Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202411175, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39102295

RESUMO

Purification of C2H4 from the ternary C2 hydrocarbon mixture in one step is of critical significance but still extremely challenging according to its intermediate physical properties between C2H6 and C2H2. Hydrogen-bonded organic frameworks (HOFs) stabilized by supramolecular interactions are emerging as a new kind of adsorbents that facilitate green separation. However, it remains a problem to efficiently realize the one-step C2H4 purification from C2H6/C2H4/C2H2 mixture because of the low C2H2/C2H4 selectivity. We herein report a robust microporous HOF (termed as HOF-TDCPB) with dense O atoms and aromatic rings distributed on the pore surface which provide C2H6 and C2H2 preferred environment simultaneously. Dynamic breakthrough experiments indicate that HOF-TDCPB can not only obtain high-purity C2H4 from binary C2 mixture, but also firstly realize one-step C2H4 purification from ternary C2H6/C2H4/C2H2 mixture, with the C2H4 productivity of 3.2 L/kg (>99.999%) for one breakthrough cycle. Furthermore, HOF-TDCPB displays outstanding stability in air, organic solvents and water, which endow it excellent cycle performance even under high-humidity conditions. Theoretical calculations indicate that multiple O sites on pore channels can create synergistic binding sites for C2H2, thus affording overall stronger multipoint interactions.

2.
Angew Chem Int Ed Engl ; 63(33): e202407240, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38839564

RESUMO

One-step purification of ethylene from ternary mixtures (C2H2, C2H4, and C2H6) can greatly reduce the energy consumption of the separation process, but it is extremely challenging. Herein, we use crystal engineering and reticular chemistry to introduce unsaturated bonds (ethynyl and alkyne) into ligands, and successfully design and synthesized two novel Zr-MOCs (ZrT-1-ethenyl and ZrT-1-alkyne). The introduction of carbon-carbon unsaturated bonds provides abundant adsorption sites within the framework while modulating the pore window size. Comprehensive characterization techniques including single crystal and powder X-ray diffraction, as well as electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS) confirm that ZrT-1-ethenyl and ZrT-1-alkyne possess an isostructural framework with ZrT-1 and ZrT-1-Me, respectively. Adsorption isotherms and breakthrough experiments combined with theoretical calculations demonstrate that ZrT-1-ethenyl can effectively remove trace C2H2 and C2H6 in C2H4 and achieve separation of C2H2 from C2H4 and CO2. ZrT-1-ethenyl can also directly purify C2H4 in liquid solutions. This work provides a benchmark for MOCs that one-step purification of ethylene from ternary mixtures.

3.
Angew Chem Int Ed Engl ; 63(19): e202400122, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38494445

RESUMO

Electrochemical acetylene reduction (EAR) employing Cu catalysts represents an environmentally friendly and cost-effective method for ethylene production and purification. However, Cu-based catalysts encounter product selectivity issues stemming from carbon-carbon coupling and other side reactions. We explored the use of secondary metals to modify Cu-based catalysts and identified Cd decoration as particular effective. Cd decoration demonstrated a high ethylene Faradaic efficiency (FE) of 98.38 % with well-inhibited carbon-carbon coupling reactions (0.06 % for butadiene FE at -0.5 V versus reversible hydrogen electrode) in a 5 vol % acetylene gas feed. Notably, ethylene selectivity of 99.99 % was achieved in the crude ethylene feed during prolonged stability tests. Theoretical calculations revealed that Cd metal accelerates the water dissociation on neighboring Cu surfaces allowing more H* to participate in the acetylene semi-hydrogenation, while increasing the energy barrier for carbon-carbon coupling, thereby contributing to a high ethylene semi-hydrogenation efficiency and significant inhibition of carbon-carbon coupling. This study provides a paradigm for a deeper understanding of secondary metals in regulating the product selectivity of EAR electrocatalysts.

4.
Angew Chem Int Ed Engl ; 63(15): e202319978, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38369652

RESUMO

Ethylene (C2H4) purification and propylene (C3H6) recovery are highly relevant in polymer synthesis, yet developing physisorbents for these industrial separation faces the challenges of merging easy scalability, economic feasibility, high moisture stability with great separation efficiency. Herein, we reported a robust and scalable MOF (MAC-4) for simultaneous recovery of C3H6 and C2H4. Through creating nonpolar pores decorated by accessible N/O sites, MAC-4 displays top-tier uptakes and selectivities for C2H6 and C3H6 over C2H4 at ambient conditions. Molecular modelling combined with infrared spectroscopy revealed that C2H6 and C3H6 molecules were trapped in the framework with stronger contacts relative to C2H4. Breakthrough experiments demonstrated exceptional separation performance for binary C2H6/C2H4 and C3H6/C2H4 as well as ternary C3H6/C2H6/C2H4 mixtures, simultaneously affording record productivities of 27.4 and 36.2 L kg-1 for high-purity C2H4 (≥99.9 %) and C3H6 (≥99.5 %). MAC-4 was facilely prepared at deckgram-scale under reflux condition within 3 hours, making it as a smart MOF to address challenging gas separations.

5.
J Colloid Interface Sci ; 656: 538-544, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38007945

RESUMO

In the petrochemical industry, obtaining polymer-grade ethylene from complex light-hydrocarbon mixtures by one-step separation is important and challenging. Here, we successfully prepared the Metal-Azolate Framework 7 (MAF-7) with pore chemistry and geometry control to realize the one-step separation of ethylene from cracking gas with up to quinary gas mixtures (propane/propylene/ethane/ethylene/acetylene). Based on the tailor-made pore environment, MAF-7 exhibited better selective adsorption of propane, propylene, ethane and acetylene than ethylene, and the adsorption ratios of ethane/ethylene and propylene/ethylene are as high as 1.49 and 2.81, respectively. The pore geometry design of MAF-7 leads to the unique weak binding affinity and adsorption site for ethylene molecules, which is clearly proved by Grand Canonical Monte Carlo theoretical calculations. The breakthrough experiments show that ethylene can be directly obtained from binary, ternary, and quinary gas mixtures. These comprehensive properties show that MAF-7 is expected to achieve one-step purification of ethylene in complex light hydrocarbon mixtures.

6.
Angew Chem Int Ed Engl ; 62(51): e202313855, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37933685

RESUMO

The one-step purification of ethylene (C2 H4 ) from mixtures containing ethane (C2 H6 ) and acetylene (C2 H2 ) is an industrially important yet challenging process. In this work, we present a site-engineering strategy aimed at manipulating the spatial distribution of binding sites within a confined pore space. We realized successfully by incorporating nitrogen-containing heterocycles, such as indole-5-carboxylic acid (Ind), benzimidazole-5-carboxylic acid (Bzz), and indazole-5-carboxylic acid (Izo), into the robust MOF-808 platform via post-synthetic modification. The resulting functionalized materials, namely MOF-808-Ind, MOF-808-Bzz, and MOF-808-Izo, demonstrated significantly improved selectivity for C2 H2 and C2 H6 over C2 H4 . MOF-808-Bzz with two uniformly distributed nitrogen binding sites gave the optimal geometry for selective ethane trapping through multiple strong C-H⋅⋅⋅N hydrogen bonds, leading to the highest C2 H2 /C2 H4 and C2 H6 /C2 H4 combined selectivities among known MOFs. Column breakthrough experiments validated its ability to purify C2 H4 from ternary C2 H2 /C2 H4 /C2 H6 mixtures in a single step.

7.
Angew Chem Int Ed Engl ; 62(43): e202311654, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37679304

RESUMO

Herein, a 2-fold interpenetrated metal-organic framework (MOF) Zn-BPZ-TATB with accessible N/O active sites in nonpolar pore surfaces was reported for one-step C2 H4 purification from C2 H6 or C3 H6 mixtures as well as recovery of C3 H6 from C2 H6 /C3 H6 /C2 H4 mixtures. The MOF exhibits the favorable C2 H6 and C3 H6 uptakes (>100 cm3 g-1 at 298 K under 100 kPa) as well as selective adsorption of C2 H6 and C3 H6 over C2 H4 . The C3 H6 - and C2 H6 -selective feature were investigated detailedly by experimental tests as well as sorption kinetic studyies. Molecular modelling revealed the multiple interactions between C3 H6 or C2 H6 molecules and methyl groups as well as triazine rings in pores. Zn-BPZ-TATB not only can directly generate 323.4 L kg-1 and 15.4 L kg-1 of high-purity (≥99.9 %) C2 H4 from C3 H6 /C2 H4 and C2 H6 /C2 H4 mixtures, but also provide a large high-purity (≥99.5 %) C3 H6 recovery capacity of 60.1 L kg-1 from C3 H6 /C2 H4 mixtures. More importantly, the high-purity C3 H6 (≥99.5 %) and C2 H4 (≥99.9 %) with the productivities of 38.2 and 12.7 L kg-1 can be simultaneously obtained from C2 H6 /C3 H6 /C2 H4 mixtures through a single adsorption/desorption cycle.

8.
J Colloid Interface Sci ; 652(Pt B): 1093-1098, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37657209

RESUMO

Purification of ethylene (C2H4) is an essential and energy-intensive process in the petrochemical industry. Adsorption separation using ethane (C2H6)-selective porous adsorbents is a highly efficient and straightforward method for obtaining polymer-grade C2H4 from a binary C2H6/C2H4 mixture. However, the design and construction of C2H6-selective adsorbents are very challenging tasks. Herein, we demonstrate a microporous heterometal-organic framework, CuIn(ina)4, can preferentially enrich C2H6 than C2H4. Experimental results revealed that CuIn(ina)4 exhibited remarkable separation performance for the C2H6/C2H4 mixture with a high C2H6 loading capacity (3.3 mmol/g), high IAST selectivity (2.3) and separation potential (1578 mmol/L for equimolar C2H6/C2H4 mixture) under ambient conditions. The effectiveness of CuIn(ina)4 for C2H6/C2H4 adsorption separation was confirmed by theoretical calculations and breakthrough experiments.

9.
Angew Chem Int Ed Engl ; 62(44): e202309108, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37699125

RESUMO

One-step separation of C2 H4 from ternary C2 mixtures by physisorbents remains a challenge to combine excellent separation performance with high stability, low cost, and easy scalability for industrial applications. Herein, we report a strategy of constructing negative electrostatic pore environments in a stable, low-cost, and easily scaled-up aluminum MOF (MOF-303) for efficient one-step C2 H2 /C2 H6 /C2 H4 separation. This material exhibits not only record high C2 H2 and C2 H6 uptakes, but also top-tier C2 H2 /C2 H4 and C2 H6 /C2 H4 selectivities at ambient conditions. Theoretical calculations combined with in situ infrared spectroscopy indicate that multiple N/O sites on pore channels can build a negative electro-environment to provide stronger interactions with C2 H2 and C2 H6 over C2 H4 . Breakthrough experiments confirm its exceptional separation performance for ternary mixtures, affording one of the highest C2 H4 productivity of 1.35 mmol g-1 . This material is highly stable and can be easily synthesized at kilogram-scale from cheap raw materials using a water-based green synthesis. The benchmark combination of excellent separation properties with high stability and low cost in scalable MOF-303 has unlocked its great potential in this challenging industrial separation.

10.
Adv Mater ; 35(42): e2303818, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37433306

RESUMO

Electrochemical acetylene reduction (EAR) is a promising strategy for removing acetylene from ethylene-rich gas streams. However, suppressing the undesirable hydrogen evolution is vital for practical applications in acetylene-insufficient conditions. Herein, Cu single atoms are immobilized on anatase TiO2 nanoplates (Cu-SA/TiO2 ) for electrochemical acetylene reduction, achieving an ethylene selectivity of ≈97% with a 5 vol% acetylene gas feed (Ar balance). At the optimal Cu-single-atom loading, Cu-SA/TiO2 is able to effectively suppress HER and ethylene over-hydrogenation even when using dilute acetylene (0.5 vol%) or ethylene-rich gas feeds, delivering a 99.8% acetylene conversion, providing a turnover frequency of 8.9 × 10-2  s-1 , which is superior to other EAR catalysts reported to date. Theoretical calculations show that the Cu single atoms and the TiO2 support acted cooperatively to promote charge transfer to adsorbed acetylene molecules, whilst also inhibiting hydrogen generation in alkali environments, thus allowing selective ethylene production with negligible hydrogen evolution at low acetylene concentrations.

11.
Small ; 19(42): e2304460, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37337386

RESUMO

The purification of C2 H4 from C2 H6 /C2 H4 /C2 H2 mixtures is of great significance in the chemical industry for C2 H4 production but remains a daunting task. Guided by powerful reticular chemistry principles, herein a systematic study is carried out to engineer pore dimensions and pore functionality of fcu-type Y-based metal-organic frameworks (Y-MOFs) through the construction of a series of eight new structures using linear dicarboxylate linkers with different length and functional groups. This study illustrates how delicate changes in pore size and pore surface chemistry can effectively influence the adsorption preference of C2 H6 , C2 H4 , and C2 H2 by the MOFs. Importantly, clear relations between pore size/pore surface polarity and C2 adsorption selectivities of this series of MOFs are established. In particular, HIAM-326 built on a linker decorated with trifluoromethoxy group shows notably preferential adsorption of C2 H6 and C2 H2 over C2 H4 , with balanced C2 H2 /C2 H4 and C2 H6 /C2 H4 selectivities. This endows the compound with the capability of one-step purification of C2 H4 from C2 H6 /C2 H4 /C2 H2 ternary mixtures, which is validated by breakthrough measurements where high purity C2 H4 (99.9%+) can be obtained directly from the separation column. Its adsorption thermodynamics and underlying selective adsorption mechanisms are further revealed by ab initio calculations.

12.
Small ; 19(21): e2208182, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36843316

RESUMO

One-step purification of ethylene (C2 H4 ) from a quaternary gas mixture of C2 H6 /C2 H4 /C2 H2 /CO2 by adsorption is a promising separation process, yet developing adsorbents that synergistically capture various gas impurities remains challenging. Herein, a Lego-brick strategy is proposed to customize pore chemistry in a unified framework material. The ethane-selective MOF platform is further modified with customized binding sites to specifically adsorb acetylene and carbon dioxide, thus one-step purification of C2 H4 with high productivity of polymer-grade product (134 mol kg-1 ) is achieved on the assembly of porous coordination polymer-2,5-furandicarboxylic acid (PCP-FDCA) and PCP-5-aminoisophthalic acid (IPA-NH2 ). Computational studies verify that the low-polarity surface of this MOFs-based platform provides a delicate environment for C2 H6 recognition, and the specific binding sites (FDCA and IPA-NH2 ) exhibit favorable trapping of C2 H2 and CO2 via CHδ+ ···Oδ- and Cδ+ ···Nδ- electrostatic interactions, respectively. The proposed Lego-brick strategy to customize binding sites within the MOFs structure provides new ideas for the design of adsorbents for compounded separation tasks.

13.
ACS Appl Mater Interfaces ; 14(39): 44460-44469, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36125797

RESUMO

Due to the industrial requirements for high production and high quality of ethylene, efficient purification of ethylene from acetylene and ethane is of prime importance but challenging. Dynamic metal-organic frameworks (MOFs) have demonstrated intriguing structural dynamics and diverse applications recently. Among them, although a few flexible ones have exhibited interesting ethylene purification capability, rigid ones were yet barely investigated for such purpose. In this regard, a cerium(III)-based MOF was solvothermally synthesized, which is rigid and assembled from rod molecular building blocks associated with coordinative N,N-dimethylformamide (DMF) molecules. After liberating different degrees of DMF ligands via heating under vacuum or acetone exchange, both partially desolvated compounds of Ce-MOF-1 and Ce-MOF-2 were concertedly isolated in a fashion of single-crystal to single-crystal transformation. Although both newly generated materials crystallize in the same space group, they exhibit dissimilar unit cell parameters and slightly distinct ultramicropore sizes and pore microenvironments, thanks to the discrepancy in the desolvation degree. Consequently, Ce-MOF-1 and Ce-MOF-2 individually demonstrate C2H2- and C2H6-selective adsorption behavior, resulting in the potential tandem separation of C2H4 from C2H2 and C2H6 mixtures. The above results were successfully supported by not only single gas adsorption isotherms but also grand canonical Monte Carlo (GCMC) calculation studies and dynamic breakthrough experiments. The present work may pave the way for rigid MOFs aiming at advancing applications via solid-state structural dynamics.

14.
Angew Chem Int Ed Engl ; 61(35): e202208134, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-35818113

RESUMO

Adsorptive separation is an energy-efficient technology for the separation of C2 hydrocarbons. However, it remains a critical problem to directly produce high-purity C2 H4 from ternary C2 H2 /C2 H4 /C2 H6 mixtures by simultaneously trapping C2 H2 and C2 H6 . Herein, we report the one-step C2 H4 purification from the ternary mixture by a metal-organic framework Zn(ad)(int) (ad=adeninate; int=isonicotinate). The material combines dense heterocyclic rings and accessible uncoordinated O atoms as strong binding sites for C2 H6 and C2 H2 . Its spindle-like cage exhibits an interesting shape matching with the targeted molecules, affording Zn(ad)(int) not only high separation selectivity for C2 H6 /C2 H4 and C2 H2 /C2 H4 , but also excellent gas capacity. Breakthrough experiments show that polymer-grade C2 H4 can be separated from the ternary mixtures with a record productivity of 1.43 mmol g-1 . In situ powder X-ray diffraction and Fourier transform infrared spectrum analyses further provide deep insights into the separation mechanism.

15.
Angew Chem Int Ed Engl ; 61(28): e202205427, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35499196

RESUMO

One-step C2 H4 purification from ternary C2 H6 /C2 H4 /C2 H2 mixtures by a single adsorbent is of great industrial significance, but few adsorbents achieve this separation. Herein, we report a robust metal-organic framework (MOF) that possesses methyl-decorated nonpolar pores and shows one-step C2 H4 purification (purity >99.9 %) from binary C2 H6 /C2 H4 mixtures and ternary C2 H6 /C2 H4 /C2 H2 mixtures. The methyl groups in pores provide a suitable pore environment to simultaneously enhance the adsorption capacity for C2 H2 and C2 H6 compared to C2 H4 . Simulations revealed the multiple interactions between C2 H6 or C2 H2 molecules and the pore wall, while the interactions with C2 H4 molecules are weak and also unfavorable due to the repulsion from methyl groups in pores. The MOF displays high C2 H6 and C2 H2 uptakes and benchmark C2 H6 /C2 H4 selectivity (2.2), surpassing all of the reported MOFs for one-step C2 H4 purification from ternary C2 H6 /C2 H4 /C2 H2 mixtures.

16.
Nanomaterials (Basel) ; 12(5)2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35269357

RESUMO

Identification of high-performing sorbent materials is the key step in developing energy-efficient adsorptive separation processes for ethylene production. In this work, a computational screening of metal-organic frameworks (MOFs) for the purification of ethylene from the ternary ethane/ethylene/acetylene mixture under thermodynamic equilibrium conditions is conducted. Modified evaluation metrics are proposed for an efficient description of the performance of MOFs for the ternary mixture separation. Two different separation schemes are proposed and potential MOF adsorbents are identified accordingly. Finally, the relationships between the MOF structural characteristics and its adsorption properties are discussed, which can provide valuable information for optimal MOF design.

17.
Angew Chem Int Ed Engl ; 61(12): e202116370, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35001470

RESUMO

The available processes for removing acetylene impurities from crude ethylene are tremendously energy-intensive. Herein, we demonstrate a novel aqueous Zn-C2 H2 battery, which not only switches energy-consuming acetylene removal to electricity generation, but also reduces acetylene to ethylene through a unique discharge mechanism: C2 H2 +Zn+H2 O→C2 H4 +ZnO. Under a pure acetylene stream, this Zn-C2 H2 battery exhibits an open circuit potential of 1.14 V and a peak power density of 2.2 mW cm-2 , which exceed those of reported Zn-CO2 batteries. Even for simulated crude ethylene, the Zn-C2 H2 battery manifests an acetylene conversion of 99.97 % and continuously produces polymer-grade ethylene with only ≈3 ppm acetylene during a long-term discharge operation. Such a functional battery is universally appliable for reducing other alkynes and generating electricity. Therefore, this work provides an effective strategy for green ethylene purification and the design of functional batteries.

18.
ACS Appl Mater Interfaces ; 13(16): 18792-18799, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33848119

RESUMO

Realization of ethane-selective porous materials for efficient ethane/ethylene (C2H6/C2H4) separation is an important task in the petrochemical industry. Although a number of C2H6-selective adsorbents have been realized, their adsorption capacity and selectivity might be mostly dampened under humid conditions due to structure decomposition or co-adsorption of water vapor. A desired material should have simultaneously high C2H6 uptake and selectivity, excellent water stability, and ultralow water adsorption uptake for industrial applications, but such a material is elusive. Herein, we report a chemically stable hafnium-based material (Hf)DUT-52a, featuring the suitable pore apertures and less hydrophilicity for highly efficient C2H6/C2H4 separation under humid conditions. Gas sorption results reveal that (Hf)DUT-52a exhibits both high ethane adsorption capacity (4.02 mmol g-1) and C2H6/C2H4 selectivity (1.9) at 296 K and 1 bar, which are comparable to the majority of the top-performing materials. Most importantly, the less pore hydrophilicity enables (Hf)DUT-52a to exhibit a negligible water uptake of 0.036 g g-1 before 40% relative humidity (RH), effectively minimizing the impact of humidity on separation capacity. This material thus shows excellent separation capacity even under 40% RH with a high polymer-grade ethylene production capacity up to 8.43 L kg-1 at ambient conditions, as evidenced by the breakthrough experiments.

19.
Angew Chem Int Ed Engl ; 60(20): 11350-11358, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33661542

RESUMO

The separation of ethylene (C2 H4 ) from a mixture of ethane (C2 H6 ), ethylene (C2 H4 ), and acetylene (C2 H2 ) at normal temperature and pressure is a significant challenge. The sieving effect of pores is powerless due to the similar molecular size and kinetic diameter of these molecules. We report a new modification method based on a stable ftw topological Zr-MOF platform (MOF-525). Introduction of a cyclopentadiene cobalt functional group led to new ftw-type MOFs materials (UPC-612 and UPC-613), which increase the host-guest interaction and achieve efficient ethylene purification from the mixture of hydrocarbon gases. The high performance of UPC-612 and UPC-613 for C2 H2 /C2 H4 /C2 H6 separation has been verified by gas sorption isotherms, density functional theory (DFT), and experimentally determined breakthrough curves. This work provides a one-step separation of the ternary gas mixture and can further serve as a blueprint for the design and construction of function-oriented porous structures for such applications.

20.
Angew Chem Int Ed Engl ; 60(18): 10304-10310, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33630416

RESUMO

For the separation of ethane from ethylene, it remains challenging to target both high C2 H6 adsorption and selectivity in a C2 H6 -selective material. Herein, we report a reversible solid-state transformation in a labile hydrogen-bonded organic framework to generate a new rod-packing desolvated framework (ZJU-HOF-1) with suitable cavity spaces and functional surfaces to optimally interact with C2 H6 . ZJU-HOF-1 thus exhibits simultaneously high C2 H6 uptake (88 cm3 g-1 at 0.5 bar and 298 K) and C2 H6 /C2 H4 selectivity (2.25), which are significantly higher than those of most top-performing materials. Theoretical calculations revealed that the cage-like cavities and functional sites synergistically "match" better with C2 H6 to provide stronger multipoint interactions with C2 H6 than C2 H4 . In combination with its high stability and ultralow water uptake, this material can efficiently capture C2 H6 from 50/50 C2 H6 /C2 H4 mixtures in ambient conditions under 60 % RH, providing a record polymer-grade C2 H4 productivity of 0.98 mmol g-1 .

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA