Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biotechnol J ; 19(4): e2300557, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38581092

RESUMO

The halogenase-based catalysis is one of the most environmentally friendly methods for the synthesis of halogenated products, among which flavin-dependent halogenases (FDHs) have attracted great interest as one of the most promising biocatalysts due to the remarkable site-selectivity and wide substrate range. However, the complexity of constructing the NAD+-NADH-FAD-FADH2 bicoenzyme cycle system has affected the engineering applications of FDHs. In this work, a coenzyme self-sufficient tri-enzyme fusion was constructed and successfully applied to the continuous halogenation of L-tryptophan. SpFDH was firstly identified derived from Streptomyces pratensis, a highly selective halogenase capable of generating 6-chloro-tryptophan from tryptophan. Then, using gene fusion technology, SpFDH was fused with glucose dehydrogenase (GDH) and flavin reductase (FR) to form a tri-enzyme fusion, which increased the yield by 1.46-fold and making the coenzymes self-sufficient. For more efficient halogenation of L-tryptophan, a continuous halogenation bioprocess of L-tryptophan was developed by immobilizing the tri-enzyme fusion and attaching it to a continuous catalytic device, which resulted in a reaction yield of 97.6% after 12 h reaction. An FDH from S. pratensis was successfully applied in the halogenation and our study provides a concise strategy for the preparation of halogenated tryptophan mediated by multienzyme cascade catalysis.


Assuntos
Halogenação , Triptofano , Coenzimas , Oxirredutases/genética , Oxirredutases/metabolismo , Flavinas/metabolismo
2.
Adv Mater ; 36(18): e2311416, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38253376

RESUMO

Emerging organic contaminants in water matrices have challenged ecosystems and human health safety. Persulfate-based advanced oxidation processes (PS-AOPs) have attracted much attention as they address potential water purification challenges. However, overcoming the mass transfer constraint and the catalyst's inherent site agglomeration in the heterogeneous system remains urgent. Herein, the abundant metal-anchored loading (≈6-8 g m-2) of alginate hydrogel membranes coupled with cross-flow mode as an efficient strategy for water purification applications is proposed. The organic flux of the confined hydrogel interfaces sharply enlarges with the reduction of the thickness of the boundary layer via the pressure field. The normalized property of the system displays a remarkable organic (sulfonamides) elimination rate of 4.87 × 104 mg min-1 mol-1. Furthermore, due to the fast reaction time (<1 min), cross-flow mode only reaches a meager energy cost (≈2.21 Wh m-3) under the pressure drive field. It is anticipated that this finding provides insight into the novel design with ultrafast organic removal performance and low techno-economic cost (i.e., energy operation cost, material, and reagent cost) for the field of water purification under various PS-AOPs challenging scenarios.

3.
ChemSusChem ; 17(9): e202301169, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38217857

RESUMO

Since the chemical industry is largely dependent on petrol-based feedstocks, new sources are required for a sustainable industry. Conversion of biomass to high-value compounds provides an environmentally friendly and sustainable approach, which might be a potential solution to reduce petrol-based starting materials. This also applies for N-heterocycles, which are a common structural motif in natural products, pharmaceuticals and functional polymers. The synthesis of pyrroles is a well-studied and established process. Nevertheless, most routes described are not in line with the principles of green and sustainable chemistry and employ harsh reaction conditions and harmful solvents. In this study, 3,4-dihydroxyketons are used as excellent platform chemicals for the production of N-substituted pyrrole-2-carboxylic- and pyrrole-2,5-dicarboxylic acids, as they can be prepared from glucose through the intermediate d-glucarate and converted into pyrrolic acid derivatives under mild conditions in water. The scope of this so far unknown reaction was examined using a variety of primary amines and aqueous ammonium chloride leading to pyrrolic acid derivatives with N-substituents like alkane-, alkene-, phenyl- and alcohol-groups with yields up to 20 %. The combination of both, enzymatic conversion and chemical reaction opens up new possibilities for further process development. Therefore, a continuous chemo-enzymatic system was set up by first employing an immobilized enzyme to catalyze the conversion of d-glucarate to the 3,4-dihydroxyketone, which is further converted to the pyrrolic acid derivatives by a chemical step in continuous flow.

4.
Front Chem ; 11: 1259835, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37908233

RESUMO

The copper-based metal-organic framework (MOF) CuBTC (where H3BTC = benzene-1,3,5-tricarboxylate) has been shown to be an efficient heterogeneous catalyst for the generation of 1,8-dioxo-octa-hydro xanthene derivatives, which are valuable synthetic targets for the pharmaceutical industry. We have applied this catalytic capability of CuBTC to a continuous flow system to produce the open chain form of 3,3,6,6-tetramethyl-9-phenyl-3,4,5,6,7,9-hexahydro-1H-xanthene-1,8(2H)-dione, a xanthene derivative from benzaldehyde and dimedone. An acid work-up after producing the open chain form of the xanthene derivative was used to achieve ring closure and form the final xanthene product. The CuBTC used to catalyze the reaction under continuous flow was confirmed to be stable throughout this process via analysis by SEM, pXRD, and FT-IR spectroscopy, elemental analysis, and XPS. The reaction to produce the open-chain form of the xanthene derivative produced an average yield of 33% ± 14% under the continuous flow (compared to 33% ± 0.12% of performing it under batch conditions). Based on the data obtained from this work, the continuous flow system required 22.5x less time to produce the desired xanthene derivative at comparable yields to batch reaction conditions. These results would allow for the xanthene derivative to be produced much faster, at a lower cost, and require less personal time while also removing the need to perform catalyst remove post reaction.

5.
Chempluschem ; 88(5): e202300156, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37145031

RESUMO

This study investigates the site-directed immobilization of a hybrid catalyst bearing a biquinoline-based-Pd(II) complex (1) and a robust laccase within cavities of a silica foam to favor veratryl alcohol oxidation. We performed the grafting of 1 at a unique surface located lysine of two laccase variants, either at closed (1⊂UNIK157 ) or opposite position (1⊂UNIK71 ) of the enzyme oxidation site. After immobilization into the cavities of silica monoliths bearing hierarchical porosity, we show that catalytic activity is dependent on the orientation and loading of each hybrid, 1⊂UNIK157 being twice as active than 1⊂UNIK71 (203 TON vs 100 TON) when operating under continuous flow. These systems can be reused 5 times, with an operational activity remaining as high as 40 %. We show that the synergy between 1 and laccase can be tuned within the foam. This work is a proof of concept for controlling the organization of a heterogeneous hybrid catalyst using a Pd/laccase/silica foam.

6.
J Hazard Mater ; 443(Pt B): 130270, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36332280

RESUMO

Porous monolithic microreactors show great promise in catalytic applications, but are usually based on non-renewable materials. Herein, we demonstrate a Ni/Au nanoparticle-decorated carbonized wood (Ni/Au-CW) monolithic membrane microreactor for the efficient reduction of 4-nitrophenol. The hierarchical porous wood structure supports uniformly distributed heterobimetallic Ni/Au nanoparticles. As a consequence of these two factors, both mass diffusion and electron transfer are enhanced, resulting in a superior reduction efficiency of 99.5% as the liquor flows through the optimised Ni/Au-CW membrane. The reaction mechanism was investigated by electron paramagnetic resonance spectroscopy and density functional theory calculations. The proposed attraction-repulsion mechanism facilitated by the bimetallic nanoparticles has been ascribed to the different electronegativities of Ni and Au. The Ni/Au-CW membrane exhibits excellent catalytic performance and could be applicable to other catalytic transformations.


Assuntos
Ouro , Nanopartículas Metálicas , Ouro/química , Nanopartículas Metálicas/química , Madeira , Nitrofenóis/química
7.
Angew Chem Int Ed Engl ; 61(45): e202211912, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36111498

RESUMO

Co-immobilization of enzymes and cofactors in a manner suitable for use in continuous flow catalysis remains a great challenge because of the difficulty in ensuring the free accessibility of immobilized enzymes and cofactors. Herein, we present a continuous flow catalysis system based on co-compartmentalization of enzymes and cofactors within Pickering emulsion droplets, enabling regeneration of cofactors within the droplets. As exemplified by enzyme-catalyzed ketone enantioselective reduction and enantioselective transamination, our systems exhibit long-term stability (300-400 h), outstanding total turnover number (TTN, 59204 mol mol-1 ) and several-fold enhancement in the enzyme catalytic efficiency (CEe ) in comparison to conventional biphasic reactions. As well as giving insight into the co-compartmentalization effects, our system will provide the opportunity to significantly advance continuous-flow biocatalysis towards the level of practical applications.


Assuntos
Enzimas Imobilizadas , Emulsões , Catálise , Biocatálise
8.
ACS Appl Mater Interfaces ; 14(38): 43656-43665, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36112473

RESUMO

Sand is one of the most fundamental construction materials that is of significant importance and widely used for making concrete, plasters, and mortars, and also for filling under floor and basements. Sand-derived functional materials, for instance superhydrophobic sand, which can be used to prepare liquid marble, separate oil-water mixtures, and transport liquids, have recently been a highly topical and promising research field. However, such materials are mainly prepared using valuable surface modification agents via complicated procedures that are difficult for mass-production, which restricted their true applications. Here, we developed a simple, low-cost, and efficient method for the development of sand-based hierarchical micro/nanostructured composite materials with diverse applications. Briefly, micro/nanostructured superhydrophobic sand was synthesized by one-step in situ growth of a network layer of silicone nanofilaments on the surface of sand microparticles, using only one cheap chemical of small molecules of silanes. The as-prepared superhydrophobic sand displays excellent performance in waterproofing, water storage, soil moisturizing, and oil-water separation. Furthermore, sand-supported micro/nanocomposite catalysts were obtained through covalent attachment of polyamines on the surface of silicone nanofilaments. Such composites, packed in a glass column, were used as a simple flow reactor for Knoevenagel condensation reactions. Quantitative amounts of pure products without further purification can be obtained in such a simple way that just allowing the reactants solution flows through the composite catalysts driven by gravity. These results pave the way toward the development of sand-based multifunctional materials with great potential for industrial use, given their versatile functions and excellent performances but easy-to-fabricate, low-cost preparation procedure.

9.
ACS Appl Mater Interfaces ; 13(44): 51849-51854, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33914510

RESUMO

Sites isolation of active metals centers, systematically studied in homogeneous systems, has been an alternative to develop low metal consuming, highly active next generation catalysts in heterogeneous condition. Because of the high porosity and facile synthetic procedures, MOF-based catalysts are excellent candidates for heterogenization of well-defined homogeneous catalysts. Herein, we report the direct Pd coordination on the azobenzene linker within a MOF catalyst through a postsynthetic modification method for a Suzuki-Miyaura coupling reaction. The immobilized cyclopalladated complexes in MOFs were analyzed by a series of characterization techniques including XPS, PXRD, and deuterium NMR (2H NMR) spectroscopy. The heterogeneous nature of the catalyst as well as its stability were demonstrated though "hot filtration" and recycling experiments. Furthermore, we demonstrate that the MOF packed column promoted the reaction between phenyl boronic acid and bromobenzene under microflow conditions with a 85% yield continuously for 12 h. This work sheds light on the potential of site-isolated MOF catalysts in efficient, recyclable and continuous flow systems for industrial application.

10.
ACS Appl Mater Interfaces ; 13(1): 1872-1882, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33372761

RESUMO

Although noble metal or non-noble metal-catalyzed reactions are widely used, it is still difficult to apply these reactions in the large-scale synthesis of chemicals because most of the reactions are carried out by the inefficient batch reaction strategy. Herein, Pickering emulsion-based continuous flow catalysis was utilized to address this problem. Cellulose nanofibers with aldehyde groups (ACNF) were generated through oxidizing C2 and C3 hydroxyl groups of cellulose nanofibers into aldehyde groups by NaIO4, followed by in situ depositing Ag nanoparticles on ACNF to produce Ag-decorated ACNF (ACNF@Ag) via a facile aldehyde-induced reduction method. ACNF@Ag with ∼2 wt % Ag (ACNF@Ag2) has been used to prepare the Pickering emulsion by controlling the electrostatic interaction between ACNF@Ag2 and the oil-water interface via adjusting the pH. It was found that the Pickering emulsion could be generated at a pH around 3.29 and was determined to be the oil-in-water emulsion. The reduction of organic molecules (4-nitrophenol (4-NP), methylene blue (MB), and methyl orange (MO)) was selected as a model reaction to test the reliability of the Pickering emulsion in continuous flow catalysis, which demonstrated very high conversion rates for 4-NP (>98%, 50 h), MB (>99%, 30 h), and MO (>96%, 40 h).

11.
J Hazard Mater ; 402: 123445, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33254733

RESUMO

In this work, we decorated gold nanoparticles (Au NPs) in the porous, three-dimensional sugarcane membrane for the flow catalytical and antibacterial application. Due to the uniformly distributed Au NPs in sugarcane channels and the porous structure of sugarcane, the interaction between contaminant and catalysis was enhanced as water flowing through the Au NPs/sugarcane membrane. The Au NPs/sugarcane membrane exhibited superior catalytical efficiency for removing methylene blue (MB) with a turn over frequency of 0.27 molMB·molAu-1·min-1 and the water treatment rate reached up to 1.15×105 L/m2 h with >98.3 % MB removal efficiency. The Au NPs/sugarcane membrane also exhibited superior bacterial removal efficiency as E. coli suspension flowing through it, due to the superimposition effects of physical barrier in sugarcane and the antibacterial property of Au NPs. The tremendous catalytical and antibacterial performance of Au NPs/sugarcane membrane provides a promising potential for the rational design of flow catalytical membrane reactor to purify the microbial contaminated water.


Assuntos
Antibacterianos , Ouro , Nanopartículas Metálicas , Saccharum , Escherichia coli
12.
Chemistry ; 25(59): 13591-13597, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31418957

RESUMO

A new generation of N-heterocyclic carbene palladium(II) complexes containing vinyl groups in different positions in the backbone of the N-heterocycle have been developed. The fully characterised monomers were copolymerised with divinylbenzene to fabricate robust polymer supported NHC-PdII complexes and these polymers were applied as heterogeneous catalysts in directed C-H halogenation of arenes with a pyridine-type directing group. The catalysts demonstrated medium-high catalytic activity with up to 90 % conversion and 100 % selectivity in chlorination. They are heterogeneous and recyclable (at least six times) with no significant leaching of palladium in batch mode catalysis. The best catalyst was also applied under continuous flow conditions where it disclosed an exceptional activity (90 % conversion) and 100 % selectivity for the mono-halogenated product for at least six days, with no leaching of palladium, no loss of activity and an ability to maintain the original oxidation state of PdII .

13.
J Colloid Interface Sci ; 537: 112-122, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30423485

RESUMO

Adsorption and catalytic conversion of nitrophenols (NPs) over carbon-based materials have attracted wide interest. Batch adsorption and catalytic reduction of NPs have been widely reported, but less attention has been paid to flow systems, which require high particle size uniformity and superior active site accessibility. Herein, uniform mesoporous carbon hollow microspheres with their surfaces enriched by Au nanoparticles (denoted as Au@UMCHMs) are synthesized. The surface-enriched Au nanoparticle loading is promoted by the unique feature, that is, relatively dense external layers and mesoporous inner shells, of the carbon microspheres and the simple impregnation-reduction method. The Au@UMCHMs possess uniform sizes of ∼82 µm, small shell thickness of ∼5.8 µm, high specific surface area (∼1587 m2/g), and uniform mesopores (2.1 and 5.8 nm). They show excellent performance for flow adsorption and catalytic reduction of 4-nitrophenol (4-NP), superior to that of conventional Au-loaded carbon materials. In flow adsorption of 4-NP, the Au@UMCHMs show a fast and complete removal efficiency with high adsorption capacities (∼223 mg/g at breakthrough). They show outstanding performance in flow catalytic reduction of 4-NP. 4-NP with high concentrations (up to 100 mg/L) can be ultrafast and completely catalytically reduced to 4-aminophenol (4-AP) under rapid flow rates (up to ∼25 mL/min).

14.
Nanomaterials (Basel) ; 8(9)2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30189640

RESUMO

In this study, the authors rationally designed a high-performance catalytic filter for continuous flow catalysis. The catalytic filter consisted of ligand-free nanoscale gold (nano-Au) catalysts and nitrogen-doped graphene (N-rGO). The Au catalyst was fabricated in situ onto a pre-formed N-rGO support by the NaBH4 reduction of the Au precursor, and the size of the nano-Au was fine-tuned. A hydrothermal pretreatment of graphene oxide enriched nitrogen-containing species on the surface of two-dimensional graphene supports and enhanced the affinity of Au precursors onto the support via electrocatalytic attraction. The nano-Au catalysts acted as high-performance catalysts, and the N-rGO acted as ideal filter materials to anchor the catalysts. The catalytic activity of the as-designed catalytic filter was evaluated using 4-nitrophenol (4-NP) hydrogenation as a model catalytic reaction. The catalytic filters demonstrated superior catalytic activity and excellent stability, where a complete 4-nitrophenol conversion was readily achieved via a single pass through the catalytic filter. The as-fabricated catalytic filter outperformed the conventional batch reactors due to evidently improved mass transport. Some key operational parameters impacting the catalytic performance were identified and optimized. A similar catalytic performance was also observed for three 4-nitrophenol spiked real water samples (e.g., surface water, tap water, and industrial dyeing wastewater). The excellent catalytic activity of the nano-Au catalysts combined with the two-dimensional and mechanically stable graphene allowed for the rational design of various continuous flow catalytic membranes for potential industrial applications.

15.
Chemistry ; 23(35): 8532-8536, 2017 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-28466605

RESUMO

Post-synthetic modification of the zirconium-based metal-organic framework (MOF) NU-1000 by atomic layer deposition (ALD), using tetramethoxysilane (Si(OMe)4 ) as a precursor, led to the incorporation and stabilization of silicon oxide clusters composed of only a few silicon atoms in the framework's pores. The resulting SiOx functionalized material (Si-NU-1000) was found to be catalytically active despite the inactivity of related bulk silicon dioxide (SiO2 ), thus demonstrating the positive effects of having nanosized clusters of SiOx . Moreover, Si-NU-1000 showed activity greater than that found for aluminum oxide based catalysts-oxides known for their high acidity-such as an aluminum oxide functionalized MOF (Al-NU-1000) and bulk γ-Al2 O3 . X-ray photoelectron spectroscopy and infrared spectroscopy measurements unmasked the electron donating nature of Si-NU-1000, explaining the unusual electronic properties of the nanosized SiOx clusters and supporting their high catalytic activity.

16.
J Colloid Interface Sci ; 491: 37-43, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28012290

RESUMO

Green low-cost synthesis and efficient recyclability are two major hindrances for Au nanocrystals as catalysts applying in diverse industrial reaction processes. By the use of low-cost α-zein (i.e. a major storage protein of corn) as the reductant, capping agent and stabilizer, Au nanocrystals with tunable catalytic activity were synthesized in a wet-chemical approach. Fibrillation of α-zein further enhanced its reducing ability due to larger specific surface area and more hydrophilic groups exposed on the surfaces. The obtained Au nanocrystals had biocompatibility, high stability in various solvents, unique solubility in aqueous alcohol and high catalytic ability, being able to detect ethanol composition in aqueous ethanol as well as H2O2 for diagnosis of diabetes mellitus. These advantages also enable efficient recyclability of Au nanocrystals with continuous flow catalysis in different solvents and environments. Thus, the use of α-zein offered Au nanocrystals not only with green low-cost synthesis, but also with tunable catalytic activities, ethanol-responsiveness and efficient recyclability, which may be applicable in diverse fields.

17.
Adv Mater ; 26(24): 4151-5, 2014 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-24719281

RESUMO

For industry applications of nano-catalysts, the main bottlenecks are the low loading per unit support area and the slow flow rate through the support particles. By growing a dense Au nanowire forest on a loose network of glass fibers, continuous-flow catalysis can be achieved with a processing rate about 100 times that of the best literature rate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA