais Pesados/análise , Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA