Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neural Regen Res ; 13(6): 1036-1045, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29926831

RESUMO

Some adult vertebrate species, such as newts, axolotls and zebrafish, have the ability to regenerate their central nervous system (CNS). However, the factors that establish a permissive CNS environment for correct morphological and functional regeneration in these species are not well understood. Recent evidence supports a role for retinoid signaling in the intrinsic ability of neurons, in these regeneration-competent species, to regrow after CNS injury. Previously, we demonstrated that a specific retinoic acid receptor (RAR) subtype, RARß, mediates the effects of endogenous retinoic acid (RA) on neuronal growth and guidance in the adult newt CNS after injury. Here, we now examine the expression of the retinoid X receptor RXRα (a potential heterodimeric transcriptional regulator with RARß), in newt tail and spinal cord regeneration. We show that at 21 days post-amputation (dpa), RXRα is expressed at temporally distinct periods and in non-overlapping spatial domains compared to RARß. Whereas RARß protein levels increase, RXRα proteins level decrease by 21 dpa. A selective agonist for RXR, SR11237, prevents both this downregulation of RXRα and upregulation of RARß and inhibits tail and caudal spinal cord regeneration. Moreover, treatment with a selective antagonist for RARß, LE135, inhibits regeneration with the same morphological consequences as treatment with SR11237. Interestingly, LE135 treatment also inhibits the normal downregulation of RXRα in tail and spinal cord tissues at 21 dpa. These results reveal a previously unidentified, indirect regulatory feedback loop between these two receptor subtypes in regulating the regeneration of tail and spinal cord tissues in this regeneration-competent newt.

2.
Prog Neurobiol ; 170: 81-98, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29654836

RESUMO

Large-scale regeneration in the adult central nervous system is a unique capacity of salamanders among tetrapods. Salamanders can replace neuronal populations, repair damaged nerve fibers and restore tissue architecture in retina, brain and spinal cord, leading to functional recovery. The underlying mechanisms have long been difficult to study due to the paucity of available genomic tools. Recent technological progress, such as genome sequencing, transgenesis and genome editing provide new momentum for systematic interrogation of regenerative processes in the salamander central nervous system. Understanding central nervous system regeneration also entails designing the appropriate molecular, cellular, and behavioral assays. Here we outline the organization of salamander brain structures. With special focus on ependymoglial cells, we integrate cellular and molecular processes of neurogenesis during developmental and adult homeostasis as well as in various injury models. Wherever possible, we correlate developmental and regenerative neurogenesis to the acquisition and recovery of behaviors. Throughout the review we place the findings into an evolutionary context for inter-species comparisons.


Assuntos
Encéfalo/fisiologia , Homeostase/fisiologia , Regeneração Nervosa/fisiologia , Neurogênese/fisiologia , Urodelos/fisiologia , Animais , Encéfalo/anatomia & histologia , Urodelos/anatomia & histologia
3.
Brain Behav Evol ; 91(1): 17-30, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29232670

RESUMO

Ionized calcium-binding adapter molecule 1 (Iba1), also known as allograft inflammatory factor 1 (AIF-1), is a highly conserved cytoplasmic scaffold protein. Studies strongly suggest that Iba1 is associated with immune-like reactions in all Metazoa. In the mammalian brain, it is abundantly expressed in microglial cells and is used as a reliable marker for this cell type. The present study used multiple-label microscopy and Western blotting to examine Iba1 expression in the telencephalon of 2 galeomorph shark species, the swellshark (Cephaloscyllium ventriosum) and the horn shark (Heterodontus francisci), a member of an ancient extant order. In the swellshark, high Iba1 expression was found in radial ependymoglial cells, many of which also expressed glial fibrillary acidic protein. Iba1 expression was absent from most cells in the horn shark (with the possible exception of perivascular cells). The difference in Iba1 expression between the species was supported by protein analysis. These results suggest that radial ependymoglia of the elasmobranchs may be functionally related to mammalian microglia and that Iba1 expression has undergone evolutionary changes in this cartilaginous group.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Células Ependimogliais/metabolismo , Proteínas de Peixes/metabolismo , Tubarões/metabolismo , Telencéfalo/metabolismo , Animais , Western Blotting , Células Ependimogliais/citologia , Evolução Molecular , Feminino , Expressão Gênica , Imuno-Histoquímica , Masculino , Camundongos , Microscopia Confocal , Tubarões/anatomia & histologia , Especificidade da Espécie , Telencéfalo/citologia
4.
Development ; 145(1)2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29217751

RESUMO

The overall bauplan of the tetrapod brain is highly conserved, yet significant variations exist among species in terms of brain size, structural composition and cellular diversity. Understanding processes underlying neural and behavioral development in a wide range of species is important both from an evolutionary developmental perspective as well as for the identification of cell sources with post-developmental neurogenic potential. Here, we characterize germinal processes in the brain of Notophthalmus viridescens and Pleurodeles waltl during both development and adulthood. Using a combination of cell tracking tools, including clonal analyses in new transgenic salamander lines, we examine the origin of neural stem and progenitor cells found in the adult brain, determine regional variability in cell cycle length of progenitor cells, and show spatiotemporally orchestrated neurogenesis. We analyze how maturation of different brain regions and neuronal subpopulations are linked to the acquisition of complex behaviors, and how these behaviors are altered upon chemical ablation of dopamine neurons. Our data analyzed from an evolutionary perspective reveal both common and species-specific processes in tetrapod brain formation and function.


Assuntos
Comportamento Animal/fisiologia , Encéfalo/embriologia , Neurogênese/fisiologia , Notophthalmus/embriologia , Células-Tronco/metabolismo , Animais , Encéfalo/citologia , Pleurodeles , Células-Tronco/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA