Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(14): e34358, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39108855

RESUMO

Overloaded trucks have long posed a threat to the road safety. To assess truck payload more effectively, this study focus on tire temperature data obtained through infrared thermal imaging. It is feasible to analyse the payload by monitoring one single representative tire. Tire sidewall surface is the best area for data extraction. Truck overload caused significant increase of gas temperature in tires, as well as external temperature. The internal temperature can be calculated with real gas equation of state. By studying the relationship between internal gas temperature of tire and payload, it is demonstrated that monitoring the temperature of tire sidewall surface is an innovative, remote, and real-time method to assess the payload situation of moving trucks.

2.
Rep Prog Phys ; 87(9)2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39094591

RESUMO

Physics-based first-principles pressure-volume-temperature equations of state (EOS) exist for solids and gases but not for liquids due to the long-standing fundamental problems involved in liquid theory. Current EOS models that are applicable to liquids and supercritical fluids at liquid-like density under conditions relevant to planetary interiors and industrial processes are complex empirical models with many physically meaningless adjustable parameters. Here, we develop a generally applicable physics-based (GAP) EOS for liquids including supercritical fluids at liquid-like density. The GAP equation is explicit in the internal energy, and hence links the most fundamental macroscopic static property of fluids, the pressure-volume-temperature EOS, to their key microscopic property: the molecular hopping frequency or liquid relaxation time, from which the internal energy can be obtained. We test our GAP equation against available experimental data in several different ways and find good agreement. Our GAP equation, unavoidably and similarly to solid EOS, contains a semi-empirical term giving the energy of the static sample as a function of volume only (EST(V)). Our testing includes studies along isochores, in order to examine the validity of the GAP equation independently of the validity of any function we may choose to utilize forEST(V). The only other adjustable parameter in the equation is the Grüneisen parameter for the fluid. We observe that the GAP equation is similar to the Mie-Grüneisen solid EOS in a wide range of the liquid phase diagram. This similarity is ultimately related to the condensed state of these two phases. On the other hand, the differences between the GAP equation and EOS for gases are fundamental. Finally, we identify the key gaps in the experimental data that need to be filled in to proceed further with the liquid EOS.

3.
Sci Rep ; 14(1): 13405, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862707

RESUMO

Miscible gas injection in tight/shale oil reservoirs presents a complex problem due to various factors, including the presence of a large number of nanopores in the rock structure and asphaltene and heavy components in crude oil. This method performs best when the gas injection pressure exceeds the minimum miscibility pressure (MMP). Accordingly, accurate calculation of the MMP is of special importance. A critical issue that needs to be considered is that the phase behavior of the fluid in confined nanopores is substantially different from that of conventional reservoirs. The confinement effect may significantly affect fluid properties, flow, and transport phenomena characteristics in pore space, e.g., considerably changing the critical properties and enhancing fluid adsorption on the pore wall. In this study, we have investigated the MMP between an asphaltenic crude oil and enriched natural gas using Peng-Robinson (PR) and cubic-plus-association (CPA) equations of state (EoSs) by considering the effect of confinement, adsorption, the shift of critical properties, and the presence of asphaltene. According to the best of our knowledge, this is the first time a model has been developed considering all these factors for use in porous media. We used the vanishing interfacial tension (VIT) method and slim tube test data to calculate the MMP and examined the effects of pore radius, type/composition of injected gas, and asphaltene type on the computed MMP. The results showed that the MMP increased with an increasing radius of up to 100 nm and then remained almost constant. This is while the gas enrichment reduced the MMP. Asphaltene presence changed the trend of IFT reduction and delayed the miscibility achievement so that it was about 61% different from the model without the asphaltene precipitation effect. However, the type of asphaltene had little impact on the MMP, and the controlling factor was the amount of asphaltene in the oil. Moreover, although cubic EoSs are particularly popular for their simplicity and accuracy in predicting the behavior of hydrocarbon fluids, the CPA EoS is more accurate for asphaltenic oils, especially when the operating pressure is within the asphaltene precipitation range.

4.
Rep Prog Phys ; 87(7)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38899361

RESUMO

Ultrarelativistic nuclear collisions create a strongly interacting state of hot and dense quark-gluon matter that exhibits a remarkable collective flow behavior with minimal viscous dissipation. To gain deeper insights into its intrinsic nature and fundamental degrees of freedom, we determine the speed of sound in an extended volume of quark-gluon plasma using lead-lead (PbPb) collisions at a center-of-mass energy per nucleon pair of 5.02 TeV. The data were recorded by the CMS experiment at the CERN LHC and correspond to an integrated luminosity of 0.607 nb-1. The measurement is performed by studying the multiplicity dependence of the average transverse momentum of charged particles emitted in head-on PbPb collisions. Our findings reveal that the speed of sound in this matter is nearly half the speed of light, with a squared value of0.241±0.002(stat)±0.016(syst)in natural units. The effective medium temperature, estimated using the mean transverse momentum, is219±8(syst)MeV. The measured squared speed of sound at this temperature aligns precisely with predictions from lattice quantum chromodynamic (QCD) calculations. This result provides a stringent constraint on the equation of state of the created medium and direct evidence for a deconfined QCD phase being attained in relativistic nuclear collisions.

5.
J Phys Condens Matter ; 36(27)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38537277

RESUMO

Tantalum pentoxide (Ta2O5) is among the most technologically useful heavy transition metal oxides. Unfortunately, its crystal structure is the subject of long-standing and unresolved disagreement. Among other consequences, this uncertainty has made it impossible to formulate a robust high pressure equation of state for Ta2O5. Here, we report the results of high pressure x-ray diffraction experiments indexed against a comprehensive list of proposed Ta2O5phases. Five of the proposed phases produce good matches to experimental observations, and the compressibility parameters for these phases are all consistent within uncertainty. This means that regardless of the particular phase chosen, the Ta2O5equation of state can be described with bulk modulusK0=138±3.68 GPa and pressure derivativeK0'=1.82±0.45. Combining these experimental results with new density-functional theory calculations allows us to identify theλphase as the best structural model of Ta2O5at ambient conditions.

6.
Chemphyschem ; 25(9): e202300604, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38426668

RESUMO

We have performed in situ X-ray diffraction measurements of cubic silicon carbide (SiC) with a zinc-blende crystal structure (B3) at high pressures and temperatures using multi-anvil apparatus. The ambient volume inferred from the compression curves is smaller than that of the starting material. Using the 3rd-order Birch-Murnaghan equation of state and the Mie-Grüneisen-Debye model, we have determined the thermoelastic parameters of the B3-SiC to be K0=228±3 GPa, K0',=4.4±0.4, q=0.27±0.37, where K0, K0' and q are the isothermal bulk modulus, its pressure derivative and logarithmic volume dependence of the Grüneisen parameter, respectively. Using the 3rd-order Birch-Murnaghan EOS with the thermal expansion coefficient, the thermoelastic parameters have been found as K0=221±3 GPa, K0',=5.2±0.4, α0=0.90±0.02 ⋅ 10-5 ⋅ K-1, where α0 is the thermal expansion coefficient at room pressure and temperature. We have determined that paired B3-SiC - MgO calibrants can be used to estimate pressure and temperature simultaneously in ultrahigh-pressure experiments up to 60 GPa.

7.
Proc Jpn Acad Ser B Phys Biol Sci ; 100(3): 190-233, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38462501

RESUMO

The current understanding of the mechanism of core-collapse supernovae (CCSNe), one of the most energetic events in the universe associated with the death of massive stars and the main formation channel of compact objects such as neutron stars and black holes, is reviewed for broad readers from different disciplines of science who may not be familiar with the object. Therefore, we emphasize the physical aspects than the results of individual model simulations, although large-scale high-fidelity simulations have played the most important roles in the progress we have witnessed in the past few decades. It is now believed that neutrinos are the most important agent in producing the commonest type of CCSNe. The so-called neutrino-heating mechanism will be the focus of this review and its crucial ingredients in micro- and macrophysics and in numerics will be explained one by one. We will also try to elucidate the remaining issues.


Assuntos
Nêutrons , Astros Celestes
8.
Materials (Basel) ; 17(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38399206

RESUMO

This paper aims at investigating the triaxial behavior of Autoclaved Aerated Concrete (AAC) under extremely high pressures, and experimentally determine Equation of State (EOS) for several different AAC densities. Oedometric tests were carried out using a home-made high-pressure triaxial apparatus, and pressures up to ~500 MPa were applied. The complete pressure-bulk strain relationships were measured, and new findings and insights were obtained. The paper presents the testing set-up and the measurement system. The data processing method accounting for the AAC pronounced shortening during the ongoing test is described using a weighted functions procedure for the circumferential strains' calculation, with which the confining pressure was determined. The boundary conditions effects on the test results were investigated, and a new technique for specimen insulation was suggested to ensure loading without friction and the prevention of local shear failure. The experimental EOS for different AAC densities were obtained. EOS curves for different specimens with the same density demonstrated good to very good repeatability of the EOS curves over the entire pressure range. Based on the tests results and the density's span, three classes of AAC are proposed. A preliminary attempt to apply the newly obtained EOS curves has been carried out to examine the energy dissipation for three different dynamic load levels. Although this is a preliminary stage that is beyond the objective of this paper, early interesting results were observed where an optimal AAC density, for which the highest energy has been absorbed, was identified. This finding encourages inclusion of that preliminary study as a closure section. Numerical simulations of wave propagation through ACC layers of different densities, laid on rigid supporting slabs, was carried out. The minimum total impulse imparted to the rigid slab was found for the optimal AAC density that has been determined above.

9.
Data Brief ; 53: 110081, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38328294

RESUMO

This paper presents fluid dynamics simulation data associated with two test cases in the related research article [1]. In this article, an efficient bimaterial Riemann problem solver is proposed to accelerate multi-material flow simulations that involve complex thermodynamic equations of state and strong discontinuities across material interfaces. The first test case is a one-dimensional benchmark problem, featuring large density jump (4 orders of magnitude) and drastically different thermodynamics relations across a material interface. The second test case simulates the nucleation of a pear-shaped vapor bubble induced by long-pulsed laser in water. This multiphysics simulation combines laser radiation, phase transition (vaporization), non-spherical bubble expansion, and the emission of acoustic and shock waves. Both test cases are performed using the M2C solver, which solves the three-dimensional Eulerian Navier-Stokes equations, utilizing the accelerated bimaterial Riemann solver. Source codes provided in this paper include the M2C solver and a standalone version of the accelerated Riemann problem solver. These source codes serve as references for researchers seeking to implement the acceleration algorithms introduced in the related research article. Simulation data provided include fluid pressure, velocity, density, laser radiance and bubble dynamics. The input files and the workflow to perform the simulations are also provided. These files, together with the source codes, allow researchers to replicate the simulation results presented in the research article, which can be a starting point for new research in laser-induced cavitation, bubble dynamics, and multiphase flow in general.

10.
Entropy (Basel) ; 25(11)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37998224

RESUMO

Thermodynamics contains rich symmetries. These symmetries are usually considered independent of the structure of matter or the thermodynamic state where matter is located and, thus, highly universal. As Callen stated, the connection between the symmetry of fundamental laws and the macroscopic properties of matter is not trivially evident. However, this view is now being challenged. Recently, with symmetry to the ideal gas equation of state (EOS), an ideal dense matter EOS has been proposed, which has been verified to be in good agreement with the thermodynamic properties of high-density substances. This indicates that there is a certain symmetry between the thermodynamic properties of substances in their high- and low-density limits. This paper focuses on the distinctive features and the significance of this symmetry. It is a new class of symmetry that is dependent on the thermodynamic state of matter and can be incorporated into the existing symmetrical theoretical system of thermodynamics. A potential path for developing the EOS theory arising from this symmetry is discussed. EOS at high densities could be developed by correcting or extrapolating the ideal dense matter EOS based on this symmetry, which might fundamentally solve the difficulty of constructing EOS at high densities.

11.
Int J Thermophys ; 44(10): 153, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37822990

RESUMO

An empirical fundamental equation of state in terms of the Helmholtz energy for tetrahydrofuran is presented. In the validity range from the triple-point temperature up to 550 K and pressures up to 600 MPa, the equation of state enables the calculation of all thermodynamic properties in the liquid, vapor, and super-critical regions including saturation states. Based on an extensive literature review, experimental data are represented within their experimental uncertainty. In the homogeneous liquid phase at atmospheric pressure, the uncertainty in density is 0.015 %, speed of sound is represented with an uncertainty of 0.03 %, and isobaric heat capacity has an uncertainty of 0.4 %. Isobaric heat capacities in the homogeneous vapor phase are described with an uncertainty of 0.2 %. Higher uncertainties occur above atmospheric pressure for all homogeneous properties. Depending on the temperature range, vapor pressure can be calculated with an uncertainty from 0.02 % to 3 %. The extrapolation behavior is evaluated, showing reasonable extrapolation behavior towards extreme conditions. Supplementary Information: The online version contains supplementary material available at 10.1007/s10765-023-03258-3.

12.
Polymers (Basel) ; 15(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37688190

RESUMO

In order to improve the research and development efficiency and quality of low-density liners in production and scientific research development, PLA and PLA-Cu composite liners were prepared based on 3D-printing technology. In this paper, the relationship between the shock wave velocity D and the particle velocity u of PLA and PLA-Cu materials was tested by a one-stage light gas gun experiment device, and then the Grüneisen equation of state parameters of the two materials was obtained by fitting. The forming process of the two jets was numerically simulated by using the equation of state. When combined with the pulsed X-ray shooting results of the jets, it was found that the jets of the two materials showed obvious characteristics of "expansion particle flow", and the head of the PLA jet had a gasification phenomenon. The length of the PLA jet at 20 µs in the numerical simulation was 127.2 mm, and the average length of the PLA jet at 20 µs in the pulsed X-ray shooting experiment was 100.45 mm. The length of the PLA jet gasification part accounted for about 21% of the total length of the jet. The average velocity of the head of the PLA jet is 7798.35 m/s, and the average velocity of the head of the PLA-Cu jet is 8104.25 m/s. In this paper, 3D-printing technology is used to prepare the liner for the first time, aiming to open up a new preparation technology and provide a new material selection for low-density material liners.

13.
Materials (Basel) ; 16(16)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37629910

RESUMO

The scattering of fragments is a notable characteristic of the explosive detonation of a shelled charge. This study examines the fracture and fragmentation of the shell and the process by which natural fragments form under the strains of implosion. The analysis takes into account both the explosive's energy output and the casing's dynamic response. For this purpose, utilizing a thermochemical code as an alternative to the conventionally employed cylinder test, the Jones-Wilkins-Lee equation of state (JWL EOS) was calibrated within a range of relative specific volume up to 13. The detonation of the shelled charge was subsequently analyzed using the continuum-discontinuum element method (CDEM). Following this, the formation mechanisms and scattering characteristics of natural fragments were scrutinized. The analysis found that the shell predominantly experiences shear failure with uniform evolution, displaying a "hysteresis effect" and two mutation stages in the evolution of tensile failure. Within the JWL EOS's calibrated range, the representation of fragment displacement and velocity improved by 47.97% and 5.30%, respectively. This study provides valuable guidance for designing the power field of warheads and assessing their destructive power.

14.
Philos Trans A Math Phys Eng Sci ; 381(2258): 20220331, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37634539

RESUMO

We report the P-V-T equation of state measurements of B4C to 50 GPa and approximately 2500 K in laser-heated diamond anvil cells. We obtain an ambient temperature, third-order Birch-Murnaghan fit to the P-V data that yields a bulk modulus K0 of 221(2) GPa and derivative, (dK/dP)0 of 3.3(1). These were used in fits with both a Mie-Grüneisen-Debye model and a temperature-dependent, Birch-Murnaghan equation of state that includes thermal pressure estimated by thermal expansion (α) and a temperature-dependent bulk modulus (dK0/dT). The ambient pressure thermal expansion coefficient (α0 + α1T), Grüneisen γ(V) = γ0(V/V0)q and volume-dependent Debye temperature, were used as input parameters for these fits and found to be sufficient to describe the data in the whole P-T range of this study. This article is part of the theme issue 'Exploring the length scales, timescales and chemistry of challenging materials (Part 1)'.

15.
Ultrason Sonochem ; 97: 106456, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37271030

RESUMO

The cavitation dynamics of an air-vapor mixture bubble with ultrasonic excitation can be greatly affected by the equation of state (EOS) for the interior gases. To simulate the cavitation dynamics, the Gilmore-Akulichev equation was coupled with the Peng-Robinson (PR) EOS or the Van der Waals (vdW) EOS. In this study, the thermodynamic properties of air and water vapor predicted by the PR and vdW EOS were first compared, and the results showed that the PR EOS gives a more accurate estimation of the gases within the bubble due to the less deviation from the experimental values. Moreover, the acoustic cavitation characteristics predicted by the Gilmore-PR model were compared to the Gilmore-vdW model, including the bubble collapse strength, the temperature, pressure and number of water molecules within the bubble. The results indicated that a stronger bubble collapse was predicted by the Gilmore-PR model rather than the Gilmore-vdW model, with higher temperature and pressure, as well as more water molecules within the collapsing bubble. More importantly, it was found that the differences between both models increase at higher ultrasound amplitudes or lower ultrasound frequencies while decreasing as the initial bubble radius and the liquid parameters (e.g., surface tension, viscosity and temperature of the surrounding liquid) increase. This study might offer important insights into the effects of the EOS for interior gases on the cavitation bubble dynamics and the resultant acoustic cavitation-associated effects, contributing to further optimization of its applications in sonochemistry and biomedicine.

16.
Sci Bull (Beijing) ; 68(9): 913-919, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37080849

RESUMO

We investigate the neutron star (NS) equation of state (EOS) by incorporating multi-messenger data of GW170817, PSR J0030 + 0451, PSR J0740 + 6620, and state-of-the-art theoretical progresses, including the information from chiral effective field theory (χEFT) and perturbative quantum chromodynamics (pQCD) calculation. Taking advantage of the various structures sampling by a single-layer feed-forward neural network model embedded in the Bayesian nonparametric inference, the structure of NS matter's sound speed cs is explored in a model-agnostic way. It is found that a peak structure is common in the cs2 posterior, locating at (2.4-4.8)ρsat (nuclear saturation density) and cs2 exceeds c2/3 at 90% credibility. The non-monotonic behavior suggests evidence of the state deviating from the hadronic matter inside the very massive NSs. Assuming the new/exotic state is featured as it is softer than typical hadronic models or even with hyperons, we find that a sizable (⩾10-3M⊙) exotic core, likely made of quark matter, is plausible for the NS with a gravitational mass above about 0.98MTOV, where MTOV represents the maximum gravitational mass of a non-rotating cold NS. The inferred MTOV=(2.18-0.13+0.27)M⊙ (90% credibility) is well consistent with the value of (2.17-0.12+0.15)M⊙ estimated independently with GW170817/GRB 170817A/AT2017gfo assuming a temporary supramassive NS remnant formed after the merger. PSR J0740 + 6620, the most massive NS detected so far, may host a sizable exotic core with a probability of ≈0.36.

17.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36982704

RESUMO

Thermodynamics of liquid water in terms of a non-standard approach-the ion-molecular model-is considered. Water is represented as a dense gas of neutral H2O molecules and single charged H3O+ and OH- ions. The molecules and ions perform thermal collisional motion and interconvert due to ion exchange. The energy-rich process-vibrations of an ion in a hydration shell of molecular dipoles-well known to spectroscopists with its dielectric response at 180 cm-1 (5 THz), is suggested to be key for water dynamics. Taking into account this ion-molecular oscillator, we compose an equation of state of liquid water to obtain analytical expressions for the isochores and heat capacity.


Assuntos
Isocoros , Água , Temperatura Alta , Modelos Moleculares , Íons
18.
Molecules ; 28(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36838768

RESUMO

The study of chemical reactions in multiple liquid phase systems is becoming more and more relevant in industry and academia. The ability to predict combined chemical and phase equilibria is interesting from a scientific point of view but is also crucial to design innovative separation processes. In this work, an algorithm to perform the combined chemical and liquid-liquid phase equilibrium calculation was implemented in the PC-SAFT framework in order to predict the thermodynamic equilibrium behavior of two multicomponent esterification systems. Esterification reactions involve hydrophobic reacting agents and water, which might cause liquid-liquid phase separation along the reaction coordinate, especially if long-chain alcoholic reactants are used. As test systems, the two quaternary esterification systems starting from the reactants acetic acid + 1-pentanol and from the reactants acetic acid + 1-hexanol were chosen. It is known that both quaternary systems exhibit composition regions of overlapped chemical and liquid-liquid equilibrium. To the best of our knowledge, this is the first time that PC-SAFT was used to calculate simultaneous chemical and liquid-liquid equilibria. All the binary subsystems were studied prior to evaluating the predictive capability of PC-SAFT toward the simultaneous chemical equilibria and phase equilibria. Overall, PC-SAFT proved its excellent capabilities toward predicting chemical equilibrium composition in the homogeneous composition range of the investigated systems as well as liquid-liquid phase behavior. This study highlights the potential of a physical sound model to perform thermodynamic-based modeling of chemical reacting systems undergoing liquid-liquid phase separation.


Assuntos
Algoritmos , Água , Esterificação , Termodinâmica , Hexanóis
19.
Materials (Basel) ; 16(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36770283

RESUMO

Brillouin scattering spectroscopy with diamond anvil cells was used by measuring the pressure dependence of the sound-relevant polymer material, glass-forming liquid, and H2O (water and ice VII) velocities of the material from ambient pressure to 12 GPa at room temperature. Measurements of 20%, 10%, and 4% gelatin solutions were performed. For comparison purposes, we also measured the pressure dependence of the sound velocity of animal tissue up to 10 GPa. We analyzed the Brillouin data using the Tait and Vinet equations of state. We discussed the possible influence of frequency dispersion on bulk modulus at low pressure. We compared the elastic moduli obtained for gelatin to those of several other polymers.

20.
Materials (Basel) ; 16(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36676365

RESUMO

To promote the popularization and development of hydrogen energy, a micro-simulation approach was developed to determine the Mie-Grüneisen EOS of 316 stainless steel for a hydrogen storage tank in the Hugoniot state. Based on the combination of the multi-scale shock technique (MSST) and molecular dynamics (MD) simulations, a series of shock waves at the velocity of 6-11 km/s were applied to the single-crystal (SC) and polycrystalline (PC) 316 stainless steel model, and the Hugoniot data were obtained. The accuracy of the EAM potential for Fe-Ni-Cr was verified. Furthermore, Hugoniot curve, cold curve, Grüneisen coefficient (γ), and the Mie-Grüneisen EOS were discussed. In the internal pressure energy-specific volume (P-E-V) three-dimensional surfaces, the Mie-Grüneisen EOSs show concave characteristics. The maximum error of the calculation results of SC and PC is about 10%. The results for the calculation deviations of each physical quantity of the SC and PC 316 stainless steel indicate that the grain effect of 316 stainless steel is weak under intense dynamic loads, and the impact of the grains in the cold state increases with the increase in the volume compression ratio.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA