Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.022
Filtrar
1.
Phytomedicine ; 133: 155894, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39089090

RESUMO

BACKGROUND: According to recent research, treating heart failure (HF) by inhibiting G protein-coupled receptor kinase 2 (GRK2) to improve myocardial energy metabolism has been identified as a potential approach. Cinnamaldehyde (CIN), a phenylpropyl aldehyde compound, has been demonstrated to exhibit beneficial effects in cardiovascular diseases. However, whether CIN inhibits GRK2 to ameliorate myocardial energy metabolism in HF is still unclear. PURPOSE: This study examines the effects of CIN on GRK2 and myocardial energy metabolism to elucidate its underlying mechanism to treat HF. METHODS: The isoproterenol (ISO) induced HF model in vivo and in vitro were constructed using Sprague-Dawley (SD) rats and primary neonatal rat cardiomyocytes (NRCMs). Based on this, the effects of CIN on myocardial energy metabolism and GRK2 were investigated. Additionally, validation experiments were conducted after interfering and over-expressing GRK2 in ISO-induced NRCMs to verify the regulatory effect of CIN on GRK2. Furthermore, binding capacity between GRK2 and CIN was explored by Cellular Thermal Shift Assay (CETSA) and Microscale Thermophoresis (MST). RESULTS: In vivo and in vitro, CIN significantly improved HF as demonstrated by reversing abnormal changes in myocardial injury markers, inhibiting myocardial hypertrophy and decreasing myocardial fibrosis. Additionally, CIN promoted myocardial fatty acid metabolism to ameliorate myocardial energy metabolism disorder by activating AMPK/PGC-1α signaling pathway. Moreover, CIN reversed the inhibition of myocardial fatty acid metabolism and AMPK/PGC-1α signaling pathway by GRK2 over-expression in ISO-induced NRCMs. Meanwhile, CIN had no better impact on the stimulation of cardiac fatty acid metabolism and the AMPK/PGC-1α signaling pathway in ISO-induced NRCMs when GRK2 was disrupted. Noticeably, CETSA and MST confirmed that CIN binds to GRK2 directly. The binding of CIN and GRK2 promoted the ubiquitination degradation of GRK2 mediated by murine double mimute 2. CONCLUSION: This study demonstrates that CIN exerts a protective intervention in HF by targeting GRK2 and promoting its ubiquitination degradation to activate AMPK/PGC-1α signaling pathway, ultimately improving myocardial fatty acid metabolism.

2.
J Lipid Res ; : 100611, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39094773

RESUMO

Mitochondrial fatty acid oxidation serves as an essential process for cellular survival, differentiation, proliferation, and energy metabolism. Numerous studies have utilized etomoxir (ETO) for the irreversible inhibition of carnitine palmitoylcarnitine transferase 1 (CPT1) which catalyzes the rate-limiting step for mitochondrial long-chain fatty acid ß-oxidation to examine the bioenergetic roles of mitochondrial fatty acid metabolism in many tissues in multiple diverse disease states. Herein, we demonstrate that intact mitochondria robustly metabolize etomoxir to etomoxir-carnitine (ETO-carnitine) prior to nearly complete etomoxir-mediated inhibition of CPT1. The novel pharmaco-metabolite, ETO-carnitine, was conclusively identified by accurate mass, fragmentation patterns, and isotopic fine structure. On the basis of these data, ETO-carnitine was successfully differentiated from isobaric structures (e.g., 3-hydroxy-C18:0 carnitine and 3-hydroxy-C18:1 carnitine). Mechanistically, generation of ETO-carnitine from mitochondria required exogenous Mg2+, ATP or ADP, CoASH, and L-carnitine indicating that thioesterification by long-chain acyl-CoA synthetase to form ETO-CoA precedes its conversion to ETO-carnitine by CPT1. CPT1-dependent generation of ETO-carnitine was substantiated by an orthogonal approach using ST1326 (a CPT1 inhibitor) which effectively inhibits mitochondrial ETO-carnitine production. Surprisingly, purified ETO-carnitine potently inhibited calcium-independent PLA2γ and PLA2ß as well as mitochondrial respiration independent of CPT1. Robust production and release of ETO-carnitine from HepG2 cells incubated in the presence of ETO was also demonstrated. Collectively, this study identifies the chemical mechanism for the biosynthesis of a novel pharmaco-metabolite of etomoxir, ETO-carnitine, that is generated by CPT1 in mitochondria and likely impacts multiple downstream (non-CPT1 related) enzymes and processes in multiple subcellular compartments.

3.
Artigo em Inglês | MEDLINE | ID: mdl-39097081

RESUMO

Fatty acid esters of hydroxy fatty acids (FAHFAs) are endogenous bioactive lipids known for their anti-inflammatory and anti-diabetic properties. Despite their therapeutic potential, little is known about the sex-specific variations in FAHFA metabolism. This study investigated the role of sex and Androgen Dependent TFPI Regulating Protein (ADTRP), a FAHFA hydrolase. Additionally, tissue-specific differences in FAHFA levels, focusing on the perigonadal white adipose tissue (pgWAT), subcutaneous white adipose tissue (scWAT), brown adipose tissue (BAT), plasma, and liver, were evaluated using metabolomics and lipidomics. We found that female mice exhibited higher FAHFA levels in pgWAT, scWAT, and BAT compared to males. FAHFA levels were inversely related to testosterone and Adtrp mRNA, which showed significantly lower expression in females compared with males in pgWAT and scWAT. However, no significant differences between the sexes were observed in plasma and liver FAHFA levels. Adtrp deletion had minimal impact on both sexes' metabolome and lipidome of pgWAT. However, we discovered higher endogenous levels of triacylglycerol estolides containing FAHFAs, a FAHFA metabolic reservoir, in the pgWAT of female mice. These findings suggest that sex-dependent differences in FAHFA levels occur primarily in specific WAT depots and may modulate local insulin sensitivity in adipocytes, and the role of ADTRP is limited to adipose depots. However, further investigations are warranted to fully comprehend the underlying mechanisms and implications of sex-dependent regulation of human FAHFA metabolism.

4.
Chin Med ; 19(1): 94, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956673

RESUMO

BACKGROUND: Irinotecan (CPT-11) is a first-line treatment for advanced colorectal cancer (CRC). Four components (baicalin, baicalein, wogonin, and glycyrrhizic acid) derived from Huangqin Decoction (HQD) have been proven to enhance the anticancer activity of CPT-11 in our previous study. OBJECTIVE: This study aimed to determine the optimal combination of the four components for sensitizing CPT-11 as well as to explore the underlying mechanism. METHODS: The orthogonal design method was applied to obtain candidate combinations (Cmb1-9) of the four components. The influence of different combinations on the anticancer effect of CPT-11 was first evaluated in vitro by cell viability, wound healing ability, cloning formation, apoptosis, and cell cycle arrest. Then, a CRC xenograft mice model was constructed to evaluate the anticancer effect of the optimal combination in vivo. Potential mechanisms of the optimal combination exerting a sensitization effect combined with CPT-11 against CRC were analyzed by targeted metabolomics. RESULTS: In vitro experiments determined that Cmb8 comprised of baicalin, baicalein, wogonin, and glycyrrhizic acid at the concentrations of 17 µM, 47 µM, 46.5 µM and 9.8 µM respectively was the most effective combination. Importantly, the cell viability assay showed that Cmb8 exhibited synergistic anticancer activity in combination with CPT-11. In in vivo experiments, this combination (15 mg/kg of baicalin, 24 mg/kg of baicalein, 24 mg/kg of wogonin, and 15 mg/kg of glycyrrhizic acid) also showed a synergistic anticancer effect. Meanwhile, inflammatory factors and pathological examination of the colon showed that Cmb8 could alleviate the gastrointestinal damage induced by CPT-11. Metabolic profiling of the tumors suggested that the synergistic anticancer effect of Cmb8 might be related to the regulation of fatty acid metabolism. CONCLUSION: The optimal combination of four components derived from HQD for the synergistic sensitization of CPT-11 against CRC was identified.

5.
J Pharm Pharm Sci ; 27: 13199, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39081272

RESUMO

Worldwide, the prevalence of obesity and diabetes have increased, with heart disease being their leading cause of death. Traditionally, the management of obesity and diabetes has focused mainly on weight reduction and controlling high blood glucose. Unfortunately, despite these efforts, poor medication management predisposes these patients to heart failure. One instigator for the development of heart failure is how cardiac tissue utilizes different sources of fuel for energy. In this regard, the heart switches from using various substrates, to predominantly using fatty acids (FA). This transformation to using FA as an exclusive source of energy is helpful in the initial stages of the disease. However, over the progression of diabetes this has grave end results. This is because toxic by-products are produced by overuse of FA, which weaken heart function (heart disease). Lipoprotein lipase (LPL) is responsible for regulating FA delivery to the heart, and its function during diabetes has not been completely revealed. In this review, the mechanisms by which LPL regulates fuel utilization by the heart in control conditions and following diabetes will be discussed in an attempt to identify new targets for therapeutic intervention. Currently, as treatment options to directly target diabetic heart disease are scarce, research on LPL may assist in drug development that exclusively targets fuel utilization by the heart and lipid accumulation in macrophages to help delay, prevent, or treat cardiac failure, and provide long-term management of this condition during diabetes.


Assuntos
Doenças Cardiovasculares , Lipase Lipoproteica , Obesidade , Humanos , Lipase Lipoproteica/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/metabolismo , Animais , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/metabolismo , Ácidos Graxos/metabolismo
6.
Autoimmun Rev ; : 103583, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39084278

RESUMO

T cells are key drivers of the pathogenesis of autoimmune diseases by producing cytokines, stimulating the generation of autoantibodies, and mediating tissue and cell damage. Distinct mitochondrial metabolic pathways govern the direction of T-cell differentiation and function and rely on specific nutrients and metabolic enzymes. Metabolic substrate uptake and mitochondrial metabolism form the foundational elements for T-cell activation, proliferation, differentiation, and effector function, contributing to the dynamic interplay between immunological signals and mitochondrial metabolism in coordinating adaptive immunity. Perturbations in substrate availability and enzyme activity may impair T-cell immunosuppressive function, fostering autoreactive responses and disrupting immune homeostasis, ultimately contributing to autoimmune disease pathogenesis. A growing body of studies has explored how metabolic processes regulate the function of diverse T-cell subsets in autoimmune diseases such as systemic lupus erythematosus (SLE), multiple sclerosis (MS), autoimmune hepatitis (AIH), inflammatory bowel disease (IBD), and psoriasis. This review describes the coordination of T-cell biology by mitochondrial metabolism, including the electron transport chain (ETC), oxidative phosphorylation, amino acid metabolism, fatty acid metabolism, and one­carbon metabolism. This study elucidated the intricate crosstalk between mitochondrial metabolic programs, signal transduction pathways, and transcription factors. This review summarizes potential therapeutic targets for T-cell mitochondrial metabolism and signaling in autoimmune diseases, providing insights for future studies.

7.
Animals (Basel) ; 14(14)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39061514

RESUMO

Guanidinoacetic acid (GAA) can effectively improve the metabolism of energy and proteins by stimulating creatine biosynthesis. We present a study exploring the impact of GAA on production performance, serum biochemistry, meat quality and rumen fermentation in Hu sheep. A total of 144 weaned male Hu sheep (body weight 16.91 ± 3.1 kg) were randomly assigned to four groups with three replicates of twelve sheep in each group. The diets were supplemented with 0 (CON), 500 (GAA-1), 750 (GAA-2) and 1000 mg/kg (GAA-3) of GAA (weight of feed), respectively. After a comprehensive 90-day experimental period, we discovered that the supplementation of GAA had a remarkable impact on various muscle parameters. Specifically, it significantly enhanced the average daily growth (ADG) of the animals and improved the shear force and fiber diameter of the muscle, while also reducing the drip loss and muscle fiber density. Furthermore, the addition of GAA to the feed notably elevated the serum concentrations of high-density lipoprotein cholesterol (HDL-C), total protein (TP) and globulin (GLB), as well as the enzyme activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). Concurrently, there was a decrease in the levels of triglycerides (TG) and malondialdehyde (MDA) in the serum. In addition, GAA decreased the pH and the acetate-to-propionate ratio and increased the total volatile fatty acids (TVFA) and ammoniacal nitrogen (NH3-N) levels of rumen fluid. Additionally, GAA upregulated acetyl-CoA carboxylase (ACC) gene expression in the Hu sheep's muscles. In conclusion, our findings suggest that GAA supplementation not only enhances muscle quality but also positively affects serum biochemistry and ruminal metabolism, making it a potential candidate for improving the overall health and performance of Hu sheep.

8.
Biomedicines ; 12(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39062040

RESUMO

Cytochrome P450 (CYP450) is a group of enzymes that play an essential role in Phase I metabolism, with 57 functional genes classified into 18 families in the human genome, of which the CYP1, CYP2, and CYP3 families are prominent. Beyond drug metabolism, CYP enzymes metabolize endogenous compounds such as lipids, proteins, and hormones to maintain physiological homeostasis. Thus, dysregulation of CYP450 enzymes can lead to different endocrine disorders. Moreover, CYP450 enzymes significantly contribute to fatty acid metabolism, cholesterol synthesis, and bile acid biosynthesis, impacting cellular physiology and disease pathogenesis. Their diverse functions emphasize their therapeutic potential in managing hypercholesterolemia and neurodegenerative diseases. Additionally, CYP450 enzymes are implicated in the onset and development of illnesses such as cancer, influencing chemotherapy outcomes. Assessment of CYP450 enzyme expression and activity aids in evaluating liver health state and differentiating between liver diseases, guiding therapeutic decisions, and optimizing drug efficacy. Understanding the roles of CYP450 enzymes and the clinical effect of their genetic polymorphisms is crucial for developing personalized therapeutic strategies and enhancing drug responses in diverse patient populations.

9.
Int J Mol Sci ; 25(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39062992

RESUMO

[123I]ß-methyl-p-iodophenyl-pentadecanoic acid ([123I]BMIPP), which is used for nuclear medicine imaging of myocardial fatty acid metabolism, accumulates in cancer cells. However, the mechanism of accumulation remains unknown. Therefore, this study aimed to elucidate the accumulation and accumulation mechanism of [123I]BMIPP in cancer cells. We compared the accumulation of [123I]BMIPP in cancer cells with that of [18F]FDG and found that [123I]BMIPP was a much higher accumulation than [18F]FDG. The accumulation of [123I]BMIPP was evaluated in the presence of sulfosuccinimidyl oleate (SSO), a CD36 inhibitor, and lipofermata, a fatty acid transport protein (FATP) inhibitor, under low-temperature conditions and in the presence of etomoxir, a carnitine palmitoyl transferase I (CPT1) inhibitor. The results showed that [123I]BMIPP accumulation was decreased in the presence of SSO and lipofermata in H441, LS180, and DLD-1 cells, suggesting that FATPs and CD36 are involved in [123I]BMIPP uptake in cancer cells. [123I]BMIPP accumulation in all cancer cell lines was significantly decreased at 4 °C compared to that at 37 °C and increased in the presence of etomoxir in all cancer cell lines, suggesting that the accumulation of [123I]BMIPP in cancer cells is metabolically dependent. In a biological distribution study conducted using tumor-bearing mice transplanted with LS180 cells, [123I]BMIPP highly accumulated in not only LS180 cells but also normal tissues and organs (including blood and muscle). The tumor-to-intestine or large intestine ratios of [123I]BMIPP were similar to those of [18F]FDG, and the tumor-to-large-intestine ratios exceeded 1.0 during 30 min after [123I]BMIPP administration in the in vivo study. [123I]BMIPP is taken up by cancer cells via CD36 and FATP and incorporated into mitochondria via CPT1. Therefore, [123I]BMIPP may be useful for imaging cancers with activated fatty acid metabolism, such as colon cancer. However, the development of novel imaging radiotracers based on the chemical structure analog of [123I]BMIPP is needed.


Assuntos
Neoplasias do Colo , Iodobenzenos , Animais , Humanos , Neoplasias do Colo/diagnóstico por imagem , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Camundongos , Linhagem Celular Tumoral , Iodobenzenos/química , Antígenos CD36/metabolismo , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/metabolismo , Radioisótopos do Iodo , Ácidos Oleicos/química , Miocárdio/metabolismo , Distribuição Tecidual , Proteínas de Transporte de Ácido Graxo/metabolismo , Fluordesoxiglucose F18/química , Fluordesoxiglucose F18/metabolismo , Ácidos Graxos
10.
Int J Mol Sci ; 25(14)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39063117

RESUMO

Direct barrier discharge (DBD) plasma is a potential antibacterial strategy for controlling Fusarium oxysporum (F. oxysporum) in the food industry. The aim of this study was to investigate the inhibitory effect and mechanism of action of DBD plasma on F. oxysporum. The result of the antibacterial effect curve shows that DBD plasma has a good inactivation effect on F. oxysporum. The DBD plasma treatment severely disrupted the cell membrane structure and resulted in the leakage of intracellular components. In addition, flow cytometry was used to observe intracellular reactive oxygen species (ROS) levels and mitochondrial membrane potential, and it was found that, after plasma treatment, intracellular ROS accumulation and mitochondrial damage were accompanied by a decrease in antioxidant enzyme activity. The results of free fatty acid metabolism indicate that the saturated fatty acid content increased and unsaturated fatty acid content decreased. Overall, the DBD plasma treatment led to the oxidation of unsaturated fatty acids, which altered the cell membrane fatty acid content, thereby inducing cell membrane damage. Meanwhile, DBD plasma-induced ROS penetrated the cell membrane and accumulated intracellularly, leading to the collapse of the antioxidant system and ultimately causing cell death. This study reveals the bactericidal effect and mechanism of the DBD treatment on F. oxysporum, which provides a possible strategy for the control of F. oxysporum.


Assuntos
Membrana Celular , Fusarium , Oxirredução , Gases em Plasma , Espécies Reativas de Oxigênio , Fusarium/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/efeitos dos fármacos , Gases em Plasma/farmacologia , Oxirredução/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Antibacterianos/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Ácidos Graxos/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo
11.
Cell Rep ; 43(7): 114445, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38968073

RESUMO

Pro-survival metabolic adaptations to stress in tumorigenesis remain less well defined. We find that multiple myeloma (MM) is unexpectedly dependent on beta-oxidation of long-chain fatty acids (FAs) for survival under both basal and stress conditions. However, under stress conditions, a second pro-survival signal is required to sustain FA oxidation (FAO). We previously found that CD28 is expressed on MM cells and transduces a significant pro-survival/chemotherapy resistance signal. We now find that CD28 signaling regulates autophagy/lipophagy that involves activation of the Ca2+→AMPK→ULK1 axis and regulates the translation of ATG5 through HuR, resulting in sustained lipophagy, increased FAO, and enhanced MM survival. Conversely, blocking autophagy/lipophagy sensitizes MM to chemotherapy in vivo. Our findings link a pro-survival signal to FA availability needed to sustain the FAO required for cancer cell survival under stress conditions and identify lipophagy as a therapeutic target to overcome treatment resistance in MM.


Assuntos
Autofagia , Sobrevivência Celular , Mieloma Múltiplo , Transdução de Sinais , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Humanos , Autofagia/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Camundongos , Ácidos Graxos/metabolismo , Resistencia a Medicamentos Antineoplásicos , Proteína 5 Relacionada à Autofagia/metabolismo , Proteína 5 Relacionada à Autofagia/genética
12.
J Nanobiotechnology ; 22(1): 409, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992688

RESUMO

OBJECTIVE: This study aimed to investigate the critical role of MDSCs in CRC immune suppression, focusing on the CSF1R and JAK/STAT3 signaling axis. Additionally, it assessed the therapeutic efficacy of LNCs@CSF1R siRNA and anti-PD-1 in combination. METHODS: Single-cell transcriptome sequencing data from CRC and adjacent normal tissues identified MDSC-related differentially expressed genes. RNA-seq analysis comprehensively profiled MDSC gene expression in murine CRC tumors. LNCs@CSF1R siRNA nanocarriers effectively targeted and inhibited CSF1R. Flow cytometry quantified changes in MDSC surface markers post-CSF1R inhibition. RNA-seq and pathway enrichment analyses revealed the impact of CSF1R on MDSC metabolism and signaling. The effect of CSF1R inhibition on the JAK/STAT3 signaling axis was validated using Colivelin and metabolic assessments. Glucose and fatty acid uptake were measured via fluorescence-based flow cytometry. The efficacy of LNCs@CSF1R siRNA and anti-PD-1, alone and in combination, was evaluated in a murine CRC model with extensive tumor section analyses. RESULTS: CSF1R played a significant role in MDSC-mediated immune suppression. LNCs@CSF1R siRNA nanocarriers effectively targeted MDSCs and inhibited CSF1R. CSF1R regulated MDSC fatty acid metabolism and immune suppression through the JAK/STAT3 signaling axis. Inhibition of CSF1R reduced STAT3 activation and target gene expression, which was rescued by Colivelin. Combined treatment with LNCs@CSF1R siRNA and anti-PD-1 significantly slowed tumor growth and reduced MDSC abundance within CRC tumors. CONCLUSION: CSF1R via the JAK/STAT3 axis critically regulates MDSCs, particularly in fatty acid metabolism and immune suppression. Combined therapy with LNCs@CSF1R siRNA and anti-PD-1 enhances therapeutic efficacy in a murine CRC model, providing a strong foundation for future clinical applications.


Assuntos
Neoplasias Colorretais , Células Supressoras Mieloides , RNA Interferente Pequeno , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos , Fator de Transcrição STAT3 , Animais , Células Supressoras Mieloides/metabolismo , Camundongos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/imunologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Fator de Transcrição STAT3/metabolismo , Linhagem Celular Tumoral , Humanos , Transdução de Sinais/efeitos dos fármacos , Receptor de Morte Celular Programada 1/metabolismo , Feminino , Camundongos Endogâmicos BALB C , Janus Quinases/metabolismo , Imunomodulação/efeitos dos fármacos , Receptor de Fator Estimulador de Colônias de Macrófagos
13.
Int Immunopharmacol ; 138: 112588, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38955031

RESUMO

Dexmedetomidine (Dex) is widely used in the sedation in intensive care units and as an anesthetic adjunct. Considering the anti-inflammatory and antioxidant properties of Dex, we applied in vivo rat model as well as in vitro cardiomyocyte models (embryonic rat cardiomyocytes H9c2 cells and neonatal rat cardiomyocytes, NRCMs) to evaluate the effects of Dex against myocardial ischemia reperfusion (I/R) injury. Transcriptomic sequencing for gene expression in heart tissues from control rats and Dex-treated rats identified that genes related to fatty acid metabolism were significantly regulated by Dex. Among these genes, the elongation of long-chain fatty acids (ELOVL) family member 6 (Elovl6) was most increased upon Dex-treatment. By comparing the effects of Dex on both wild type and Elovl6-knockdown H9c2 cells and NRCMs under oxygen-glucose deprivation/reoxygenation (OGD/R) challenge, we found that Elovl6 knockdown attenuated the protection efficiency of Dex, which was supported by the cytotoxicity endpoints (cell viability and lactate dehydrogenase release) and apoptosis as well as key gene expressions. These results indicate that Dex exhibited the protective function against myocardial I/R injury via fatty acid metabolism pathways and Elovl6 plays a key role in the process, which was further confirmed using palmitate exposure in both cells, as well as in an in vivo rat model. Overall, this study systematically evaluates the protective effects of Dex on the myocardial I/R injury and provides better understanding on the fatty acid metabolism underlying the beneficial effects of Dex.


Assuntos
Apoptose , Dexmedetomidina , Elongases de Ácidos Graxos , Ácidos Graxos , Traumatismo por Reperfusão Miocárdica , Miócitos Cardíacos , Animais , Dexmedetomidina/farmacologia , Dexmedetomidina/uso terapêutico , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Elongases de Ácidos Graxos/genética , Elongases de Ácidos Graxos/metabolismo , Ratos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Ácidos Graxos/metabolismo , Masculino , Linhagem Celular , Apoptose/efeitos dos fármacos , Ratos Sprague-Dawley , Acetiltransferases/metabolismo , Acetiltransferases/genética , Sobrevivência Celular/efeitos dos fármacos
14.
J Lipid Res ; : 100598, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39032560

RESUMO

All-trans retinoic acid (atRA), a metabolite of vitamin A, reduces hepatic lipid accumulation in liver steatosis model animals. Lipophagy, a new lipolysis pathway, degrades a lipid droplet (LD) via autophagy in adipose tissue and the liver. We recently found that atRA induces lipophagy in adipocytes. However, it remains unclear whether atRA induces lipophagy in hepatocytes. In this study, we investigated the effects of atRA on lipophagy in Hepa1c1c7 cells and the liver of mice fed a high-fat diet (HFD). Firstly, we confirmed that atRA induced autophagy in Hepa1c1c7 cells by Western blotting and the GFP-LC3-mCherry probe. Next, we evaluated the lipolysis in fatty Hepa1c1c7 cells treated with the knockdown of Atg5, an essential gene in autophagy induction. Atg5-knockdown partly suppressed the atRA-induced lipolysis in fatty Hepa1c1c7 cells. We also found that atRA reduced the protein, but not mRNA, expression of Rubicon, a negative regulator of autophagy, in Hepa1c1c7 cells and the liver of HFD-fed mice. Rubicon-knockdown partly inhibited the atRA-induced lipolysis in fatty Hepa1c1c7 cells. In addition, atRA reduced hepatic Rubicon expression in young mice, but the effect of atRA on it diminished in aged mice. Lastly, we investigated the mechanism underlying reduced Rubicon protein expression by atRA in hepatocytes. A protein synthesis inhibitor, but not proteasome or lysosomal inhibitors, significantly blocked the reduction of Rubicon protein expression by atRA in Hepa1c1c7 cells. These results suggest that atRA may promote lipophagy in fatty hepatocytes by reducing hepatic Rubicon expression via inhibiting protein synthesis. (243/250 words).

15.
Front Immunol ; 15: 1416443, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39076986

RESUMO

Instruction: Colorectal cancer (CRC) poses a challenge to public health and is characterized by a high incidence rate. This study explored the relationship between ferroptosis and fatty acid metabolism in the tumor microenvironment (TME) of patients with CRC to identify how these interactions impact the prognosis and effectiveness of immunotherapy, focusing on patient outcomes and the potential for predicting treatment response. Methods: Using datasets from multiple cohorts, including The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), we conducted an in-depth multi-omics study to uncover the relationship between ferroptosis regulators and fatty acid metabolism in CRC. Through unsupervised clustering, we discovered unique patterns that link ferroptosis and fatty acid metabolism, and further investigated them in the context of immune cell infiltration and pathway analysis. We developed the FeFAMscore, a prognostic model created using a combination of machine learning algorithms, and assessed its predictive power for patient outcomes and responsiveness to treatment. The FeFAMscore signature expression level was confirmed using RT-PCR, and ACAA2 progression in cancer was further verified. Results: This study revealed significant correlations between ferroptosis regulators and fatty acid metabolism-related genes with respect to tumor progression. Three distinct patient clusters with varied prognoses and immune cell infiltration were identified. The FeFAMscore demonstrated superior prognostic accuracy over existing models, with a C-index of 0.689 in the training cohort and values ranging from 0.648 to 0.720 in four independent validation cohorts. It also responses to immunotherapy and chemotherapy, indicating a sensitive response of special therapies (e.g., anti-PD-1, anti-CTLA4, osimertinib) in high FeFAMscore patients. Conclusion: Ferroptosis regulators and fatty acid metabolism-related genes not only enhance immune activation, but also contribute to immune escape. Thus, the FeFAMscore, a novel prognostic tool, is promising for predicting both the prognosis and efficacy of immunotherapeutic strategies in patients with CRC.


Assuntos
Neoplasias Colorretais , Ácidos Graxos , Ferroptose , Imunoterapia , Aprendizado de Máquina , Microambiente Tumoral , Ferroptose/genética , Humanos , Microambiente Tumoral/imunologia , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/terapia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Prognóstico , Ácidos Graxos/metabolismo , Imunoterapia/métodos , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais , Masculino , Feminino , Transcriptoma , Perfilação da Expressão Gênica
16.
J Eat Disord ; 12(1): 97, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982532

RESUMO

BACKGROUND: Secondary carnitine deficiency in patients with anorexia nervosa has been rarely reported. This study aimed to investigate the occurrence of carnitine deficiency in severely malnourished patients with eating disorders during refeeding and assess its potential adverse effects on treatment outcomes. METHOD: In a cohort study of 56 female inpatients with eating disorders at a single hospital from March 2010 to December 2020, we measured plasma free carnitine (FC) levels and compared to those of a healthy control group (n = 35). The patients were categorized into three groups based on FC levels: FC deficiency (FC< 20 µmol/L), FC pre-deficiency (20 µmol/L ≤ FC< 36 µmol/L), and FC normal (36 µmol/L ≤ FC). RESULTS: Upon admission, the patients had a median age of 26 years (interquartile range [IQR]: 21-35) and a median body mass index (BMI) of 13.8 kg/m2 (IQR: 12.8-14.8). Carnitine deficiency or pre-deficiency was identified in 57% of the patients. Hypocarnitinemia was associated with a decline in hemoglobin levels during refeeding (odds ratio [OR]: 0.445; 95% confidence interval [CI]: 0.214-0.926, p = 0.03), BMI at admission (OR: 0.478; 95% CI: 0.217-0.874, p = 0.014), and moderate or greater hepatic impairment at admission (OR: 6.385; 95% CI: 1.170-40.833, p = 0.032). CONCLUSIONS: Hypocarnitinemia, particularly in cases of severe undernutrition (BMI< 13 kg/m2 at admission) was observed in severely malnourished patients with eating disorders during refeeding, a critical metabolic transition phase. Moderate or severe hepatic impairment at admission was considered a potential indicator of hypocarnitinemia. Although hypocarnitinemia was not associated with any apparent adverse events other than anemia during refeeding, the possibility that carnitine deficiency may be a risk factor for more serious complications during sudden increases in energy requirements associated with changes in physical status cannot be denied. Further research on the clinical significance of hypocarnitinemia in severely malnourished patients with eating disorders is warranted.


Carnitine is an amino acid derivative that plays an important role in the promotion and regulation of fatty acid metabolism, and carnitine deficiency is assumed in patients with anorexia nervosa associated with chronic starvation, but there are few reports on this issue. This study represents the inaugural documentation of hypocarnitinemia in severely malnourished patients with eating disorders, including anorexia nervosa. Hypocarnitinemia, particularly in cases of severe undernutrition (BMI < 13 kg/m2) was observed during refeeding, a critical metabolic transition phase. Moderate or severe hepatic impairment was considered a potential indicator of hypocarnitinemia. Although no apparent association with adverse events other than anemia during refeeding was identified, clinical manifestations of hypocarnitinemia may occur when a sudden increase in energy demand is added to a change in the physical condition of the patient group. Further investigation is required to determine the clinical significance of hypocarnitinemia.

17.
Am J Cancer Res ; 14(6): 2731-2754, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39005680

RESUMO

Heterogeneity at biological and transcriptomic levels poses a challenge in defining and typing low-grade glioma (LGG), leading to a critical need for specific molecular signatures to enhance diagnosis, therapy, and prognostic evaluation of LGG. This study focused on fatty acid metabolism (FAM) related genes and prognostic features to investigate the mechanisms and treatment strategies for LGG cell metastasis and invasion. By screening 158 FAM-related genes and clustering 512 LGG samples into two subtypes (C1 and C2), differential gene expression analysis and functional enrichment were performed. The immune cell scores and prognosis were compared between the two subtypes, with C1 showing poorer outcomes and higher immune scores. A four-gene signature (PHEX, SHANK2, HOPX, and LGALS1) was identified and validated across different datasets, demonstrating a stable predictive effect. Cellular experiments confirmed the roles of LGALS1 and HOPX in promoting tumor cell proliferation, migration, and invasion, while SHANK2 exhibited a suppressive effect. This four-gene signature based on FAM-related genes offers valuable insights for understanding the pathogenesis and clinical management of LGG.

18.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-39038933

RESUMO

Breast cancer (BC) is the most common malignancy affecting Western women today. It is estimated that as many as 10% of BC cases can be attributed to germline variants. However, the genetic basis of the majority of familial BC cases has yet to be identified. Discovering predisposing genes contributing to familial BC is challenging due to their presumed rarity, low penetrance, and complex biological mechanisms. Here, we focused on an analysis of rare missense variants in a cohort of 12 families of Middle Eastern origins characterized by a high incidence of BC cases. We devised a novel, high-throughput, variant analysis pipeline adapted for family studies, which aims to analyze variants at the protein level by employing state-of-the-art machine learning models and three-dimensional protein structural analysis. Using our pipeline, we analyzed 1218 rare missense variants that are shared between affected family members and classified 80 genes as candidate pathogenic. Among these genes, we found significant functional enrichment in peroxisomal and mitochondrial biological pathways which segregated across seven families in the study and covered diverse ethnic groups. We present multiple evidence that peroxisomal and mitochondrial pathways play an important, yet underappreciated, role in both germline BC predisposition and BC survival.


Assuntos
Neoplasias da Mama , Aprendizado Profundo , Predisposição Genética para Doença , Humanos , Neoplasias da Mama/genética , Feminino , Mutação de Sentido Incorreto , Linhagem , Mutação em Linhagem Germinativa
19.
Biochem Pharmacol ; 226: 116411, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38972428

RESUMO

Investigating and identifying pathogenic molecules of non-alcoholic fatty liver disease (NAFLD) has become imperative, which would serve as effective targets in the future. We established high-fat diet (HFD)-induced NAFLD model in mice and palmitic acid (PA)-induced model in mouse AML12 cells. The level of miR-218-5p was examined by qRT-PCR, and Elovl5 was identified as the potential target gene of miR-218-5p. The binding relationship between miR-218-5p and Elovl5 was validated by double luciferase reporter gene assay, and inhibition/overexpression of miR-218-5p in vitro. The functional mechanisms of miR-218-5p/Elovl5 in regulating lipogenesis in NAFLD were investigated in vivo and in vitro through gain- and loss-of-function studies. MiR-218-5p was significantly increased, and Elovl5 was decreased in model group. According to the double luciferase reporter and gene interference experiments in AML12 cells, Elovl5 was a target gene of miR-218-5p and its expression was regulated by miR-218-5p. The SREBP1-mediated lipogenesis signaling pathway regulated by Elovl5 was upregulated in model group. Moreover, silencing of miR-218-5p significantly upregulated Elovl5 expression, and suppressed SREBP1 signaling pathway in PA-induced AML-12 cells. Correspondingly, the cell injury, elevated TC, TG contents and lipid droplet accumulation were ameliorated. Furthermore, the effect of miR-218-5p on lipogenesis in vitro and in vivo was obstructed by si-Elovl5, implicating that miR-218-5p promotes lipogenesis by targeting ELOVL5 in NAFLD. miR-218-5p could promote fatty acid synthesis by targeting Elovl5, thereby accelerating the development of NAFLD, which is one of the key pathogenic mechanisms of NAFLD and provides a new molecular target for the management of NAFLD.


Assuntos
Elongases de Ácidos Graxos , Lipogênese , Camundongos Endogâmicos C57BL , MicroRNAs , Hepatopatia Gordurosa não Alcoólica , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Lipogênese/genética , Lipogênese/fisiologia , Camundongos , Elongases de Ácidos Graxos/genética , Elongases de Ácidos Graxos/metabolismo , Masculino , Dieta Hiperlipídica/efeitos adversos , Fígado/metabolismo , Fígado/patologia , Linhagem Celular , Acetiltransferases/genética , Acetiltransferases/metabolismo
20.
Front Cell Neurosci ; 18: 1305867, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38841200

RESUMO

Objective: Epilepsy is a common neurological disorder characterized by recurrent epilepsy episodes. As a non-pharmacological treatment, the ketogenic diet has been widely applied in treating epilepsy. However, the exact therapeutic mechanism of the ketogenic diet for epilepsy remains unclear. This study investigates the molecular mechanisms of the ketogenic diet in regulating fatty acid metabolism and activating the ADCY3-initiated cAMP signaling pathway to enhance neuronal inhibition and thereby treat epilepsy. Methods and results: Meta-analysis reveals that the ketogenic diet is superior to the conventional diet in treating epilepsy. Animal experiments demonstrate that the ketogenic diet is more effective than the conventional diet in treating epilepsy, with the best results achieved using the classic ketogenic diet. Transcriptome sequencing analysis identifies six essential genes, among which ADCY3 shows increased expression in the ketogenic diet. In vivo experiments confirm that the activation of the cAMP-PKA signaling pathway by ADCY3 enhances neuronal inhibition and improves epilepsy control. Conclusion: Clinical observations indicate that the ketogenic diet improves patient epilepsy episodes by regulating the ADCY3-initiated cAMP signaling pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA