RESUMO
This systematic review explores the release and health outcomes of exposure to chalk particles in classrooms. A literature search was conducted on Scopus, Google Scholar, and the Web of Science. Chalk particles contribute significantly to poor indoor air quality in classrooms. Higher concentrations of PM2.5 chalk particles were found in the front row (14.25 µg/m3) and near the chalkboard (19.07 µg/m3). Inhalation and dermal are significant exposure routes; hence, teachers and learners are at risk of developing respiratory and skin disorders. Inhalation of chalk particles correlates with reduced lung function in teachers and learners. The release and size of chalk particles depend on the activities, type of chalk sticks, and texture of the chalkboards. Wiping the chalkboard releases more chalk particles of smaller size (3.85-9.3 µm) than writing (10.57-92.91 µm). A shift from chalk sticks and chalkboards in classrooms is necessary to mitigate the associated health risks.
Assuntos
Poluição do Ar em Ambientes Fechados , Material Particulado , Instituições Acadêmicas , Humanos , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/química , Poluição do Ar em Ambientes Fechados/análise , Poluição do Ar em Ambientes Fechados/prevenção & controle , Exposição por Inalação/efeitos adversos , Exposição por Inalação/análise , Exposição por Inalação/prevenção & controle , Tamanho da Partícula , Material Particulado/análise , Material Particulado/química , Carbonato de Cálcio/análise , Carbonato de Cálcio/químicaRESUMO
Storage systems are vital components of electronic devices, while significant challenges persist in achieving flexible memory due to the limitations of existing storage methodologies. Inspired by the polarization and depolarization mechanisms in the human brain, here a novel class of storage principles is proposed and achieve a fully flexible memory through introducing the oxidation and deoxidation behaviors of liquid metals. Specifically, reversible electrochemical oxidation is utilized to modulate the overall conductivity of the target liquid metals, creating a substantial 11-order resistance difference for binary data storage. To obtain the best storage performance, systematic optimizations of multiple parameters are conducted. Conceptual experiments demonstrate the memory's stability under extreme deformations (100% stretching, 180° bending, 360° twisting). Further tests reveal that the memory performs better when its unit size gets smaller, warranting superior integrability. Finally, a complete storage system achieves remarkable performance metrics, including rapid storage speed (>33 Hz), long data retention capacity (>43200 s), and stable repeatable operation (>3500 cycles). This groundbreaking method not only overcomes the inherent rigidity limitations of existing electronic storage units but also opens new possibilities for innovating neuromorphic devices, offering fundamental and practical avenues for future applications in soft robotics, wearable electronics, and bio-inspired artificial intelligence systems.
RESUMO
Sweat is a noninvasive metabolite that can provide clinically meaningful information about physical conditions without harming the body. Glucose, a vital component in sweat, is closely related to blood glucose levels, and changes in its concentration can reflect the health status of diabetics. We introduce a self-adhesive, wearable microfluidic chip with erasable liquid metal plasmonic hotspots for the precise detection of glucose concentration in sweat. The self-adhesive, wearable microfluidic chip is made from modified polydimethylsiloxane (PDMS) with enhanced stickiness, enabling conformal contact with the skin, and can collect, deliver, and store sweat. The plasmonic hotspots are located inside the microfluidic channel, are generated by synthesizing silver nanostructures on liquid metal, and can be removed in the alkaline solution. It indicates the erasable and reproducible nature of the plasmonic hotspots. The detection method is based on surface-enhanced Raman spectroscopy (SERS), which allows for accurate detection of the glucose concentration. To enhance the sensitive detection of glucose, the SERS substrate is modified by 4-mercaptophenylboronic acid to achieve the limit of detection of 1 ng/L glucose, which is much lower than the physiological conditions (7.2-25.2 µg/L). The developed microfluidic chip is soft, stretchable, and nontoxic, bringing new possibilities to wearable sweat-sensing devices.
RESUMO
Inkless and erasable printing (IEP) based on chromic materials holds great promise to alleviate environmental and sustainable problems. Metal-organic polymers (MOPs) are bright platforms for constructing IEP materials. However, it is still challenging to design target MOPs with excellent specific functions rationally due to the intricate component-structure-property relationships. Herein, an effective strategy was proposed for the rational design IEP-MOP materials. The stimuli-responsive viologen moiety was introduced into the construction of MOPs to give it potential chromic behaviors and two different coordination models (i. e. bilateral coordination model, M1 ; unilateral coordinated model, M2 ) based on the same viologen ligand were designed. Aided by theoretical calculations, model M1 was recommended secondarily as a more suitable system for IEP materials. Along this line, two representative viologen-ZnII MOPs 1 and 2 with models M1 and M2 were synthesized successfully. Experiments exhibit that 1 does have quicker stimuli response, stronger color contrast and longer radical lifetime compared to 2. Significantly, the obtained 1-IEP media brightly inherits the excellent chromic characteristics of 1 and the flexibility of the paper at the same time, which achieves most daily printing requirements, as well as enough resolution and durability to be used in identification by smart device.
RESUMO
The development of photosensitive materials for erasable photopatterning is of significant interest in anti-counterfeiting and information storage applications. Herein two kinds of stilbene-based metal-organic framework (MOF) films with layer by layer method for studying photopatterning is reported. The resulting 2D Zn2 (sdc)2 MOF film (sdc = 4,4'-stilbenedicarboxylate) exhibits excellent photosensitive features with a very short photoconversion time (<35 s) while the 3D MOF Zn4 O(sdc)6 film does not have the property due to the fact that only parallel and short distance arrangement of olefin groups in the adjacent MOF layers can trigger [2+2] photocycloaddition. Furthermore, the Zn2 (sdc)2 film indicates obvious reversible fluorescent photoswitch behavior between yellow and blue fluorescence emission, which can achieve high-efficient, erasable photopatterning with various sizes (ca. 20 microns to decimeter). This study not only develops a new kind of photosensitive crystalline network film but also provides erasable photopatterning from macroscopic to microscopic in optical applications.
RESUMO
A photoresist-based on a light-stabilized dynamic material driven by an out-of-equilibrium photo-Diels-Alder reaction of triazolinediones with naphthalenes-whose ability to intrinsically degrade postprinting can be tuned by a simple adjustment of laser intensity during 3D laser lithography is introduced. The resist's ability to form stable networks under green light irradiation that degrade in the dark is transformed into a tunable degradable 3D printing material platform. In-depth characterization of the printed microstructures via atomic force microscopy before and during degradation reveals the high dependency of the final structures' properties on the writing parameters. Upon identifying the ideal writing parameters and their effect on the network structure, it is possible to selectively toggle between stable and fully degradable structures. This simplifies the direct laser writing manufacturing process of multifunctional materials significantly, which typically requires the use of separate resists and consecutive writing efforts to achieve degradable and nondegradable material sections.
RESUMO
Femtosecond direct laser writing is a well-established and robust technique for the fabrication of photonic structures. Herein, we report on the fabrication of buried waveguides in AgPO3 silver metaphosphate glasses, as well as, on the erase and re-writing of those structures, by means of a single femtosecond laser source. Based on the fabrication procedure, the developed waveguides can be erased and readily re-inscribed upon further femtosecond irradiation under controlled conditions. Namely, for the initial waveguide writing the employed laser irradiation power was 2 J/cm2 with a scanning speed of 5 mm/s and a repetition rate of 200 kHz. Upon enhancing the power to 16 J/cm2 while keeping constant the scanning speed and reducing the repetition rate to 25 kHz, the so formed patterns were readily erased. Then, upon using a laser power of 2 J/cm2 with a scanning speed of 1 mm/s and a repetition rate of 200 kHz the waveguide patterns were re-written inside the glass. Scanning electron microscopy (SEM) images at the cross-section of the processed glasses, combined with spatial Raman analysis revealed that the developed write/erase/re-write cycle, does not cause any structural modification to the phosphate network, rendering the fabrication process feasible for reversible optoelectronic applications. Namely, it is proposed that this non-ablative phenomenon lies on the local relaxation of the glass network caused by the heat deposited upon pulsed laser irradiation. The resulted waveguide patterns Our findings pave the way towards new photonic applications involving infinite cycles of write/erase/re-write processes without the need of intermediate steps of typical thermal annealing treatments.
RESUMO
Inkless and erasable printing as a new technology has received intense attention in reducing paper waste and environmental hazards caused by the use of large amounts of ink. However, achieving high-resolution printing by inkless and erasable printing for practical applications remains a huge challenge. Herein, a new metal-organic framework (MOF) has been synthesized, which exhibits a reversible photochromic behavior. None of the unpaired electrons of metal ions and a unique three-dimensional network hinder electron transfer between the ligands and metal nodes, as well as between the ligands themselves, which are conducive to prolonging the photo-generated color lifetime and suitable for inkless and erasable printing. By virtue of the proper photo-generated color lifetime, strong contrast color before and after light irradiation, and reversible color transformation, a high-resolution printing content for inkless and erasable printing can be achieved by light irradiation. Notably, the paper coated with this MOF can be used for printing not only simple patterns such as pictures but also even texts for practical applications, surpassing other photochromic MOF materials for inkless and erasable printing, and almost comparable to ink and laser printing in terms of practicality and resolution. In addition, the MOF-coated paper can be reused for multiple cycles without significant deterioration.
RESUMO
Fluorous chemistry has unique features and high potential applicability, which are distinct from those of nonfluorinated organic compounds. However, there are limited reports detailing the applications of fluorous-fluorous interactions (fluorophilicity or fluorous affinity), likely because these interactions are not found in nature. In the present study, we describe the rewritable surface functionalization of a plastic substrate based on fluorous affinity. Plastic substrates were dip-coated with a series of methacrylate-based fluoropolymers to generate fluorous surfaces. Fluorous-tagged small molecules [perfluoroalkyl (Rf) amines] were immobilized on the fluorous surfaces via fluorous-fluorous interactions, thereby introducing reactive functional groups (amino moieties) on the surface. The amino groups displayed on the surface (accessible by a reactant) were successfully quantified using a reactive fluorophore, which enabled quantitative analysis of the Rf-amines immobilized on the fluorous surface that were available for the subsequent reaction. The effects of the molecular structures of the fluoropolymers and Rf-amines on the surface immobilization of Rf-amines were also investigated quantitatively. The surface coated with a fluoropolymer containing -C8F17 most effectively immobilized an Rf-amine comprising two -C6F13 chains. The adhered Rf-amines were easily removed by washing the surface with methanol, and then, they could successfully be re-immobilized on the surface. Finally, the presented approach enabled the rewritable micropatterning of an Rf-tagged biomolecule on a plastic surface through microcontact printing.
RESUMO
Soft thermotropic liquid crystals (TLCs) have advantages on processability and shape memory compared to hard solids and fluids. The development of photoswitchable soft TLCs based on biomolecules would afford reworkable shape information recording biomaterials for the areas requiring biocompatibility and degradability. In recent years, anhydrous DNA TLCs composed of DNA and ammonium surfactants have been receiving continuous attention. However, the photoswitchable phase transition has not been realized for soft DNA TLCs at room temperature, owing to the absence of functional ammonium surfactant. Herein, a new type of azobenzene-containing surfactant would be applied to the fabrication of soft DNA TLCs with photoresponsive physical properties. The double-chain design of the used surfactant and the use of DOAB as a dopant guarantee the soft state of DNA TLCs at r.t., which also facilitates the azobenzene isomerization by reducing the packing density of surfactants. With the assistance of photoisomerization of azobenzene, the reported DNA TLCs achieve reversible liquid crystal-isotropic liquid transition at temperatures below clearing points even at room temperature. The repeatable shape information recording and self-erasing tests indicate these DNA TLCs would be good shape information recording biomaterials in the future. This work also provides a useful strategy for designing photoresponsive soft biomaterials based on rigid biomolecules like DNA.
RESUMO
The implementation of stimuli-responsive bonds into 3D network assemblies is a key concept to design adaptive materials that can reshape and degrade. Here, a straightforward but unique photoresist is introduced for the tailored fabrication of poly(ethylene glycol) (PEG) materials that can be readily erased by water, even without the need for acidic or basic additives. Specifically, a new class of photoresist is developed that operates through the backbone crosslinking of PEG when irradiated in the presence of a bivalent triazolinedione. Hence, macroscopic gels are obtained upon visible light-emitting diode irradiation (λ > 515 nm) that are stable in organic media but rapidly degrade upon the addition of water. Photoinduced curing is also applicable to multiphoton laser lithography (λ > 700 nm), hence providing access to 3D printed microstructures that vanish when immersed in water at 37 °C. Materials with varying crosslinking densities are accessed by adapting the applied laser writing power, thereby allowing for tunable hydrolytic erasing timescales. A new platform technology is thus presented that enables the crosslinking and 3D laser printing of PEG-based materials, which can be cleaved and erased in water, and additionally holds potential for the facile modification and backbone degradation of polyether-containing materials in general.
RESUMO
Documents with handwritten portions are often susceptible to adulteration, forgery, and addition of entries, raising a problem of social concern. In this study, DESI ionization with imaging capabilities is applied to identify fraud in handwritten documents made using erasable pens of the chemical method of erasing (other than the usual physical methods). A fraud procedure was simulated in which an original entry made in white office paper was erased and replaced with a new one. The areas were directly analyzed using a DESI-MSI ion source coupled to a Q-Extractive mass spectrometer. Chemical images were obtained mapping the intensity of selected ions, spelling out each part of the fraud process as irrefutable evidence of its occurrence. Thus, the potential application of DESI-MSI in detecting fraud in suspect documents is demonstrated as a useful, simple, and fast alternative for the traditional techniques employed in these situations.
RESUMO
An erasable coating was prepared to modify material surfaces with accessibilities, including specific conjugation, elimination of the conjugated chemistry/function, and the reactivation of a second new chemistry/function. The coating was realized based on a vapor-deposited functional poly-p-xylylene coating composed of an integrated 3-((3-methylamido)-disulfanyl)propanoic acid functional group, resulting in not only chemical reactivity, but also a disulfide interchange mechanism. Mechanically, the coating was robust in terms of the thermal stability and adhesive property on a variety of substrate materials. Chemically, the anchoring site of carboxylic acid was accessible for specific conjugation, and a disulfide bridge moiety was used to disengage already installed functions/properties. In addition, the homogeneous nature of the vapor-phased coating technique is known for its morphology/thickness and distribution of the functional moiety, which allowed precision to address the installation or erasure of functions and properties. Characterization of the precisely confined hydrophilic/hydrophobic wetting property and the alternating reversibility of this wetting property on the same surface was achieved.
RESUMO
A near-infrared fluorescence-switchable molecule, dithienylethene-terrylenediimide (TDI-4DTE) exhibits high near-infrared fluorescence and on/off ratio, decent reversibility, and fatigue resistance upon alternating UV/vis (305/621 nm) irradiation. Photoinduced electron transfer mainly contributes to the fluorescence quenching of TDI-4DTE. As an information storage unit, single molecular TDI-4DTE in the polymer film can be written by red light (621 nm) and erased by UV light (305 nm), while nondestructive fluorescence readout (750 nm) of a single molecular memory has been obtained upon excitation with near-infrared light (720 nm). The fluorescence patterning of TDI-4DTE in the polymer film demonstrates that the erasing/writing/reading wavelengths are deciphered to minimize the signal crosstalk in nonvolatile fluorescent molecular memories.
RESUMO
A new type of erasable gel pen ink is becoming increasingly popular because of the modifiable characteristics for writing on documents. This study attempts to distinguish 12 types of blue and black erasable gel pens produced by mainstream stationery manufacturers using infrared (IR) visual analysis, Fourier transform infrared (FTIR) analysis, fluorescence analysis, and microspectrophotometry. The results demonstrate that IR visual, FTIR, and fluorescence analysis can be used to help distinguish each type of erasable gel ink. While microspectrophotometry can be used to effectively differentiate the blue gel inks in this study, there are limitations with respect to distinguishing black erasable gel pens. When these four optical analyses methods were used in combination, the gel inks could be accurately distinguished.
RESUMO
A prospective design for interface properties is enabled to perform precise functionalization, erasure capability for existing properties, reactivation of surface functionality to a second divergent property. A vapor-deposited, 2-nitro-5-(prop-2-yn-1-yloxy)methylbenzyl carbamate-functionalized poly-para-xylylene coating is synthesized in this study to realize such tasks by offering the accessibility of the azide/alkyne click reaction, an integrated photochemical decomposition/cleavage moiety, and the reactivation sites of amines behind the cleavage that allow the installation of a second surface function. With the benefits from the mild processing conditions used for the coatings and the rapid response of the photochemical reaction, the creation of sophisticated interface properties and localized chemical compositions was elegantly demonstrated with a hybrid functionality including a confined hydrophlic/hydrophobic wetting property and/or a cell adherent/repellent platform on such a coating surface.
RESUMO
Two new kinds of writing tools are popular in China's market. One is a self-fading pen, and another is an erasable pen. The ink of the two kinds of writing tools has a remarkable characteristic that it can gradually fade or disappear under heat or be rubbed off. How to reveal the disappeared written lines is a very important question for document examiners. In this article, three series of ink line samples were made with five types of self-fading pens, 18 types of erasable pens, and three types of papers. Temperature, humidity, and lighting are known as influential factors of the process, and the effect of fading was examined. Luminescence, ultraviolet (UV), sidelight, electrostatic indentation development,low temperature, and solution revealing methods are found to be effective methods used to reveal the disappeared written lines. The best operating conditions for each method were obtained from the conducted experiments.
RESUMO
Arrays of nanostructure that are capable of broadband antireflection and light trapping properties are implemented in photovoltaic and photonic devices. However, most of the existing antireflection films have been hindered by a complicated fabricated method and structurally rigid. Here, we report a simple preparation method for self-erasable nanocone antireflection films using the surface replication method. Arrays of nanocone with sub-100 nm surface features could be replicated easily on the shape memory polyvinyl alcohol (PVA) film, and are erased by thermal stimulation. The reflectivity of self-erasable antireflection film can be switched from the 4.5% to 0.6% averaged over the visible spectral range by controlling the temperature below or above 80 °C. Theoretical simulations have been demonstrated. The unique smart film is expected to be used to further extend the application of smart optical windows and digital screens.
RESUMO
Introducing a lubricant layer onto surfaces has emerged as a novel strategy to address a wide range of interface-related challenges. Recent studies of lubricant-infused surfaces have extended beyond repelling liquids to manipulating the mobility of fluids. In this study, we report a design of slippery surfaces based on infusing lubricant onto a polyelectrolyte multilayer film whose surface microstructures can be erased rapidly under mild condition. Unlike other lubricant-infused surfaces, the liquid movements (e.g., moving resistance and direction) on such surfaces can be manipulated via programming the surface microstructures beforehand. The work reported here offers a versatile design concept of lubricant-infused surfaces and may turn on new applications of this emerging class of bioinspired materials.
RESUMO
Halochromic isoquinoline attached mechanochromic triphenylamine, N-phenyl-N-(4-(quinolin-2-yl)phenyl)benzenamine (PQPBA) and tris(4-(quinolin-2-yl)phenyl)amine (TQPA), smart fluorescent materials exhibit thermo/mechanochromism and tunable solid state fluorescence and their unusual halochromic response in PMMA matrix have been used for fabricating rewritable and self-erasable fluorescent platforms. PQPBA and TQPA showed strong fluorescence in solution (Φf = 0.9290 (PQPBA) and 0.9160 (TQPA)) and moderate solid state fluorescence (Φf = 20 (PQPBA) and 17% (TQPA). Interestingly, they exhibited a rare temperature (0-100 °C) dependent positive fluorescence enhancement via activating radiative vibrational transition. The deaggregation of PQPBA and TQPA in PMMA polymer matrix lead to the enhancement of fluorescence intensity strongly and fabricated strong blue fluorescent thin films (Φf = 58% (PQPBA) and 54% (TQPA). The halochromic isoquinoline has been exploited for demonstrating reversible off-on fluorescence switching by acid (TFA (trifluoroacetic acid)/HCl) and base (NH3) treatment in both solids as well as PMMA thin films. Importantly, rewritable and self-erasable fluorescent platform has been achieved by make use of unusual fluorescence responses of PQPBA/TQPA with TFA/HCl after exposing NH3. Single crystal and powder X-ray diffraction (PXRD) studies provided the insight on the solid-state fluorescence and external stimuli-induced fluorescence changes.