Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Handb Clin Neurol ; 203: 89-109, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39174256

RESUMO

There has been significant progress in our understanding of the molecular basis by which nociceptors transduce and transmit noxious (tissue damaging) stimuli. This is dependent on ion channels, many of which are selectively expressed in nociceptors. Mutations in such proteins have recently been linked to inherited pain disorders in humans. An exemplar is the voltage-gated sodium channel (VGSC) NaV1.7. Loss of function mutations in NaV1.7 result in congenital inability to experience pain while gain-of-function mutations can cause a number of distinct neuropathic pain disorders, including erythromelalgia, paroxysmal extreme pain disorder, and small-fiber neuropathy. Furthermore, variants in the VGSCs 1.8 and 1.9 have also been linked to human pain disorders. There is a correlation between the impact of mutations on the biophysical properties of the ion channel and the severity of the clinical phenotype. Pain channelopathies are not restricted to VGSCs: a mutation in the ligand-gated ion channel TRPA1, (which responds to environmental irritants) causes a familial episodic pain disorder. Ion channel variants have also been linked to more common neuropathic pain disorders such as painful diabetic neuropathy. Not only do these ion channels present targets for novel analgesics, but stratification based on genotype may improve treatment selection of existing analgesics.


Assuntos
Canalopatias , Humanos , Canalopatias/genética , Mutação/genética , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Dor/genética , Neuralgia/genética
2.
Biochem Genet ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39058404

RESUMO

Familial episodic pain syndrome (FEPS) is an autosomal-dominant inherited disorder characterized by paroxysmal pain episodes. FEPS appears in early childhood, gradually disappearing with age, and pain episodes can be triggered by fatigue, bad weather, and cold temperatures. Several gain-of-function variants have been reported for SCN9A, SCN10A, or SCN11A, which encode the voltage-gated sodium channel α subunits Nav1.7, Nav1.8, and Nav1.9, respectively. In this study, we conducted genetic analysis in a four-generation Japanese pedigree. The proband was a 7-year-old girl, and her brother, sister, mother, and grandmother were also experiencing or had experienced pain episodes and were considered to be affected. The father was unaffected. Sequencing of SCN9A, SCN10A, and SCN11A in the proband revealed a novel heterozygous variant of SCN11A: g.38894937G>A (c.2431C>T, p.Leu811Phe). This variant was confirmed in other affected members but not in the unaffected father. The affected residue, Leu811, is located within the DII/S6 helix of Nav1.9 and is important for signal transduction from the voltage-sensing domain and pore opening. On the other hand, the c.2432T>C (p.Leu811Pro) variant is known to cause congenital insensitivity to pain (CIP). Molecular dynamics simulations showed that p.Leu811Phe increased the structural stability of Nav1.9 and prevented the necessary conformational changes, resulting in changes in the dynamics required for function. By contrast, CIP-related p.Leu811Pro destabilized Nav1.9. Thus, we speculate that p.Leu811Phe may lead to current leakage, while p.Leu811Pro can increase the current through Nav1.9.

3.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38999942

RESUMO

Familial episodic pain syndrome (FEPS) is an early childhood onset disorder of severe episodic limb pain caused mainly by pathogenic variants of SCN11A, SCN10A, and SCN9A, which encode three voltage-gated sodium channels (VGSCs) expressed as key determinants of nociceptor excitability in primary sensory neurons. There may still be many undiagnosed patients with FEPS. A better understanding of the associated pathogenesis, epidemiology, and clinical characteristics is needed to provide appropriate diagnosis and care. For this study, nationwide recruitment of Japanese patients was conducted using provisional clinical diagnostic criteria, followed by genetic testing for SCN11A, SCN10A, and SCN9A. In the cohort of 212 recruited patients, genetic testing revealed that 64 patients (30.2%) harbored pathogenic or likely pathogenic variants of these genes, consisting of 42 (19.8%), 14 (6.60%), and 8 (3.77%) patients with variants of SCN11A, SCN10A, and SCN9A, respectively. Meanwhile, the proportions of patients meeting the tentative clinical criteria were 89.1%, 52.0%, and 54.5% among patients with pathogenic or likely pathogenic variants of each of the three genes, suggesting the validity of these clinical criteria, especially for patients with SCN11A variants. These clinical diagnostic criteria of FEPS will accelerate the recruitment of patients with underlying pathogenic variants who are unexpectedly prevalent in Japan.


Assuntos
Testes Genéticos , Canal de Sódio Disparado por Voltagem NAV1.7 , Canal de Sódio Disparado por Voltagem NAV1.8 , Canal de Sódio Disparado por Voltagem NAV1.9 , Humanos , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Canal de Sódio Disparado por Voltagem NAV1.9/genética , Japão/epidemiologia , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Masculino , Feminino , Testes Genéticos/métodos , Adulto , Adolescente , Criança , Predisposição Genética para Doença , Adulto Jovem , Pré-Escolar , Mutação , Dor , Reto/anormalidades
4.
Chemosphere ; 349: 140740, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38006918

RESUMO

Phthalates are extensively used as plasticizers in diverse consumer care products but have been reported to cause adverse health effects in humans. A commonly used phthalate, di-2-ethylhexylphthalate (DEHP) causes developmental and reproductive toxicities in humans, but the associated molecular mechanisms are not fully understood. Mono-2-ethylhexylphthalate (MEHP), a hydrolytic product of DEHP generated by cellular esterases, is proposed to be the active toxicant. We conducted a screen for sensory irritants among compounds used in consumer care using an assay for human Transient Receptor Potential A1 (hTRPA1). We have identified MEHP as a potent agonist of hTRPA1. MEHP-induced hTRPA1 activation was blocked by the TRPA1 inhibitor A-967079. Patch clamp assays revealed that MEHP induced inward currents in cells expressing hTRPA1. In addition, the N855S mutation in hTRPA1 associated with familial episodic pain syndrome decreased MEHP-induced hTRPA1 activation. In summary, we report that MEHP is a potent agonist of hTRPA1 which generates new possible mechanisms for toxic effects of phthalates in humans.


Assuntos
Dietilexilftalato , Ácidos Ftálicos , Humanos , Dietilexilftalato/toxicidade , Canal de Cátion TRPA1/genética , Ácidos Ftálicos/toxicidade , Hormônios Esteroides Gonadais
5.
Neurol Sci ; 43(9): 5605-5614, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35524925

RESUMO

BACKGROUND: Familial episodic pain syndrome type 3 (FEPS3) is an inherited disorder characterized by the early-childhood onset of severe episodic pain that primarily affects the distal extremities. As skin biopsy has revealed a reduction in intraepidermal nerve fiber density and degeneration of the unmyelinated axons, it remains unclear whether FEPS3 patients have pathological changes in the peripheral nerve. METHODS: The clinical features of patients with FEPS3 were summarized in a large autosomal dominant family. Sural nerve biopsies were conducted in two patients. Whole exome sequencing (WES) was performed in the index patient. Sanger sequencing was used to analyze family co-segregation. RESULTS: Fourteen members exhibited typical and uniform clinical phenotypes characterized by length-dependent and age-dependent severe episodic pain affecting the distal extremities, which can be relieved with anti-inflammatory medicine. The WES revealed a heterozygous mutation c.665G > A (p.R222H) in the SCN11A gene, which was co-segregated with the clinical phenotype in this family. A sural biopsy in patient V:1, who was experiencing episodic pain at 16 years old, showed normal structure, while the sural nerve in patient IV:1, whose pain attack had completely diminished at 42 years old, displayed a decrease of the density of unmyelinated axons with the axonal degeneration. CONCLUSIONS: The clinical phenotype of FEPS3 showed distinctive characteristics that likely arise from dysfunctional nociceptive neurons that lack detectable pathological alterations in the nerve fibers. Nevertheless, long-term dysfunction of the Nav1.9 channel may cause degeneration of the unmyelinated fibers in FEPS3 patient with pain remission.


Assuntos
Doenças do Sistema Nervoso Periférico , Nervo Sural , Axônios , Humanos , Dor/genética , Dor/patologia , Nervos Periféricos , Doenças do Sistema Nervoso Periférico/patologia , Nervo Sural/patologia
6.
Ann Transl Med ; 10(4): 238, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35280382

RESUMO

The purpose of this case report and literature review is to show that familial episodic pain syndrome (FEPS) is a non-inflammatory genetically inherited pain syndrome. A 3-year-old boy presented at our hospital with pain in both his forearms and lower limbs below the knees for more than 3 years. There were no abnormalities in the blood tests, blood smears, liver and kidney function tests, trace elements tests, cellular immunity test, humoral immunity test, autoantibody tests, C-reactive protein (CRP) test, erythrocyte sedimentation rate (ESR) test, and tumor-related and bone marrow cytology examinations. Additionally, the imaging examination results showed no abnormalities. From the patient's medical history, we found that the mother of the child had a family history of a similar disease. To date, only 21 cases of FEPS3 caused by the sodium voltage-gated channel alpha subunit 11A (SCN11A) gene mutation have been reported. Although the age of onset is different, most of them are inherited in families. The results of the genetic examination revealed that the pain mainly came from the genetic inheritance of the maternal family line. The whole exon gene test revealed that the pain was caused by 2 heterozygous mutations of c.674G > T and c.671T > C in the SCN11A gene.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA