Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ann Bot ; 132(6): 1055-1072, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-37814841

RESUMO

BACKGROUND: A general view in the study of pollination syndromes is that floral traits usually represent convergent floral adaptations to specific functional pollinator groups. However, the definition of convergence is elusive and contradictory in the literature. Is convergence the independent evolution of either the same trait or similar traits with the same function? A review of the concept of convergence in developmental biology and phylogenetic systematics may shed new light in studies of pollination syndromes. SCOPE: The aims of this article are (1) to explore the notion of convergence and other concepts (analogy, homoplasy and parallelism) within the theory and practice of developmental evolution and phylogenetic systematics; (2) to modify the definitions of syndromes in order to embrace the concepts of analogy and convergence; (3) to revisit the bat pollination syndrome in the context of angiosperm phylogeny, with focus on the showy 'petaloid' organs associated with the syndrome; (4) to revisit the genetic-developmental basis of flower colour; (5) to raise evolutionary hypotheses of floral evolution associated with the bat pollination syndrome; and (6) to highlight some of the current frontiers of research on the origin and evolution of flowers and its impact on pollination syndrome studies in the 21st century. CONCLUSIONS: The inclusion of the concepts of analogy and convergence within the concept of syndromes will constitute a new agenda of inquiry that integrates floral biology, phylogenetic systematics and developmental biology. Phyllostomid and pteropodid bat pollination syndrome traits in eudicots and monocots represent cases of analogous and convergent evolution. Pollination syndromes are a multivariate concept intrinsically related to the understanding of flower organogenesis and evolution. The formulation of hypotheses of pollination syndromes must consider the phylogenetic levels of universality for both plant and animal taxa, flower development, genetics, homology and evolution, and a clear definition of evolutionary concepts, including analogy, convergence, homoplasy and parallelism.


Assuntos
Quirópteros , Polinização , Animais , Filogenia , Quirópteros/genética , Fenótipo , Reprodução , Flores/genética
2.
Am J Bot ; 110(8): e16213, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37459475

RESUMO

PREMISE: Recent studies of floral disparity in the asterid order Ericales have shown that flowers vary strongly among families and that disparity is unequally distributed between the three flower modules (perianth, androecium, gynoecium). However, it remains unknown whether these patterns are driven by heterogeneous rates of morphological evolution or other factors. METHODS: Here, we compiled a data set of 33 floral characters scored for 414 species of Ericales sampled from 346 genera and all 22 families. We conducted ancestral state reconstructions using an equal-rates Markov model for each character. We estimated rates of morphological evolution for Ericales and for a separate angiosperm-wide data set of 19 characters and 792 species, creating "rate profiles" for Ericales, angiosperms, and major angiosperm subclades. We compared morphological rates among flower modules within each data set separately and between data sets, and we compared rates among angiosperm subclades using the angiosperm data set. RESULTS: The androecium exhibits the highest evolutionary rates across most characters, whereas most perianth and gynoecium characters evolve more slowly in both Ericales and angiosperms. Both high and low rates of morphological evolution can result in high floral disparity in Ericales. Analyses of an angiosperm-wide floral data set reveal that this pattern appears to be conserved across most major angiosperm clades. CONCLUSIONS: Elevated rates of morphological evolution in the androecium of Ericales may explain the higher disparity reported for this floral module. Comparing rates of morphological evolution through rate profiles proves to be a powerful tool in understanding floral evolution.


Assuntos
Ericales , Magnoliopsida , Magnoliopsida/genética , Magnoliopsida/anatomia & histologia , Evolução Biológica , Filogenia , Flores/genética , Flores/anatomia & histologia
3.
Genes (Basel) ; 13(12)2022 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-36553496

RESUMO

Paeonia suffruticosa Andr., a member of Paeoniaceae, is native to China. In its 1600 years' cultivation, more than 2000 cultivars for different purposes (ornamental, medicinal and oil use) have been inbred. However, there are still some controversies regarding the provenance of tree peony cultivars and the phylogenetic relationships between and within different cultivar groups. In this study, plastid genome sequencing was performed on 10 representative tree peony cultivars corresponding to 10 different flower types. Structure and comparative analyses of the plastid genomes showed that the total lengths of the chloroplast genome of the 10 cultivars ranged from 152,153 to 152,385 bp and encoded 84-88 protein-coding genes, 8 rRNAs and 31-40 tRNAs. The number of simple sequence repeats and interspersed repeat sequences of the 10 cultivars ranged from 65-68 and 40-42, respectively. Plastid phylogenetic relationships of Paeonia species/cultivars were reconstructed incorporating data from our newly sequenced plastid genomes and 15 published species, and results showed that subsect. Vaginatae was the closest relative to the central plains cultivar group with robust support, and that it may be involved in the formation of the group. Paeonia ostii was recovered as a successive sister group to this lineage. Additionally, eleven morphological characteristics of flowers were mapped to the phylogenetic skeleton to reconstruct the evolutionary trajectory of flower architecture in Paeoniaceae.


Assuntos
Paeonia , Paeonia/genética , Filogenia , Flores/genética , Mapeamento Cromossômico , Plastídeos/genética
4.
Evodevo ; 13(1): 1, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-34980236

RESUMO

BACKGROUND: Understanding the relationship between macroevolutionary diversity and variation in organism development is an important goal of evolutionary biology. Variation in the morphology of several plant and animal lineages is attributed to pedomorphosis, a case of heterochrony, where an ancestral juvenile shape is retained in an adult descendant. Pedomorphosis facilitated morphological adaptation in different plant lineages, but its cellular and molecular basis needs further exploration. Plant development differs from animal development in that cells are enclosed by cell walls and do not migrate. Moreover, in many plant lineages, the differentiated epidermis of leaves, and leaf-derived structures, such as petals, limits organ growth. We, therefore, proposed that pedomorphosis in leaves, and in leaf-derived structures, results from delayed differentiation of epidermal cells with respect to reproductive maturity. This idea was explored for petal evolution, given the importance of corolla morphology for angiosperm reproductive success. RESULTS: By comparing cell morphology and transcriptional profiles between 5 mm flower buds and mature flowers of an entomophile and an ornitophile Loasoideae species (a lineage that experienced transitions from bee- to hummingbird-pollination), we show that evolution of pedomorphic petals of the ornithophile species likely involved delayed differentiation of epidermal cells with respect to flower maturity. We also found that developmental mechanisms other than pedomorphosis might have contributed to evolution of corolla morphology. CONCLUSIONS: Our results highlight a need for considering alternatives to the flower-centric perspective when studying the origin of variation in flower morphology, as this can be generated by developmental processes that are also shared with leaves.

5.
BMC Plant Biol ; 22(1): 52, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35078406

RESUMO

BACKGROUND: A puzzle in evolution is the understanding of how the environment might drive subtle phenotypic variation, and whether this variation is adaptive. Under the neutral evolutionary theory, subtle phenotypes are almost neutral with little adaptive value. To test this idea, we studied the infraspecific variation in flower shape and color in Mammillaria haageana, a species with a wide geographical distribution and phenotypic variation, which populations are often recognized as infraspecific taxa. RESULTS: We collected samples from wild populations, kept them in the greenhouse for at least one reproductive year, and collected newly formed flowers. Our first objective was to characterize tepal natural variation in M. haageana through geometric morphometric and multivariate pigmentation analyses. We used landmark-based morphometrics to quantify the trends of shape variation and tepal color-patterns in 20 M. haageana accessions, belonging to five subspecies, plus 8 M. albilanata accessions for comparison as the sister species. We obtained eight geometric morphometric traits for tepal shape and color-patterns. We found broad variation in these traits between accessions belonging to the same subspecies, without taxonomic congruence with those infraspecific units. Also the phenetic cluster analysis showed different grouping patterns among accessions. When we correlated these phenotypes to the environment, we also found that solar radiation might explain the variation in tepal shape and color, suggesting that subtle variation in flower phenotypes might be adaptive. Finally we present anatomical sections in M. haageana subsp. san-angelensis to propose some of the underlying tepal structural features that may give rise to tepal variation. CONCLUSIONS: Our geometric morphometric approach of flower shape and color allowed us to identify the main trends of variation in each accession and putative subspecies, but also allowed us to correlate these variation to the environment, and propose anatomical mechanisms underlying this diversity of flower phenotypes.


Assuntos
Evolução Biológica , Cactaceae/genética , Flores/anatomia & histologia , Flores/genética , Pigmentos Biológicos/metabolismo , Adaptação Fisiológica , Cactaceae/fisiologia , Flores/fisiologia , Pigmentos Biológicos/genética
6.
Front Plant Sci ; 12: 730270, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630477

RESUMO

Nymphaeaceae are early diverging angiosperms with large flowers characterized by showy petals and stamens not clearly whorled but presenting a gradual morphological transition from the outer elements to the inner stamens. Such flower structure makes these plant species relevant for studying flower evolution. MADS-domain transcription factors are crucial components of the molecular network that controls flower development. We therefore isolated and characterized MADS-box genes from the water lily Nymphaea caerulea. RNA-seq experiments on floral buds have been performed to obtain the transcript sequences of floral organ identity MADS-box genes. Maximum Likelihood phylogenetic analyses confirmed their belonging to specific MADS-box gene subfamilies. Their expression was quantified by RT-qPCR in all floral organs at two stages of development. Protein interactions among these transcription factors were investigated by yeast-two-hybrid assays. We found especially interesting the involvement of two different AGAMOUS-like genes (NycAG1 and NycAG2) in the water lily floral components. They were therefore functionally characterized by complementing Arabidopsis ag and shp1 shp2 mutants. The expression analysis of MADS-box genes across flower development in N. caerulea described a complex scenario made of numerous genes in numerous floral components. Their expression profiles in some cases were in line with what was expected from the ABC model of flower development and its extensions, while in other cases presented new and interesting gene expression patterns, as for instance the involvement of NycAGL6 and NycFL. Although sharing a high level of sequence similarity, the two AGAMOUS-like genes NycAG1 and NycAG2 could have undergone subfunctionalization or neofunctionalization, as only one of them could partially restore the euAG function in Arabidopsis ag-3 mutants. The hereby illustrated N. caerulea MADS-box gene expression pattern might mirror the morphological transition from the outer to the inner floral organs, and the presence of transition organs such as the petaloid stamens. This study is intended to broaden knowledge on the role and evolution of floral organ identity genes and the genetic mechanisms causing biodiversity in angiosperm flowers.

7.
Am J Bot ; 108(9): 1716-1730, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34590308

RESUMO

PREMISE: Pollinators are thought to exert selective pressures on plants, mediating the evolution of convergent floral shape often recognized as pollination syndromes. However, little is known about the accuracy of using petal shape for inferring convergence in pollination mode without a priori pollination information. Here we studied the genus Erythrina L. as a test case to assess whether ornithophyllous pollination modes (hummingbirds, passerines, sunbirds, or mixed pollination) can be inferred based on the evolutionary analysis of petal shape. METHODS: We characterized the two-dimensional dissected shape of standard, keel, and wing petals from 106 Erythrina species using geometric morphometrics and reconstructed a phylogenetic tree of 83 Erythrina species based on plastid trnL-F and nuclear ribosomal ITS sequences. We then used two phylogenetic comparative methods based on Ornstein-Uhlenbeck models, SURFACE and l1OU, to infer distinct morphological groups using petal shape and identify instances of convergent evolution. The effectiveness of these methods was evaluated by comparing the groups inferred to known pollinators. RESULTS: We found significant petal shape differences between hummingbird- and passerine-pollinated Erythrina species. Our analyses also revealed that petal combinations generally provided better inferences of pollinator types than individual petals and that the method and optimization criterion can affect the results. CONCLUSIONS: We show that model-based approaches using petal shape can detect convergent evolution of floral shape and relatively accurately infer pollination modes in Erythrina. The inference power of the keel petals argues for a deeper investigation of their role in the pollination biology of Erythrina and other bird-pollinated legumes.


Assuntos
Erythrina , Passeriformes , Animais , Flores , Filogenia , Polinização
8.
Plants (Basel) ; 10(6)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34204904

RESUMO

Flowers are defined as short shoots that carry reproductive organs. In Cactaceae, this term acquires another meaning, since the flower is interpreted as a branch with a perianth at the tip, with all reproductive organs embedded within the branch, thus giving way to a structure that has been called a "flower shoot". These organs have long attracted the attention of botanists and cactologists; however, the understanding of the morphogenetic processes during the development of these structures is far from clear. In this review, we present and discuss some classic flower concepts used to define floral structures in Cactaceae in the context of current advances in flower developmental genetics and evolution. Finally, we propose several hypotheses to explain the origin of these floral shoot structures in cacti, and we suggest future research approaches and methods that could be used to fill the gaps in our knowledge regarding the ontogenetic origin of the "flower" in the cactus family.

9.
Am J Bot ; 108(5): 828-843, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34019302

RESUMO

PREMISE: There is little direct evidence linking floral development and pollination biology in plants. We characterize both aspects in plain and ornamented flowers of Trimezieae (Iridaceae) to investigate how changes in floral ontogeny may affect their interactions with pollinators through time. METHODS: We examined floral ontogeny in 11 species and documented pollination biology in five species displaying a wide range of floral morphologies. We coded and reconstructed ancestral states of flower types over the tribal phylogeny to estimate the frequency of transition between different floral types. RESULTS: All Trimezieae flowers are similar in early floral development, but ornamented flowers have additional ontogenetic steps compared with plain flowers, indicating heterochrony. Ornamented flowers have a hinge pollination mechanism (newly described here) and attract more pollinator guilds, while plain flowers offer less variety of resources for a shorter time. Although the ornamented condition is plesiomorphic in this clade, shifts to plain flowers have occurred frequently and abruptly during the past 5 million years, with some subsequent reversals. CONCLUSIONS: Heterochrony has resulted in labile morphological changes during flower evolution in Trimezieae. Counterintuitively, species with plain flowers, which are endemic to the campo rupestre, are derived within the tribe and show a higher specialization than the ornamented species, with the former being visited by pollen-collecting bees only.


Assuntos
Iridaceae , Polinização , Animais , Abelhas , Biologia , Flores , Pólen
10.
Ann Bot ; 126(5): 837-848, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32478385

RESUMO

BACKGROUND AND AIMS: Floral colour is a primary signal in plant-pollinator interactions. The association between red flowers and bird pollination is well known, explained by the 'bee avoidance' and 'bird attraction' hypotheses. Nevertheless, the relative importance of these two hypotheses has rarely been investigated on a large scale, even in terms of colour perception per se. METHODS: We collected reflectance spectra for 130 red flower species from different continents and ascertained their pollination systems. The spectra were analysed using colour vision models for bees and (three types of) birds, to estimate colour perception by these pollinators. The differences in colour conspicuousness (chromatic and achromatic contrast, purity) and in spectral properties between pollination systems and across continents were analysed. KEY RESULTS: Compared with other floral colours, red flowers are very conspicuous to birds and much less conspicuous to bees. The red flowers pollinated by bees and by birds are more conspicuous to their respective pollinators. Compared with the bird flowers in the Old World, the New World ones are less conspicuous to bees and may be more conspicuous not only to violet-sensitive but also to ultraviolet-sensitive birds. These differences can be explained by the different properties of the secondary reflectance peak (SP). SP intensity is higher in red flowers pollinated by bees than those pollinated by birds (especially New World bird flowers). A transition from high SP to low SP in red flowers can induce chromatic contrast changes, with a greater effect on reducing attraction to bees than enhancing attraction to birds. CONCLUSIONS: Shades of red flowers differ between pollination systems. Moreover, red bird flowers are more specialized in the New World than in the Old World. The evolution towards colour specialization is more likely to result in higher efficiency of bee avoidance than bird attraction.


Assuntos
Flores , Polinização , Animais , Abelhas , Aves , Cor
11.
Proc Natl Acad Sci U S A ; 117(20): 10921-10926, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32366661

RESUMO

Flower biomass varies widely across the angiosperms. Each plant species invests a given amount of biomass to construct its sex organs. A comparative understanding of how this limited resource is partitioned among primary (male and female structures) and secondary (petals and sepals) sexual organs on hermaphrodite species can shed light on general evolutionary processes behind flower evolution. Here, we use allometries relating different flower biomass components across species to test the existence of broad allocation patterns across the angiosperms. Based on a global dataset with flower biomass spanning five orders of magnitude, we show that heavier angiosperm flowers tend to be male-biased and invest strongly in petals to promote pollen export, while lighter flowers tend to be female-biased and invest more in sepals to insure their own seed set. This result demonstrates that larger flowers are not simple carbon copies of small ones, indicating that sexual selection via male-male competition is an important driver of flower biomass evolution and sex allocation strategies across angiosperms.


Assuntos
Evolução Biológica , Flores/fisiologia , Magnoliopsida/fisiologia , Biomassa , Gentiana , Lepidium , Nymphaea , Orchidaceae , Pólen , Polinização , Sementes , Seleção Genética , Especificidade da Espécie
12.
New Phytol ; 228(4): 1193-1213, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33460152

RESUMO

Pollination syndromes, recurring suites of floral traits appearing in connection with specific functional pollinator groups, have served for decades to organise floral diversity under a functional-ecological perspective. Some potential caveats, such as over-simplification of complex plant-animal interactions or lack of empirical observations, have been identified and discussed in recent years. Which of these caveats do indeed cause problems, which have been solved and where do future possibilities lie? I address these questions in a review of the pollination-syndrome literature of 2010 to 2019. I show that the majority of studies was based on detailed empirical pollinator observations and could reliably predict pollinators based on a few floral traits such as colour, shape or reward. Some traits (i.e. colour) were less reliable in predicting pollinators than others (i.e. reward, corolla width), however. I stress that future studies should consider floral traits beyond those traditionally recorded to expand our understanding of mechanisms of floral evolution. I discuss statistical methods suitable for objectively analysing the interplay of system-specific evolutionary constraints, pollinator-mediated selection and adaptive trade-offs at microecological and macroecological scales. I exemplify my arguments on an empirical dataset of floral traits of a neotropical plant radiation in the family Melastomataceae.


Assuntos
Flores , Polinização , Animais , Fenótipo , Plantas , Síndrome
13.
Mol Phylogenet Evol ; 137: 156-167, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31075505

RESUMO

Detarioideae is well known for its high diversity of floral traits, including flower symmetry, number of organs, and petal size and morphology. This diversity has been characterized and studied at higher taxonomic levels, but limited analyses have been performed among closely related genera with contrasting floral traits due to the lack of fully resolved phylogenetic relationships. Here, we used four representative transcriptomes to develop an exome capture (target enrichment) bait for the entire subfamily and applied it to the Anthonotha clade using a complete data set (61 specimens) representing all extant floral diversity. Our phylogenetic analyses recovered congruent topologies using ML and Bayesian methods. Anthonotha was recovered as monophyletic contrary to the remaining three genera (Englerodendron, Isomacrolobium and Pseudomacrolobium), which form a monophyletic group sister to Anthonotha. We inferred a total of 35 transitions for the seven floral traits (pertaining to flower symmetry, petals, stamens and staminodes) that we analyzed, suggesting that at least 30% of the species in this group display transitions from the ancestral condition reconstructed for the Anthonotha clade. The main transitions were towards a reduction in the number of organs (petals, stamens and staminodes). Despite the high number of transitions, our analyses indicate that the seven characters are evolving independently in these lineages. Petal morphology is the most labile floral trait with a total of seven independent transitions in number and seven independent transitions to modification in petal types. The diverse petal morphology along the dorsoventral axis of symmetry within the flower is not associated with differences at the micromorphology of petal surface, suggesting that in this group all petals within the flower might possess the same petal identity at the molecular level. Our results provide a solid evolutionary framework for further detailed analyses of the molecular basis of petal identity.


Assuntos
Biodiversidade , Fabaceae/genética , Flores/anatomia & histologia , Genômica , Filogenia , Teorema de Bayes , Fabaceae/anatomia & histologia , Flores/ultraestrutura , Fenótipo , Epiderme Vegetal/anatomia & histologia , Epiderme Vegetal/ultraestrutura
14.
Mol Plant ; 11(12): 1482-1491, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30342096

RESUMO

The Asteraceae (Compositae), a large plant family of approximately 24 000-35 000 species, accounts for ∼10% of all angiosperm species and contributes a lot to plant diversity. The most representative members of the Asteraceae are the economically important chrysanthemums (Chrysanthemum L.) that diversified through reticulate evolution. Biodiversity is typically created by multiple evolutionary mechanisms such as whole-genome duplication (WGD) or polyploidization and locally repetitive genome expansion. However, the lack of genomic data from chrysanthemum species has prevented an in-depth analysis of the evolutionary mechanisms involved in their diversification. Here, we used Oxford Nanopore long-read technology to sequence the diploid Chrysanthemum nankingense genome, which represents one of the progenitor genomes of domesticated chrysanthemums. Our analysis revealed that the evolution of the C. nankingense genome was driven by bursts of repetitive element expansion and WGD events including a recent WGD that distinguishes chrysanthemum from sunflower, which diverged from chrysanthemum approximately 38.8 million years ago. Variations of ornamental and medicinal traits in chrysanthemums are linked to the expansion of candidate gene families by duplication events including paralogous gene duplication. Collectively, our study of the assembled reference genome offers new knowledge and resources to dissect the history and pattern of evolution and diversification of chrysanthemum plants, and also to accelerate their breeding and improvement.


Assuntos
Chrysanthemum/genética , Evolução Molecular , Flores/genética , Genoma de Planta/genética , Biodiversidade , Cruzamento , Chrysanthemum/crescimento & desenvolvimento , Chrysanthemum/metabolismo , Flavonoides/biossíntese , Duplicação Gênica , Anotação de Sequência Molecular , Fenótipo , Plantas Medicinais/genética , Plantas Medicinais/metabolismo , Retroelementos/genética , Sequências Repetidas Terminais/genética
15.
New Phytol ; 220(1): 70-86, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29959892

RESUMO

Contents Summary 70 I. Introduction 70 II. What is the floral ground plan? 71 III. Diversity and evolution of the floral ground plan 72 IV. Genetic mechanisms 77 V. What's next? 82 Acknowledgements 83 References 83 SUMMARY: The floral ground plan is a map of where and when floral organ primordia arise. New results combining the defined phylogeny of flowering plants with extensive character mapping have predicted that the angiosperm ancestor had whorls rather than spirals of floral organs in large numbers, and was bisexual. More confidently, the monocot ancestor likely had three organs in each whorl, whereas the rosid and asterid ancestor (Pentapetalae) had five, with the perianth now divided into sepals and petals. Genetic mechanisms underlying the establishment of the floral ground plan are being deduced using model species, the rosid Arabidopsis, the asterid Antirrhinum, and in grasses such as rice. In this review, evolutionary and genetic conclusions are drawn together, especially considering how known genes may control individual processes in the development and evolution of ground plans. These components include organ phyllotaxis, boundary formation, organ identity, merism (the number or organs per whorl), variation in the form of primordia, organ fusion, intercalary growth, floral symmetry, determinacy and, finally, cases where the distinction between flowers and inflorescences is blurred. It seems likely that new pathways of ground plan evolution, and new signalling mechanisms, will soon be uncovered by integrating morphological and genetic approaches.


Assuntos
Evolução Biológica , Flores/genética , Flores/anatomia & histologia , Flores/ultraestrutura , Genes de Plantas , Variação Genética , Folhas de Planta/anatomia & histologia
16.
J Plant Res ; 131(3): 411-428, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29569170

RESUMO

We present a comparative study of the floral structure and development of Nartheciaceae, a small dioscorealean family consisting of five genera (Aletris, Lophiola, Metanarthecium, Narthecium, and Nietneria). A noticeable diversity existed in nine floral characters. Analyses of their respective character states in the light of a phylogenetic context revealed that the flowers of Nartheciaceae, whose plesiomorphies occur in Aletris and Metanarthecium, have evolved toward in all or part of Lophiola, Narthecium, and Nietneria: (1) loss of a perianth tube; (2) stamen insertion at the perianth base; (3) congenital carpel fusion; (4) loss of the septal nectaries; (5) unilocular style; (6) unfused lateral carpellary margins in the style; (7) flower with the median outer tepal on the abaxial side; (8) flower with moniliform hairs; and (9) flower with weak monosymmetry. We further found that, as the flowers developed, the ovary shifted its position from inferior to superior. As a whole, their structure changes suggest that the Nartheciaceae flowers have evolved in close association with pollination and seed dispersal. By considering inferior ovaries and the presence of septal nectaries as plesiomorphies of Nartheciaceae, we discussed evolution of the ovary position and septal nectaries in all the monocots.


Assuntos
Flores/crescimento & desenvolvimento , Magnoliopsida/crescimento & desenvolvimento , Evolução Biológica , Flores/anatomia & histologia , Flores/genética , Magnoliopsida/anatomia & histologia , Magnoliopsida/genética , Néctar de Plantas , Polinização , Dispersão de Sementes
17.
Appl Plant Sci ; 5(4)2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28439475

RESUMO

PREMISE OF THE STUDY: Despite the extensive phenotypic variation that characterizes the Gesneriaceae family, there is a lack of genomic resources to investigate the molecular basis of their diversity. We developed and compared the transcriptomes for two species of the Neotropical lineage of the Gesneriaceae. METHODS AND RESULTS: Illumina sequencing and de novo assembly of floral and leaf samples were used to generate multigene sequence data for Sinningia eumorpha and S. magnifica, two species endemic to the Brazilian Atlantic Forest. A total of 300 million reads were used to assemble the transcriptomes, with an average of 92,038 transcripts and 43,506 genes per species. The transcriptomes showed good quality metrics, with the presence of all eukaryotic core genes, and an equal representation of clusters of orthologous groups (COG) classifications between species. The orthologous search produced 8602 groups, with 15-20% of them annotated using BLAST tools. DISCUSSION: This study provides the first step toward a comprehensive multispecies transcriptome characterization of the Gesneriaceae family. These resources are the basis for comparative analyses in this species-rich Neotropical plant group; they will also allow the investigation of the evolutionary importance of multiple metabolic pathways and phenotypic diversity, as well as developmental programs in these nonmodel species.

18.
BMC Genomics ; 18(1): 240, 2017 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-28320315

RESUMO

BACKGROUND: Flowers have an amazingly diverse display of colors and shapes, and these characteristics often vary significantly among closely related species. The evolution of diverse floral form can be thought of as an adaptive response to pollination and reproduction, but it can also be seen through the lens of morphological and developmental constraints. To explore these interactions, we use RNA-seq across species and development to investigate gene expression and sequence evolution as they relate to the evolution of the diverse flowers in a group of Neotropical plants native to Mexico-magic flowers (Achimenes, Gesneriaceae). RESULTS: The assembled transcriptomes contain between 29,000 and 42,000 genes expressed during development. We combine sequence orthology and coexpression clustering with analyses of protein evolution to identify candidate genes for roles in floral form evolution. Over 25% of transcripts captured were distinctive to Achimenes and overrepresented by genes involved in transcription factor activity. Using a model-based clustering approach we find dynamic, temporal patterns of gene expression among species. Selection tests provide evidence of positive selection in several genes with roles in pigment production, flowering time, and morphology. Combining these approaches to explore genes related to flower color and flower shape, we find distinct patterns that correspond to transitions of floral form among Achimenes species. CONCLUSIONS: The floral transcriptomes developed from four species of Achimenes provide insight into the mechanisms involved in the evolution of diverse floral form among closely related species with different pollinators. We identified several candidate genes that will serve as an important and useful resource for future research. High conservation of sequence structure, patterns of gene coexpression, and detection of positive selection acting on few genes suggests that large phenotypic differences in floral form may be caused by genetic differences in a small set of genes. Our characterized floral transcriptomes provided here should facilitate further analyses into the genomics of flower development and the mechanisms underlying the evolution of diverse flowers in Achimenes and other Neotropical Gesneriaceae.


Assuntos
Flores/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Traqueófitas/genética , Transcriptoma , Antocianinas/biossíntese , Vias Biossintéticas , Regulação Enzimológica da Expressão Gênica , Fenótipo , Filogenia , Traqueófitas/classificação , Traqueófitas/metabolismo
19.
Ann Bot ; 119(3): 417-432, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28025284

RESUMO

BACKGROUND AND AIMS: The study of floral morphology and ontogeny and the re-investigation of existing data help to uncover potential synapomorphic characters and foster our understanding of phylogenetic relationships that rely primarily on molecular analyses. Goniorrhachis marginata is a monotypic caesalpinioid legume (Leguminosae) that shows some interesting floral features, such as a long hypanthium and regular Rosaceae-like flowers. We studied the ontogeny and morphology of the flowers in detail and present our results in a broad phylogenetic context. METHODS: Flower buds were collected in the field, fixed in 70 % ethanol and investigated using scanning electron microscopy. Older buds in spirit were carefully opened to investigate the direction of style bending. Characters of the style from 131 taxa from the main legume lineages were analysed and mapped on a Bayesian molecular phylogeny. KEY RESULTS: The tetramerous calyx is the result of complete loss of one sepal. The formation of the radially symmetrical corolla starts in a typical caesalpinioid pattern with the adaxial petal innermost (ascending aestivation). The young style bends in the abaxial direction, which is a character found exclusively in all studied detarioid legumes and therefore a newly described synapomorphy for the clade. CONCLUSIONS: We show that investigation of unstudied taxa and reinvestigation of published data can uncover new, previously overlooked and important characters. Curvature of the style can be detected in young buds with a hand lens and therefore is an important character for field botanists. Our study reveals the importance of including poorly studied and/or phylogenetically enigmatic taxa in molecular phylogenies and in detailed morphological and ontogenetic analyses.


Assuntos
Fabaceae/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Teorema de Bayes , Evolução Biológica , Evolução Molecular , Fabaceae/anatomia & histologia , Fabaceae/genética , Fabaceae/ultraestrutura , Flores/anatomia & histologia , Flores/genética , Flores/ultraestrutura , Microscopia Eletrônica de Varredura , Filogenia
20.
Genetics ; 202(4): 1255-65, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27053123

RESUMO

The origin of the flower was a key innovation in the history of complex organisms, dramatically altering Earth's biota. Advances in phylogenetics, developmental genetics, and genomics during the past 25 years have substantially advanced our understanding of the evolution of flowers, yet crucial aspects of floral evolution remain, such as the series of genetic and morphological changes that gave rise to the first flowers; the factors enabling the origin of the pentamerous eudicot flower, which characterizes ∼70% of all extant angiosperm species; and the role of gene and genome duplications in facilitating floral innovations. A key early concept was the ABC model of floral organ specification, developed by Elliott Meyerowitz and Enrico Coen and based on two model systems,Arabidopsis thalianaandAntirrhinum majus Yet it is now clear that these model systems are highly derived species, whose molecular genetic-developmental organization must be very different from that of ancestral, as well as early, angiosperms. In this article, we will discuss how new research approaches are illuminating the early events in floral evolution and the prospects for further progress. In particular, advancing the next generation of research in floral evolution will require the development of one or more functional model systems from among the basal angiosperms and basal eudicots. More broadly, we urge the development of "model clades" for genomic and evolutionary-developmental analyses, instead of the primary use of single "model organisms." We predict that new evolutionary models will soon emerge as genetic/genomic models, providing unprecedented new insights into floral evolution.


Assuntos
Evolução Biológica , Evolução Molecular , Flores/genética , Estudos de Associação Genética , Genoma de Planta , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Magnoliopsida/classificação , Magnoliopsida/fisiologia , Fenótipo , Filogenia , Desenvolvimento Vegetal/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA