Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Magn Reson Imaging ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38838352

RESUMO

This article reviews the synergistic application of positron emission tomography-magnetic resonance imaging (PET-MRI) in neuroscience with relevance for psychiatry, particularly examining neurotransmission, epigenetics, and dynamic imaging methodologies. We begin by discussing the complementary insights that PET and MRI modalities provide into neuroreceptor systems, with a focus on dopamine, opioids, and serotonin receptors, and their implications for understanding and treating psychiatric disorders. We further highlight recent PET-MRI studies using a radioligand that enables the quantification of epigenetic enzymes, specifically histone deacetylases, in the brain in vivo. Imaging epigenetics is used to exemplify the impact the quantification of novel molecular targets may have, including new treatment approaches for psychiatric disorders. Finally, we discuss innovative designs involving functional PET using [18F]FDG (fPET-FDG), which provides detailed information regarding dynamic changes in glucose metabolism. Concurrent acquisitions of fPET-FDG and functional MRI provide a time-resolved approach to studying brain function, yielding simultaneous metabolic and hemodynamic information and thereby opening new avenues for psychiatric research. Collectively, the review underscores the potential of a multimodal PET-MRI approach to advance our understanding of brain structure and function in health and disease, which could improve clinical care based on objective neurobiological features and treatment response monitoring. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 1.

2.
Eur J Nucl Med Mol Imaging ; 51(9): 2625-2637, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38676734

RESUMO

PURPOSE: Functional PET (fPET) is a novel technique for studying dynamic changes in brain metabolism and neurotransmitter signaling. Accurate quantification of fPET relies on measuring the arterial input function (AIF), traditionally achieved through invasive arterial blood sampling. While non-invasive image-derived input functions (IDIF) offer an alternative, they suffer from limited spatial resolution and field of view. To overcome these issues, we developed and validated a scan protocol for brain fPET utilizing cardiac IDIF, aiming to mitigate known IDIF limitations. METHODS: Twenty healthy individuals underwent fPET/MR scans using [18F]FDG or 6-[18F]FDOPA, utilizing bed motion shuttling to capture cardiac IDIF and brain task-induced changes. Arterial and venous blood sampling was used to validate IDIFs. Participants performed a monetary incentive delay task. IDIFs from various blood pools and composites estimated from a linear fit over all IDIF blood pools (3VOI) and further supplemented with venous blood samples (3VOIVB) were compared to the AIF. Quantitative task-specific images from both tracers were compared to assess the performance of each input function to the gold standard. RESULTS: For both radiotracer cohorts, moderate to high agreement (r: 0.60-0.89) between IDIFs and AIF for both radiotracer cohorts was observed, with further improvement (r: 0.87-0.93) for composite IDIFs (3VOI and 3VOIVB). Both methods showed equivalent quantitative values and high agreement (r: 0.975-0.998) with AIF-derived measurements. CONCLUSION: Our proposed protocol enables accurate non-invasive estimation of the input function with full quantification of task-specific changes, addressing the limitations of IDIF for brain imaging by sampling larger blood pools over the thorax. These advancements increase applicability to any PET scanner and clinical research setting by reducing experimental complexity and increasing patient comfort.


Assuntos
Tomografia por Emissão de Pósitrons , Humanos , Tomografia por Emissão de Pósitrons/métodos , Masculino , Feminino , Adulto , Encéfalo/diagnóstico por imagem , Fluordesoxiglucose F18 , Coração/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Di-Hidroxifenilalanina/análogos & derivados , Pessoa de Meia-Idade
3.
Eur J Nucl Med Mol Imaging ; 51(8): 2283-2292, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38491215

RESUMO

PURPOSE: Functional positron emission tomography (fPET) with [18F]FDG allows quantification of stimulation-induced changes in glucose metabolism independent of neurovascular coupling. However, the gold standard for quantification requires invasive arterial blood sampling, limiting its widespread use. Here, we introduce a novel fPET method without the need for an input function. METHODS: We validated the approach using two datasets (DS). For DS1, 52 volunteers (23.2 ± 3.3 years, 24 females) performed Tetris® during a [18F]FDG fPET scan (bolus + constant infusion). For DS2, 18 participants (24.2 ± 4.3 years, 8 females) performed an eyes-open/finger tapping task (constant infusion). Task-specific changes in metabolism were assessed with the general linear model (GLM) and cerebral metabolic rate of glucose (CMRGlu) was quantified with the Patlak plot as reference. We then estimated simplified outcome parameters, including GLM beta values and percent signal change (%SC), and compared them, region and whole-brain-wise. RESULTS: We observed higher agreement with the reference for DS1 than DS2. Both DS resulted in strong correlations between regional task-specific beta estimates and CMRGlu (r = 0.763…0.912). %SC of beta values exhibited strong agreement with %SC of CMRGlu (r = 0.909…0.999). Average activation maps showed a high spatial similarity between CMRGlu and beta estimates (Dice = 0.870…0.979) as well as %SC (Dice = 0.932…0.997), respectively. CONCLUSION: The non-invasive method reliably estimates task-specific changes in glucose metabolism without blood sampling. This streamlines fPET, albeit with the trade-off of being unable to quantify baseline metabolism. The simplification enhances its applicability in research and clinical settings.


Assuntos
Encéfalo , Fluordesoxiglucose F18 , Glucose , Tomografia por Emissão de Pósitrons , Humanos , Feminino , Masculino , Glucose/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Adulto , Adulto Jovem
4.
Diagnostics (Basel) ; 13(12)2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37370921

RESUMO

Ensuring a robust and reliable evaluation of coma deepness and prognostication of neurological outcome is challenging. We propose to develop PET neuroimaging as a new diagnostic and prognosis tool for comatose patients using a recently published methodology to perform functional PET (fPET). This exam permits the quantification of task-specific changes in neuronal metabolism in a single session. The aim of this protocol is to determine whether task-specific changes in glucose metabolism during the acute phase of coma are able to predict recovery at 18 months. Participation will be proposed for all patients coming for a standard PET-CT in our center in order to evaluate global cerebral metabolism during the comatose state. Legally appointed representative consent will be obtained to slightly modify the exam protocol: (1) 18F-fluorodeoxyglucose (18F-FDG) bolus plus continuous infusion instead of a simple bolus and (2) more time under camera to perform dynamic acquisition. Participants will undergo a 55-min fPET session with a 20% bolus + 80% infusion protocol. Two occurrences of three block (5-min rest, 10-min auditory stimulation and 10-min emotional auditory stimulation) will be performed after reaching equilibrium of FDG arterial concentration. We will compare the regional brain metabolism at rest and during the sessions of auditory and emotional auditory stimulation to search for a determinant of coma recovery (18 months of follow-up after the exam). Emotional auditory stimulation should induce an activation of: the auditory cortex, the consciousness areas and the neural circuitry for emotion (function to coma deepness). An activation analysis will be carried out to highlight regional brain activation using dedicated custom-made software based on Python statistical and image processing toolboxes. The association between activation levels and the Coma Recovery Scale-Revisited (CRS-R) will be assessed using multivariate analysis. If successful, the results from this study will help improve coma prognosis evaluation based on the pattern of neuronal metabolism at the onset of the pathology. The study protocol, rationale and methods are described in this paper.

5.
Cereb Cortex ; 33(15): 9291-9302, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37280768

RESUMO

White matter (WM) makes up half of the human brain. Compelling functional MRI evidence indicates that white matter exhibits neural activation and synchronization via a hemodynamic window. However, the neurometabolic underpinnings of white matter temporal synchronization and spatial topology remain unknown. By leveraging concurrent [18F]FDG-fPET and blood-oxygenation-level-dependent-fMRI, we demonstrated the temporal and spatial correspondences between blood oxygenation and glucose metabolism in the human brain white matter. In the temporal scale, we found that blood-oxygenation-level-dependent signals shared mutual information with FDG signals in the default-mode, visual, and sensorimotor-auditory networks. For spatial distribution, the blood-oxygenation-level-dependent functional networks in white matter were accompanied by substantial correspondence of FDG functional connectivity at different topological scales, including degree centrality and global gradients. Furthermore, the content of blood-oxygenation-level-dependent fluctuations in the white matter default-mode network was aligned and liberal with the FDG graph, suggesting the freedom of default-mode network neuro-dynamics, but the constraint by metabolic dynamics. Moreover, the dissociation of the functional gradient between blood-oxygenation-level-dependent and FDG connectivity specific to the white matter default-mode network revealed functional heterogeneities. Together, the results showed that brain energy metabolism was closely coupled with blood oxygenation in white matter. Comprehensive and complementary information from fMRI and fPET might therefore help decode brain white matter functions.


Assuntos
Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Substância Branca/metabolismo , Imageamento por Ressonância Magnética/métodos , Fluordesoxiglucose F18/metabolismo , Encéfalo , Mapeamento Encefálico/métodos , Glucose/metabolismo
6.
Front Hum Neurosci ; 17: 1125765, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37151905

RESUMO

Connectivity studies with nuclear medicine systems are scarce in literature. They mainly employ PET imaging and group level analyses due to the low temporal resolution of PET and especially SPECT imaging. Our current study analyses connectivity at an individual level using dynamic SPECT imaging, which has been enabled by the improved temporal resolution performances provided by the 360°CZT cameras. We present the case of an 80-year-old man referred for brain perfusion SPECT imaging for cognitive disorders for whom a dynamic SPECT acquisition was performed utilizing a 360°CZT camera (temporal sampling of 15 frames × 3 s, 10 frames × 15 s, 14 frames × 30 s), followed by a conventional static acquisition of 15 m. Functional SPECT connectivity (fSPECT) was assessed through a seed correlation analysis and 5 well-known resting-state networks were identified: the executive, the default mode, the sensory motor, the salience, and the visual networks. This case report supports the feasibility of fSPECT imaging to identify well known resting-state networks, thanks to the novel properties of a 360°CZT camera, and opens the way to the development of more dedicated functional connectivity studies using brain perfusion SPECT imaging.

7.
J Cereb Blood Flow Metab ; 41(11): 2986-2999, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34078145

RESUMO

Mapping the neuronal response during cognitive processing is of crucial importance to gain new insights into human brain function. BOLD imaging and ASL are established MRI methods in this endeavor. Recently, the novel approach of functional PET (fPET) was introduced, enabling absolute quantification of glucose metabolism at rest and during task execution in a single measurement. Here, we report test-retest reliability of fPET in direct comparison to BOLD imaging and ASL. Twenty healthy subjects underwent two PET/MRI measurements, providing estimates of glucose metabolism, cerebral blood flow (CBF) and blood oxygenation. A cognitive task was employed with different levels of difficulty requiring visual-motor coordination. Task-specific neuronal activation was robustly detected with all three imaging approaches. The highest reliability was obtained for glucose metabolism at rest. Although this dropped during task performance it was still comparable to that of CBF. In contrast, BOLD imaging yielded high performance only for qualitative spatial overlap of task effects but not for quantitative comparison. Hence, the combined assessment of fPET and ASL offers reliable and simultaneous absolute quantification of glucose metabolism and CBF at rest and task.


Assuntos
Mapeamento Encefálico/métodos , Cognição/fisiologia , Saturação de Oxigênio/fisiologia , Tomografia por Emissão de Pósitrons/métodos , Adulto , Mapeamento Encefálico/estatística & dados numéricos , Circulação Cerebrovascular/fisiologia , Estudos de Avaliação como Assunto , Feminino , Glucose/metabolismo , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Desempenho Psicomotor/fisiologia , Reprodutibilidade dos Testes , Descanso/fisiologia , Marcadores de Spin , Análise e Desempenho de Tarefas
8.
Neuroimage ; 233: 117928, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33716154

RESUMO

Functional positron emission tomography (fPET) imaging using continuous infusion of [18F]-fluorodeoxyglucose (FDG) is a novel neuroimaging technique to track dynamic glucose utilization in the brain. In comparison to conventional static or dynamic bolus PET, fPET maintains a sustained supply of glucose in the blood plasma which improves sensitivity to measure dynamic glucose changes in the brain, and enables mapping of dynamic brain activity in task-based and resting-state fPET studies. However, there is a trade-off between temporal resolution and spatial noise due to the low concentration of FDG and the limited sensitivity of multi-ring PET scanners. Images from fPET studies suffer from partial volume errors and residual scatter noise that may cause the cerebral metabolic functional maps to be biased. Gaussian smoothing filters used to denoise the fPET images are suboptimal, as they introduce additional partial volume errors. In this work, a post-processing framework based on a magnetic resonance (MR) Bowsher-like prior was used to improve the spatial and temporal signal to noise characteristics of the fPET images. The performance of the MR guided method was compared with conventional denosing methods using both simulated and in vivo task fPET datasets. The results demonstrate that the MR-guided fPET framework denoises the fPET images and improves the partial volume correction, consequently enhancing the sensitivity to identify brain activation, and improving the anatomical accuracy for mapping changes of brain metabolism in response to a visual stimulation task. The framework extends the use of functional PET to investigate the dynamics of brain metabolic responses for faster presentation of brain activation tasks, and for applications in low dose PET imaging.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Fluordesoxiglucose F18/metabolismo , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Estudos de Coortes , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imagem Multimodal/métodos , Estimulação Luminosa/métodos
9.
Cereb Cortex ; 31(6): 2855-2867, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33529320

RESUMO

Simultaneous [18F]-fluorodeoxyglucose positron emission tomography functional magnetic resonance imaging (FDG-PET/fMRI) provides the capacity to image 2 sources of energetic dynamics in the brain-glucose metabolism and the hemodynamic response. fMRI connectivity has been enormously useful for characterizing interactions between distributed brain networks in humans. Metabolic connectivity based on static FDG-PET has been proposed as a biomarker for neurological disease, but FDG-sPET cannot be used to estimate subject-level measures of "connectivity," only across-subject "covariance." Here, we applied high-temporal resolution constant infusion functional positron emission tomography (fPET) to measure subject-level metabolic connectivity simultaneously with fMRI connectivity. fPET metabolic connectivity was characterized by frontoparietal connectivity within and between hemispheres. fPET metabolic connectivity showed moderate similarity with fMRI primarily in superior cortex and frontoparietal regions. Significantly, fPET metabolic connectivity showed little similarity with FDG-sPET metabolic covariance, indicating that metabolic brain connectivity is a nonergodic process whereby individual brain connectivity cannot be inferred from group-level metabolic covariance. Our results highlight the complementary strengths of fPET and fMRI in measuring the intrinsic connectivity of the brain and open up the opportunity for novel fundamental studies of human brain connectivity as well as multimodality biomarkers of neurological diseases.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Adolescente , Feminino , Fluordesoxiglucose F18/metabolismo , Glucose/metabolismo , Hemodinâmica/fisiologia , Humanos , Masculino , Imagem Multimodal/métodos , Descanso/fisiologia , Adulto Jovem
10.
Neuroimage ; 226: 117603, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271271

RESUMO

Simultaneous magnetic resonance and positron emission tomography provides an opportunity to measure brain haemodynamics and metabolism in a single scan session, and to identify brain activations from multimodal measurements in response to external stimulation. However, there are few analysis methods available for jointly analysing the simultaneously acquired blood-oxygen-level dependant functional MRI (fMRI) and 18-F-fluorodeoxyglucose functional PET (fPET) datasets. In this work, we propose a new multimodality concatenated ICA (mcICA) method to identify joint fMRI-fPET brain activations in response to a visual stimulation task. The mcICA method produces a fused map from the multimodal datasets with equal contributions of information from both modalities, measured by entropy. We validated the method in silico, and applied it to an in vivo visual stimulation experiment. The mcICA method estimated the activated brain regions in the visual cortex modulated by both BOLD and FDG signals. The mcICA provides a fully data-driven analysis approach to analyse cerebral haemodynamic response and glucose uptake signals arising from exogenously induced neuronal activity.


Assuntos
Encéfalo/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Imagem Multimodal/métodos , Tomografia por Emissão de Pósitrons/métodos , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
11.
Pharmaceuticals (Basel) ; 13(9)2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32916949

RESUMO

Herein, we discuss the potential role of folic acid-based radiopharmaceuticals for macrophage imaging to support clinical decision-making in patients with COVID-19. Activated macrophages play an important role during coronavirus infections. Exuberant host responses, i.e., a cytokine storm with increase of macrophage-related cytokines, such as TNFα, IL-1ß, and IL-6 can lead to life-threatening complications, such as acute respiratory distress syndrome (ARDS), which develops in approximately 20% of the patients. Diverse immune modulating therapies are currently being tested in clinical trials. In a preclinical proof-of-concept study in experimental interstitial lung disease, we showed the potential of 18F-AzaFol, an 18F-labeled folic acid-based radiotracer, as a specific novel imaging tool for the visualization and monitoring of macrophage-driven lung diseases. 18F-AzaFol binds to the folate receptor-beta (FRß) that is expressed on activated macrophages involved in inflammatory conditions. In a recent multicenter cancer trial, 18F-AzaFol was successfully and safely applied (NCT03242993). It is supposed that the visualization of activated macrophage-related disease processes by folate radiotracer-based nuclear imaging can support clinical decision-making by identifying COVID-19 patients at risk of a severe disease progression with a potentially lethal outcome.

12.
Neuroimage ; 213: 116720, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32160950

RESUMO

Functional positron emission tomography (fPET) is a neuroimaging method involving continuous infusion of 18-F-fluorodeoxyglucose (FDG) radiotracer during the course of a PET examination. Compared with the conventional bolus administration of FDG in a static PET scan, which provides an average glucose uptake into the brain over an extended period of up to 30 â€‹min, fPET offers a significantly higher temporal resolution to study the dynamics of glucose uptake. Several earlier studies have applied fPET to investigate brain FDG uptake and study its relationship with functional magnetic resonance imaging (fMRI). However, due to the unique characteristics of fPET signals, modelling of the fPET signal is a complex task and poses challenges for accurate interpretation of the results from fPET experiments. This study applied independent component analysis (ICA) to analyse resting state fPET data, and to compare the performance of ICA and the general linear model (GLM) for estimation of brain activation in response to tasks. The fPET signal characteristics were compared using GLM and ICA methods to model fPET data from a visual activation experiment. Our aim was to evaluate GLM and ICA methods for analysing task fPET datasets, and to apply ICA methods to the analysis of resting state fPET datasets. Using both simulation and in-vivo experimental datasets, we show that both ICA and GLM methods can successfully identify task related brain activation. We report fPET metabolic resting state brain networks revealed by application of the fPET ICA method to a cohort of 28 healthy subjects. Functional PET provides a unique method to map dynamic changes of glucose uptake in the resting human brain and in response to extrinsic stimulation.


Assuntos
Encéfalo/fisiologia , Neuroimagem Funcional/métodos , Processamento de Imagem Assistida por Computador/métodos , Tomografia por Emissão de Pósitrons/métodos , Adulto , Feminino , Fluordesoxiglucose F18/administração & dosagem , Humanos , Infusões Intravenosas , Masculino , Compostos Radiofarmacêuticos/administração & dosagem
13.
Front Oncol ; 10: 582092, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33425735

RESUMO

OBJECTIVE: Simultaneous PET/MRI combines soft-tissue contrast of MRI with high molecular sensitivity of PET in one session. The aim of this prospective study was to evaluate detection rates of recurrent prostate cancer by 18F-fluciclovine PET/MRI. METHODS: Patients with biochemical recurrence (BCR) or persistently detectable prostate specific antigen (PSA), were examined with simultaneous 18F-fluciclovine PET/MRI. Multiparametric MRI (mpMRI) and PET/MRI were scored on a 3-point scale (1-negative, 2-equivocal, 3-recurrence/metastasis) and detection rates (number of patients with suspicious findings divided by total number of patients) were reported. Detection rates were further stratified based on PSA level, PSA doubling time (PSAdt), primary treatment and inclusion criteria (PSA persistence, European Association of Urology (EAU) Low-Risk BCR and EAU High-Risk BCR). A detailed investigation of lesions with discrepancy between mpMRI and PET/MRI scores was performed to evaluate the incremental value of PET/MRI to mpMRI. The impact of the added PET acquisition on further follow-up and treatment was evaluated retrospectively. RESULTS: Among patients eligible for analysis (n=84), 54 lesions were detected in 38 patients by either mpMRI or PET/MRI. Detection rates were 41.7% for mpMRI and 39.3% for PET/MRI (score 2 and 3 considered positive). There were no significant differences in detection rates for mpMRI versus PET/MRI. Disease detection rates were higher in patients with PSA≥1ng/mL than in patients with lower PSA levels but did not differ between patients with PSAdt above versus below 6 months. Detection rates in patients with primary radiation therapy were higher than in patients with primary surgery. Patients categorized as EAU Low-Risk BCR had a detection rate of 0% both for mpMRI and PET/MRI. For 15 lesions (27.8% of all lesions) there was a discrepancy between mpMRI score and PET/MRI score. Of these, 10 lesions scored as 2-equivocal by mpMRI were changed to a more definite score (n=4 score 1 and n=6 score 3) based on the added PET acquisition. Furthermore, for 4 of 10 patients with discrepancy between mpMRI and PET/MRI scores, the added PET acquisition had affected the treatment choice. CONCLUSION: Combined 18F-fluciclovine PET/MRI can detect lesions suspicious for recurrent prostate cancer in patients with a range of PSA levels. Combined PET/MRI may be useful to select patients for appropriate treatment, but is of limited use at low PSA values or in patients classified as EAU Low-Risk BCR, and the clinical value of 18F-fluciclovine PET/MRI in this study was too low to justify routine clinical use.

14.
Front Immunol ; 10: 2724, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824505

RESUMO

Background: Interstitial lung disease (ILD) is a common and severe complication in rheumatic diseases. Folate receptor-ß is expressed on activated, but not resting macrophages which play a key role in dysregulated tissue repair including ILD. We therefore aimed to pre-clinically evaluate the potential of 18F-AzaFol-based PET/CT (positron emission computed tomography/computed tomography) for the specific detection of macrophage-driven pathophysiologic processes in experimental ILD. Methods: The pulmonary expression of folate receptor-ß was analyzed in patients with different subtypes of ILD as well as in bleomycin (BLM)-treated mice and respective controls using immunohistochemistry. PET/CT was performed at days 3, 7, and 14 after BLM instillation using the 18F-based folate radiotracer 18F-AzaFol. The specific pulmonary accumulation of the radiotracer was assessed by ex vivo PET/CT scans and quantified by ex vivo biodistribution studies. Results: Folate receptor-ß expression was 3- to 4-fold increased in patients with fibrotic ILD, including idiopathic pulmonary fibrosis and connective tissue disease-related ILD, and significantly correlated with the degree of lung remodeling. A similar increase in the expression of folate receptor-ß was observed in experimental lung fibrosis, where it also correlated with disease extent. In the mouse model of BLM-induced ILD, pulmonary accumulation of 18F-AzaFol reflected macrophage-related disease development with good correlation of folate receptor-ß positivity with radiotracer uptake. In the ex vivo imaging and biodistribution studies, the maximum lung accumulation was observed at day 7 with a mean accumulation of 1.01 ± 0.30% injected activity/lung in BLM-treated vs. control animals (0.31 ± 0.06% % injected activity/lung; p < 0.01). Conclusion: Our preclinical proof-of-concept study demonstrated the potential of 18F-AzaFol as a novel imaging tool for the visualization of macrophage-driven fibrotic lung diseases.


Assuntos
Radioisótopos de Flúor , Receptor 2 de Folato/imunologia , Ácido Fólico , Doenças Pulmonares Intersticiais , Macrófagos/imunologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Compostos Radiofarmacêuticos , Animais , Bleomicina/efeitos adversos , Bleomicina/farmacologia , Feminino , Radioisótopos de Flúor/química , Radioisótopos de Flúor/farmacologia , Ácido Fólico/análogos & derivados , Ácido Fólico/química , Ácido Fólico/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Humanos , Doenças Pulmonares Intersticiais/induzido quimicamente , Doenças Pulmonares Intersticiais/diagnóstico por imagem , Doenças Pulmonares Intersticiais/imunologia , Camundongos , Estudo de Prova de Conceito , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacologia
15.
Neuroimage ; 196: 161-172, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30981858

RESUMO

Brain function is characterized by a convolution of various biochemical and physiological processes, raising the interest whether resting-state functional connectivity derived from hemodynamic scales shows underlying metabolic synchronies. Increasing evidence suggests that metabolic connectivity based on glucose consumption associated PET recordings may serve as a marker of cognitive functions and neuropathologies. However, to what extent fMRI-derived resting-state brain connectivity can also be characterized based on dynamic fluctuations of glucose metabolism and how metabolic connectivity is influenced by [18F]FDG pharmacokinetics remains unsolved. Simultaneous PET/MRI measurements were performed in a total of 26 healthy male Lewis rats. Simultaneously to resting-state fMRI scans, one cohort (n = 15) received classical bolus [18F]FDG injections and dynamic PET images were recorded. In a second cohort (n = 11) [18F]FDG was constantly infused over the entire functional PET/MRI scans. Resting-state fMRI and [18F]FDG-PET connectivity was evaluated using a graph-theory based correlation approach and compared on whole-brain level and for a default-mode network-like structure. Further, pharmacokinetic and tracer uptake influences on [18F]FDG-PET connectivity results were investigated based on the different PET protocols. By integrating simultaneous resting-state fMRI and dynamic [18F]FDG-PET measurements in the rat brain, we identified homotopic correlations between both modalities, suggesting an underlying synchrony between hemodynamic processes and glucose consumption. Furthermore, the presence of the prominent resting-state default-mode network-like structure was not only depicted on a functional scale but also from dynamic fluctuations of [18F]FDG. In addition, the present findings demonstrated strong pharmacokinetic and tracer uptake dependencies of [18F]FDG-PET connectivity outcomes. This study highlights the application of dynamic [18F]FDG-PET to study cognitive brain functions and to decode underlying brain networks in the resting-state. Thereby, PET-derived connectivity outcomes indicated strong dependencies on tracer application regimens and subsequent time-varying tracer pharmacokinetics.


Assuntos
Encéfalo/metabolismo , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Animais , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Fluordesoxiglucose F18 , Glucose/metabolismo , Masculino , Imagem Multimodal/métodos , Vias Neurais/diagnóstico por imagem , Vias Neurais/metabolismo , Ratos Endogâmicos Lew
16.
Neuroimage ; 181: 323-330, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29966719

RESUMO

INTRODUCTION: The brain's energy budget can be non-invasively assessed with different imaging modalities such as functional MRI (fMRI) and PET (fPET), which are sensitive to oxygen and glucose demands, respectively. The introduction of hybrid PET/MRI systems further enables the simultaneous acquisition of these parameters. Although a recently developed method offers the quantification of task-specific changes in glucose metabolism (CMRGlu) in a single measurement, direct comparison of the two imaging modalities is still difficult because of the different temporal resolutions. Thus, we optimized the protocol and systematically assessed shortened task durations of fPET to approach that of fMRI. METHODS: Twenty healthy subjects (9 male) underwent one measurement on a hybrid PET/MRI scanner. During the scan, tasks were completed in four blocks for fMRI (4 × 30 s blocks) and fPET: participants tapped the fingers of their right hand repeatedly to the thumb while watching videos of landscapes. For fPET, subjects were randomly assigned to groups of n = 5 with varying task durations of 10, 5, 2 and 1 min, where task durations were kept constant within a measurement. The radiolabeled glucose analogue [18F]FDG was administered as 20% bolus plus constant infusion. The bolus increases the signal-to-noise ratio and leaves sufficient activity to detect task-related effects but poses additional challenges due to a discontinuity in the tracer uptake. First, three approaches to remove task effects from the baseline term were evaluated: (1) multimodal, based on the individual fMRI analysis, (2) atlas-based by removing presumably activated regions and (3) model-based by fitting the baseline with exponential functions. Second, we investigated the need to capture the arterial input function peak with automatic blood sampling for the quantification of CMRGlu. We finally compared the task-specific activation obtained from fPET and fMRI qualitatively and statistically. RESULTS: CMRGlu quantified only with manual arterial samples showed a strong correlation to that obtained with automatic sampling (r = 0.9996). The multimodal baseline definition was superior to the other tested approaches in terms of residuals (p < 0.001). Significant task-specific changes in CMRGlu were found in the primary visual and motor cortices (tM1 = 18.7 and tV1 = 18.3). Significant changes of fMRI activation were found in the same areas (tM1 = 16.0 and tV1 = 17.6) but additionally in the supplementary motor area, ipsilateral motor cortex and secondary visual cortex. Post-hoc t-tests showed strongest effects for task durations of 5 and 2 min (all p < 0.05 FWE corrected), whereas 1 min exhibited pronounced unspecific activation. Percent signal change (PSC) was higher for CMRGlu (∼18%-27%) compared to fMRI (∼2%). No significant association between PSC of task-specific CMRGlu and fMRI was found (r = 0.26). CONCLUSION: Using a bolus plus constant infusion protocol, the necessary task duration for reliable quantification of task-specific CMRGlu could be reduced to 5 and 2 min, therefore, approaching that of fMRI. Important for valid quantification is a correct baseline definition, which was ideal when task-relevant voxels were determined with fMRI. The absence of a correlation and the different activation pattern between fPET and fMRI suggest that glucose metabolism and oxygen demand capture complementary aspects of energy demands.


Assuntos
Fluordesoxiglucose F18/administração & dosagem , Neuroimagem Funcional/métodos , Imageamento por Ressonância Magnética/métodos , Córtex Motor/fisiologia , Tomografia por Emissão de Pósitrons/métodos , Desempenho Psicomotor/fisiologia , Compostos Radiofarmacêuticos/administração & dosagem , Córtex Visual/fisiologia , Adulto , Feminino , Fluordesoxiglucose F18/farmacocinética , Humanos , Masculino , Córtex Motor/diagnóstico por imagem , Córtex Motor/metabolismo , Imagem Multimodal , Compostos Radiofarmacêuticos/farmacocinética , Córtex Visual/diagnóstico por imagem , Córtex Visual/metabolismo , Adulto Jovem
17.
Odontology ; 106(3): 232-237, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29236176

RESUMO

This study aimed to examine the dynamic change in bone metabolism by immediate loading in several sites around implants using high-resolution Na18F-PET scan. Two titanium implants (Ø 1.2 mm) were inserted parallel to each other in the right tibiae of Wistar rats (n = 4). The left tibia was set as control side. One day after insertion, closed coil springs of 4.0 N were attached to the expose superior portions of the implants to apply a continuous mechanical stress. The rats with fluorine-18 (18F) ion (5 mCi/rat) intravenously injected were scanned by PET scanner at 4, 7, 14, 28 days after load application. Round region of interests (ROIs) were set around the distal implant of the right tibia (loaded side) and same site (control) of the left tibia. Furthermore, four rectangular ROIs were set at the superior and inferior parts of traction side (mesial) and opposite side (distal) of the distal implant. Longitudinal dynamic changes in bone metabolism were evaluated by examination of the accumulation count of 18F ion at each ROI. The uptake values of ROIs (loaded side) initially increased until 7 days, and they gradually decreased from the peak level to the pre-loading level despite a static force being applied to the implants. In cancellous bone, the uptake values at the superior part of traction side and inferior part of opposite side showed significantly high value compared with those at other parts. In conclusion, immediate loading to the implant initially enhanced bone metabolism around it, especially at the part with compressive stress. Peri-implant bone metabolism varies according to different loading conditions.


Assuntos
Implantes Dentários , Radioisótopos de Flúor/farmacocinética , Carga Imediata em Implante Dentário , Tomografia por Emissão de Pósitrons , Fluoreto de Sódio/farmacocinética , Tíbia/metabolismo , Tíbia/cirurgia , Animais , Força Compressiva , Implantes Experimentais , Modelos Animais , Ratos , Ratos Wistar , Propriedades de Superfície , Tíbia/diagnóstico por imagem , Titânio
18.
Brain Struct Funct ; 223(3): 1369-1378, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29134288

RESUMO

Except for task-specific functional MRI, the vast majority of imaging studies assessed human brain function at resting conditions. However, tracking task-specific neuronal activity yields important insight how the brain responds to stimulation. We specifically investigated changes in glucose metabolism, functional connectivity and white matter microstructure during task performance using several recent methodological advancements. Opening the eyes and right finger tapping had elicited an increased glucose metabolism in primary visual and motor cortices, respectively. Furthermore, a decreased metabolism was observed in the regions of the default mode network, which allowed absolute quantification of commonly described deactivations during cognitive tasks. These brain regions showed widespread task-specific changes in functional connectivity, which stretched beyond their primary resting-state networks and presumably reflected the level of recruitment of certain brain regions for each task. Finally, the corresponding white matter fiber pathways exhibited changes in axial and radial diffusivity during the tasks, which were regionally distinctive for certain tract groups. These results highlight that even simple task performance leads to substantial changes of entire brain networks. Exploiting the complementary nature of the different imaging modalities may reveal novel insights how the brain processes external stimuli and which networks are involved in certain tasks.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Imageamento por Ressonância Magnética , Vias Neurais/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Desempenho Psicomotor/fisiologia , Adulto , Análise de Variância , Glicemia/metabolismo , Feminino , Fluordesoxiglucose F18/farmacocinética , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Testes Neuropsicológicos , Oxigênio/sangue , Descanso , Fatores de Tempo , Substância Branca/diagnóstico por imagem , Substância Branca/metabolismo , Adulto Jovem
19.
Pharm Pat Anal ; 7(6): 277-299, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30657414

RESUMO

Fluorinated nucleosides constitute a large class of chemotherapeutics approved for clinical use. The pharmacokinetic and pharmacodynamic properties of a drug can be affected, as a consequence of modulation of electronic, lipophilic and steric parameters, by the introduction of fluorine into the structure of drug-like molecule. Herein, we focus on fluorinated-nucleoside analogs, their therapeutic use and applications based on the patent literature from 2014 to 2018. We briefly discuss the clinical properties of anticancer and antiviral fluorine-containing nucleos(t)ides US FDA-approved or in development, and highlight their resistance mechanisms and limitations in the clinic. We emphasize patent inventions related to improved synthetic methods toward selected nucleos(t)ide analogs including the phosphoramidate sofosbuvir and 18F-labeled nucleosides FLT and FMAU, used as a 18F-PET tracers.


Assuntos
Antineoplásicos/farmacologia , Antivirais/farmacologia , Nucleosídeos/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Antivirais/síntese química , Antivirais/química , Desenho de Fármacos , Flúor/química , Radioisótopos de Flúor/química , Humanos , Nucleosídeos/síntese química , Nucleosídeos/química , Patentes como Assunto , Tomografia por Emissão de Pósitrons/métodos
20.
Mol Pharm ; 14(12): 4353-4361, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-29028357

RESUMO

The folate receptor (FR) has been established as a promising target for imaging and therapy of cancer (FR-α), inflammation, and autoimmune diseases (FR-ß). Several folate based PET radiotracers have been reported in the literature, but an 18F-labeled folate-PET imaging agent with optimal properties for clinical translation is still lacking. In the present study, we report the design and preclinical evaluation of folate-PEG12-NOTA-Al18F (1), a new folate-PET agent with improved potential for clinical applications. Radiochemical synthesis of 1 was achieved via a one-pot labeling process by heating folate-PEG12-NOTA in the presence of in situ prepared Al18F for 15 min at 105 °C, followed by HPLC purification. Specific binding of 1 to FR was evaluated on homogenates of KB (FR-positive) and A549 (FR-deficient) tumor xenografts in the presence and absence of excess folate. In vivo tumor imaging with folate-PEG12-NOTA-Al18F was compared to imaging with 99mTc-EC20 using nu/nu mice bearing either KB or A549 tumor xenografts. Specific accumulation of 1 in tumor and other tissues was assessed by high-resolution micro-PET and ex vivo biodistribution in the presence and absence of excess folate. Radiosynthesis of 1 was accomplished within ∼35 min, affording pure radiotracer 1 in 8.4 ± 1.3% (decay corrected) radiochemical yield with ∼100% radiochemical purity after HPLC purification and a specific activity of 35.8 ± 15.3 GBq/mmol. Further in vitro and in vivo examination of 1 demonstrated highly specific FR-mediated uptake in FR+ tumor, with Kd of ∼0.4 nM (KB), and reduced accumulation in liver. Given its facile preparation and improved properties, the new radiotracer, folate-PEG12-NOTA-Al18F (1), constitutes a promising tool for identification and classification of patients with FR overexpressing cancers.


Assuntos
Receptores de Folato com Âncoras de GPI/metabolismo , Neoplasias/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/farmacocinética , Células A549 , Compostos de Alumínio/química , Compostos de Alumínio/farmacocinética , Animais , Avaliação Pré-Clínica de Medicamentos , Feminino , Fluoretos/química , Fluoretos/farmacocinética , Radioisótopos de Flúor/química , Radioisótopos de Flúor/farmacocinética , Ácido Fólico/análogos & derivados , Ácido Fólico/química , Ácido Fólico/farmacocinética , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacocinética , Compostos Heterocíclicos com 1 Anel , Humanos , Marcação por Isótopo/métodos , Células KB , Camundongos , Camundongos Nus , Neoplasias/patologia , Compostos de Organotecnécio , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Compostos Radiofarmacêuticos/química , Distribuição Tecidual , Microtomografia por Raio-X/métodos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA