Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 813, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39210253

RESUMO

The SET domain genes (SDGs) are significant contributors to various aspects of plant growth and development, mainly includes flowering, pollen development, root growth, regulation of the biological clock and branching patterns. To clarify the biological functions of the chrysanthemum SDG family, the SDG family members of four chrysanthemum cultivars and three related wild species were identified; their physical and chemical properties, protein domains and conserved motifs were predicted and analyzed. The results showed that 59, 67, 67, 102, 106, 114, and 123 SDGs were identified from Chrysanthemum nankingense, Chrysanthemum lavandulifolium, Chrysanthemum seticuspe, Chrysanthemum × morifolium cv. 'Hechengxinghuo', 'Zhongshanzigui', 'Quanxiangshuichang' and 'Jinbeidahong', respectively. The SDGs were divided into 5-7 subfamilies by cluster analysis; different conserved motifs were observed in particular families. The SDGs of C. lavandulifolium and C. seticuspe were distributed unevenly on 9 chromosomes. SDG promoters of different species include growth and development, photo-response, stress response and hormone responsive elements, among them, the cis-acting elements related to MeJA response had the largest proportion. The expression of chrysanthemum SDG genes was observed for most variable selected genes which has close association with important Arabidopsis thaliana genes related to flowering regulation. The qPCR results showed that the expression trend of SDG genes varied in different tissues at different growth stages with high expression in the flowering period. The ClSDG29 showed higher expression in the flower and bud tissues, which indicate that ClSDG29 might be associated with flowering regulation in chrysanthemum. In summary, the results of this study can provide a basis for subsequent research on chrysanthemum flowering time regulation.


Assuntos
Chrysanthemum , Flores , Família Multigênica , Chrysanthemum/genética , Chrysanthemum/crescimento & desenvolvimento , Chrysanthemum/fisiologia , Flores/genética , Flores/crescimento & desenvolvimento , Genes de Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Sci Rep ; 14(1): 17694, 2024 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085421

RESUMO

The application of exogenous paclobutrazol (PP333) can improve the ability of winter warming to promote flowering in Chaenomeles speciosa, but the underlying mechanism is unclear. In this study, the cultivar 'Changshouguan' was sprayed with different concentrations of PP333 during flower bud differentiation, and the changes in the anatomical structures and physiological characteristics of the flower buds during the differentiation process, as well as the growth state of the flower buds and the effect on flowering promotion after winter warming treatment, were comprehensively investigated. The results showed that different concentrations of PP333 could advance the flowering time of 'Changshouguan' by 15-24 d under the warming treatment and increase the flowering duration to 17 d compared with those under the warming treatment alone (CK), and 1000 mg/L was the best treatment. Compared with the CK treatment, the PP333 treatment decreased the contents of indole acetic acid (IAA) and gibberellic acid (GAs) and increased the contents of zeatin ribosides (ZRs) and abscisic acid (ABA), thus changing the balance of hormones during flower bud differentiation. The inflection point (low point) of the curve shapes of the ZRs/GAs and ZRs/IAA ratios appeared significantly earlier, which showed a pattern consistent with soluble sugar and protein content and antioxidant activity. Interestingly, the above changes also corresponded to earlier flowering times during the warming process. Taken together, these results indicate that spraying an appropriate concentration of PP333 in the early stage of 'Changshouguan' flower bud differentiation promotes the early differentiation of flower buds and early flowering under winter warming treatment by altering their endogenous hormone content and homeostasis and changing their physiological state. The key to maintaining a relatively long flowering period in plants in the PP333 treatment group after flowering promotion was the increased accumulation of sugars and proteins.


Assuntos
Flores , Reguladores de Crescimento de Plantas , Estações do Ano , Triazóis , Flores/efeitos dos fármacos , Flores/crescimento & desenvolvimento , Triazóis/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Giberelinas/farmacologia , Giberelinas/metabolismo , Rosaceae/fisiologia , Rosaceae/efeitos dos fármacos , Rosaceae/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia
3.
Plants (Basel) ; 13(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38931074

RESUMO

The tree peony, a traditional flower in China, has a short and concentrated flowering period, restricting the development of the tree peony industry. To explore the molecular mechanism of tree peony flowering-stage regulation, PoEP1, which regulated the flowering period, was identified and cloned based on the transcriptome and degradome data of the early-flowering mutant Paeonia ostii 'Fengdan' (MU) and Paeonia ostii 'Fengdan' (FD). Through bioinformatics analysis, expression pattern analysis, and transgene function verification, the role of PoEP1 in the regulation of tree peony flowering was explored. The open-reading frame of PoEP1 is 1161 bp, encoding 386 amino acids, containing two conserved domains. PoEP1 was homologous to the EP1 of other species. Subcellular localization results showed that the protein was localized in the cell wall and that PoEP1 expression was highest in the initial decay stage of the tree peony. The overexpression of PoEP1 in transgenic plants advanced and shortened the flowering time, indicating that PoEP1 overexpression promotes flowering and senescence and shorten the flowering time of plants. The results of this study provide a theoretical basis for exploring the role of PoEP1 in the regulation of tree peony flowering.

4.
Trends Plant Sci ; 29(9): 1006-1017, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38584080

RESUMO

During the course of terrestrial evolution, plants have developed complex networks that involve the coordination of phytohormone signalling pathways in order to adapt to an ever-changing environment. Transcription factors coordinate these responses by engaging in different protein complexes and exerting both positive and negative effects. ABA INSENSITIVE 5 (ABI5) binding proteins (AFPs), which are closely related to NOVEL INTERACTOR OF JAZ (NINJA)-like proteins, are known for their fundamental role in plants' morphological and physiological growth. Recent studies have shown that AFPs regulate several hormone-signalling pathways, including abscisic acid (ABA) and gibberellic acid (GA). Here, we review the genetic control of AFPs and their crosstalk with plant hormone signalling, and discuss the contributions of AFPs to plants' growth and development.


Assuntos
Desenvolvimento Vegetal , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais , Giberelinas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Ácido Abscísico/metabolismo , Plantas/metabolismo , Plantas/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética
5.
Plants (Basel) ; 13(6)2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38592966

RESUMO

FLOWERING LOCUS T (FT), belonging to the FT/TFL1 gene family, is an important gene regulating the flowering transition and inflorescence architecture during plant development. Given its importance to plant adaptation and crop improvement, FT has been extensively studied in related plant research; however, the specific role and underlying molecular mechanisms of FT in the continuous flowering of perennial plants remains elusive. Here, we isolated and characterized homologous FT genes from two Camellia species with different flowering-period phenotypes: CaFT was isolated from Camellia azalea, a precious species blooming in summer and flowering throughout the year, and CjFT was isolated from C. japonica, which blooms in winter and spring. The major difference in the genes between the two species was an additional five-amino acid repeat sequence in C. japonica. FT showed high expression levels in the leaves in both species from January to August, especially in April for C. japonica and in May for C. azalea. CaFT was expressed throughout the year in C. azalea, whereas CjFT was not expressed from September to December in C. japonica. The expression levels of FT in the floral buds were generally higher than those in the leaves. Overexpression of CaFT and CjFT in Arabidopsis indicated that both genes can activate downstream genes to promote flowering. Transgenic callus tissue was obtained by introducing the two genes into C. azalea through Agrobacterium-mediated transformation. Transcriptome and quantitative real-time polymerase chain reaction analyses indicated that both florigen FT genes promoted the expression of downstream genes such as AP1, FUL, and SEP3, and slightly up-regulated the expression of upstream genes such as CO and GI. The above results indicated that CaFT and CjFT played a role in promoting flowering in both camellia species. The expression pattern of CaFT in leaves suggested that, compared to CjFT, CaFT may be related to the annual flowering of C. azalea.

6.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612626

RESUMO

The family of phosphatidylethanolamine-binding proteins (PEBPs) participates in various plant biological processes, mainly flowering regulation and seed germination. In cucurbit crops, several PEBP genes have been recognized to be responsible for flowering time. However, the investigation of PEBP family members across the genomes of cucurbit species has not been reported, and their conservation and divergence in structure and function remain largely unclear. Herein, PEBP genes were identified from seven cucurbit crops and were used to perform a comparative genomics analysis. The cucurbit PEBP proteins could be classified into MFT, FT, TFL, and PEBP clades, and further, the TFL clade was divided into BFT-like, CEN-like, and TFL1-like subclades. The MFT-like, FT-like, and TFL-like proteins were clearly distinguished by a critical amino acid residue at the 85th position of the Arabidopsis FT protein. In gene expression analysis, CsaPEBP1 was highly expressed in flowers, and its expression levels in females and males were 70.5 and 89.2 times higher, respectively, than those in leaves. CsaPEBP5, CsaPEBP6, and CsaPEBP7 were specifically expressed in male flowers, with expression levels 58.1, 17.3, and 15.7 times higher, respectively, than those of leaves. At least five CsaPEBP genes exhibited the highest expression during the later stages of corolla opening. Through clustering of time-series-based RNA-seq data, several potential transcription factors (TFs) interacting with four CsaPEBPs were identified during cucumber corolla opening. Because of the tandem repeats of binding sites in promoters, NF-YB (Csa4G037610) and GATA (Csa7G64580) TFs appeared to be better able to regulate the CsaPEBP2 and CsaPEBP5 genes, respectively. This study would provide helpful information for further investigating the roles of PEBP genes and their interacting TFs in growth and development processes, such as flowering time regulation in cucurbit crops.


Assuntos
Cucumis sativus , Gastrópodes , Feminino , Masculino , Animais , Cucumis sativus/genética , Reprodução , Hibridização Genômica Comparativa , Fatores de Tempo , Produtos Agrícolas , Genômica
7.
Plant Sci ; 339: 111926, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37984609

RESUMO

Seasonal changes are crucial in shifting the developmental stages from the vegetative phase to the reproductive phase in plants, enabling them to flower under optimal conditions. Plants grown at different latitudes sense and interpret these seasonal variations, such as changes in day length (photoperiod) and exposure to cold winter temperatures (vernalization). These environmental factors influence the expression of various genes related to flowering. Plants have evolved to stimulate a rapid response to environmental conditions through genetic and epigenetic mechanisms. Multiple epigenetic regulation systems have emerged in plants to interpret environmental signals. During the transition to the flowering phase, changes in gene expression are facilitated by chromatin remodeling and small RNAs interference, particularly in annual and perennial plants. Key flowering regulators, such as FLOWERING LOCUS C (FLC) and FLOWERING LOCUS T (FT), interact with various factors and undergo chromatin remodeling in response to seasonal cues. The Polycomb silencing complex (PRC) controls the expression of flowering-related genes in photoperiodic flowering regulation. Under vernalization-dependent flowering, FLC acts as a potent flowering suppressor by downregulating the gene expression of various flower-promoting genes. Eventually, PRCs are critically involved in the regulation of FLC and FT locus interacting with several key genes in photoperiod and vernalization. Subsequently, PRCs also regulate Epigenetical events during gametogenesis and seed development as a driving force. Furthermore, DNA methylation in the context of CHG, CG, and CHH methylation plays a critical role in embryogenesis. DNA glycosylase DME (DEMETER) is responsible for demethylation during seed development. Thus, the review briefly discusses flowering regulation through light signaling, day length variation, temperature variation and seed development in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Epigênese Genética , Plantas/metabolismo , Flores , Fotoperíodo , Sementes/genética , Sementes/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/metabolismo
8.
Plant Physiol Biochem ; 203: 108076, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37832366

RESUMO

The MADS-box transcription factor APETELA1 (AP1) is crucially important for reproductive developmental processes. The function of AP1 and the classic LFY-AP1 interaction in woody plants are not widely known. Here, the OfAP1-a gene from the continuously flowering plant Osmanthus fragrans 'Sijigui' was characterized, and its roles in regulating flowering time, petal number robustness and floral organ identity were determined using overexpression in Arabidopsis thaliana and Nicotiana tabacum. The expression of OfAP1-a was significantly induced by low ambient temperature and was upregulated with the floral transition process. Ectopic expression OfAP1-a revealed its classic function in flowering and flower ABC models. The expression of OfAP1-a is inhibited by LEAFY (OfLFY) through direct promoter binding, as confirmed by yeast one-hybrid and dual luciferase assays. Arabidopsis plants overexpressing OfAP1-a exhibited accelerated flowering and altered floral organ identities. Moreover, OfAP1-a-overexpressing plants displayed variable petal numbers. Likewise, the overexpression of OfLFY in Arabidopsis and Nicotiana altered petal number robustness and inflorescence architecture, partially by regulating native AP1 in transformed plants. Furthermore, we performed RNA-seq analysis of transgenic Nicotiana plants. DEGs were identified by transcriptome analysis, and we found that the expression of several floral homeotic genes was altered in both OfAP1-a and OfLFY-overexpressing transgenic lines. Our results suggest that OfAP1-a may play important roles during floral transition and development in response to ambient temperature. OfAP1-a functions as a petal number modulator and may directly activate a subset of flowers to regulate floral organ formation. OfAP1-a and OfLFY mutually regulate the expression of each other and coregulate genes that might be involved in these phenotypes related to flowering. The results provide valuable data for understanding the function of the LFY-AP1 module in the reproductive process and shaping floral structures in woody plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Temperatura , Fatores de Transcrição/genética , Proteínas de Arabidopsis/genética , Fenótipo , Flores/metabolismo , Plantas Geneticamente Modificadas/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
9.
Ann Bot ; 132(6): 1089-1102, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-37666004

RESUMO

The regulation of flowering time is typically governed by transcription factors or epigenetic modifications. Transcript isoforms can play important roles in flowering regulation. Recently, transcript isoforms were discovered in the key genes, OfAP1 and OfTFL1, of the flowering regulatory network in Osmanthus fragrans. OfAP1-b generates a full-length isoform of OfAP1-b1 as well as an isoform of OfAP1-b2 that lacks the C-terminal domain. Although OfAP1-b2 does not possess an activation domain, it has a complete K domain that allows it to form heterodimers. OfAP1-b2 competes with OfAP1-b1 by binding with OfAGL24 to create non-functional and functional heterodimers. As a result, OfAP1-b1 promotes flowering while OfAP1-b2 delays flowering. OfTFL1 produces two isoforms located in different areas: OfTFL1-1 in the cytoplasm and OfTFL1-2 in the nucleus. When combined with OfFD, OfTFL1-1 does not enter the nucleus to repress AP1 expression, leading to early flowering. Conversely, when combined with OfFD, OfTFL1-2 enters the nucleus to repress AP1 expression, resulting in later flowering. Tissue-specific expression and functional conservation testing of OfAP1 and OfTFL1 support the new model's effectiveness in regulating flowering. Overall, this study provides new insights into regulating flowering time by the competition of isoforms.


Assuntos
Regulação da Expressão Gênica de Plantas , Fatores de Transcrição , Fatores de Transcrição/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Flores/genética , Flores/metabolismo
11.
Int J Mol Sci ; 24(9)2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37175398

RESUMO

The flower induction of Hydrangea macrophylla "Endless Summer" is regulated by a complex gene network that involves multiple signaling pathways to ensure continuous flowering throughout the growing season, but the molecular determinants of flower induction are not yet clear. In this study, genes potentially involved in signaling pathway mediating the regulatory mechanism of flower induction were identified through the transcriptomic profiles, and a hypothetical model for this regulatory mechanism was obtained by an analysis of the available transcriptomic data, suggesting that sugar-, hormone-, and flowering-related genes participated in the flower induction process of H. macrophylla "Endless Summer". The expression profiles of the genes involved in the biosynthesis and metabolism of sugar showed that the beta-amylase gene BAM1 displayed a high expression level at the BS2 stage and implied the hydrolysis of starch. It may be a signaling molecule that promotes the transition from vegetative growth to reproductive growth in H. macrophylla "Endless Summer". Complex hormone regulatory networks involved in abscisic acid (ABA), auxin (IAA), zeatin nucleoside (ZR), and gibberellin (GA) also induced flower formation in H. macrophylla. ABA participated in flower induction by regulating flowering genes. The high content of IAA and the high expression level of the auxin influx carrier gene LAX5 at the BS2 stage suggested that the flow of auxin between sources and sinks in H. macrophylla is involved in the regulation of floral induction as a signal. In addition, flowering-related genes were mainly involved in the photoperiodic pathway, the aging pathway, and the gibberellin pathway. As a result, multiple pathways, including the photoperiodic pathway, the aging pathway, and the gibberellin pathway, which were mainly mediated by crosstalk between sugar and hormone signals, regulated the molecular network involved in flower induction in H. macrophylla "Endless Summer".


Assuntos
Hydrangea , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Giberelinas/metabolismo , Ácido Abscísico/metabolismo , Flores/metabolismo , Perfilação da Expressão Gênica , Ácidos Indolacéticos/metabolismo , Hormônios/metabolismo , Açúcares/metabolismo , Regulação da Expressão Gênica de Plantas
12.
EMBO J ; 42(11): e110921, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37051749

RESUMO

How the noncoding genome affects cellular functions is a key biological question. A particular challenge is to distinguish the effects of noncoding DNA elements from long noncoding RNAs (lncRNAs) that coincide at the same loci. Here, we identified the flowering-associated intergenic lncRNA (FLAIL) in Arabidopsis through early flowering flail mutants. Expression of FLAIL RNA from a different chromosomal location in combination with strand-specific RNA knockdown characterized FLAIL as a trans-acting RNA molecule. FLAIL directly binds to differentially expressed target genes that control flowering via RNA-DNA interactions through conserved sequence motifs. FLAIL interacts with protein and RNA components of the spliceosome to affect target mRNA expression through co-transcriptional alternative splicing (AS) and linked chromatin regulation. In the absence of FLAIL, splicing defects at the direct FLAIL target flowering gene LACCASE 8 (LAC8) correlated with reduced mRNA expression. Double mutant analyses support a model where FLAIL-mediated splicing of LAC8 promotes its mRNA expression and represses flowering. Our study suggests lncRNAs as accessory components of the spliceosome that regulate AS and gene expression to impact organismal development.


Assuntos
Arabidopsis , RNA Longo não Codificante , Processamento Alternativo , Arabidopsis/genética , RNA Longo não Codificante/genética , Splicing de RNA , RNA Mensageiro/genética
13.
Plant Cell Rep ; 42(6): 1071-1088, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37024635

RESUMO

KEY MESSAGE: TFL1-like genes of the basal eudicot Platanus acerifolia have conserved roles in maintaining vegetative growth and inhibiting flowering, but may act through distinct regulatory mechanism. Three TERMINAL FLOWER 1 (TFL1)-like genes were isolated and characterized from London plane tree (Platanus acerifolia). All genes have conserved genomic organization and characteristic of the phosphatidylethanolamine-binding protein (PEBP) family. Sequence alignment and phylogenetic analysis indicated that two genes belong to the TFL1 clade, designated as PlacTFL1a and PlacTFL1b, while another one was grouped in the BFT clade, named as PlacBFT. qRT-PCR analysis showed that all three genes primarily expressed in vegetative phase, but the expression of PlacTFL1a was much higher and wider than that of PlacTFL1b, with the latter only detected at relatively low expression levels in apical and lateral buds in April. PlacBFT was mainly expressed in young stems of adult trees followed by juvenile tissues. Ectopic expression of any TFL1-like gene in Arabidopsis showed phenotypes of delayed or repressed flowering. Furthermore, overexpression of PlacTFL1a gene in petunia also resulted in extremely delayed flowering. In non-flowering 35:PlacTFL1a transgenic petunia plants, the FT-like gene (PhFT) gene was significantly upregulated and AP1 homologues PFG, FBP26 and FBP29 were significantly down-regulated in leaves. Yeast two-hybrid analysis indicated that only weak interactions were detected between PlacTFL1a and PlacFDL, and PlacTFL1a showed no interaction with PhFDL1/2. These results indicated that the TFL1-like genes of Platanus have conserved roles in repressing flowering, but probably via a distinct regulatory mechanism.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Flores , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Regulação da Expressão Gênica de Plantas/genética
15.
Front Plant Sci ; 13: 1049479, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36407607

RESUMO

Continuous flowering is a key horticultural trait in ornamental plants, whereas the specific molecular regulation mechanism remains largely unknown. In sweet osmanthus (Osmanthus fragrans Lour.), plants based on their flowering characteristics are divided into once-flowering (OF) habit and continuous flowering (CF) habit. Here, we first described the flowering phenology shifts of OF and CF habits in sweet osmanthus through paraffin section and microscope assay. Phenotypic characterization showed that CF plants had constant new shoot growth, floral transition, and blooming for 1 year, which might lead to a continuous flowering trait. We performed the transcriptome sequencing of OF and CF sweet osmanthus and analyzed the transcriptional activity of flowering-related genes. Among the genes, three floral integrators, OfFT, OfTFL1, and OfBFT, had a differential expression during the floral transition process in OF and CF habits. The expression patterns of the three genes in 1 year were revealed. The results suggested that their accumulations corresponded to the new shoots occurring and the floral transition process. Function studies suggested that OfFT acted as a flowering activator, whereas OfBFT was a flowering inhibitor. Yeast one-hybrid assay indicated that OfSPL8 was a common upstream transcription factor of OfFT and OfBFT, suggesting the vital role of OfSPL8 in continuous flowering regulation. These results provide a novel insight into the molecular mechanism of continuous flowering.

16.
Int J Mol Sci ; 23(22)2022 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36430482

RESUMO

The tree peony (Paeonia section Moutan DC.) is the candidate flower in China, with abundant germplasm resources and high ornamental value. However, the short and concentrated flowering period severely restricted the improvement of the economic value of tree peonies. Based on the full-length transcriptome database of tree peonies, the PoVIN3 (GenBank ID: OP341879), involved in the flowering regulation of tree peonies were identified and cloned for the first time. The PoVIN3 was also characterized by bioinformatics methods, quantitative real-time PCR (qRT-PCR), and the establishment of a transgenic system. The expression levels of PoVIN3 in seven different petals developmental stages were the highest at the initial flowering stage of the variant cultivar of Paeonia ostii 'Fengdan,' the initial decay stage of the normal flowering Paeonia ostii 'Fengdan,' and the half opening stage of the late flowering Paeonia suffruticosa 'Lianhe.' Tissue-specific expression analysis showed that the relative expression levels of PoVIN3 were the highest in sepals of both normal flowering Paeonia ostii 'Fengdan' and the late flowering Paeonia suffruticosa 'Lianhe,' and the highest expression was in stamens of early flowering mutant Paeonia ostii 'Fengdan.' In addition, the flowering time of pCAMBIA2300-PoVIN3 transgenic plants was significantly earlier than that of the wild-type, indicating that PoVIN3 could promote plant flowering. The results provide a theoretical basis for exploring the role of PoVIN3 in the regulation of flowering in tree peonies.


Assuntos
Paeonia , Paeonia/genética , Paeonia/metabolismo , Flores/genética , Transcriptoma , Reação em Cadeia da Polimerase em Tempo Real , China
17.
Int J Mol Sci ; 23(21)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36361603

RESUMO

Nuclear Factor Y, Subunit C (NF-YC) transcription factors are conserved in most plants, and play essential roles in plant growth and development, especially in flowering regulation. Chrysanthemums are important commercial plants, and their market value is strongly impacted by flowering time. Until now, no details regarding the NF-YC family in the Chrysanthemum genus have been available. In this study, five NF-YC genes were cloned from Chrysanthemum indicum. Multiple alignments showed that CiNF-YCs had the highly conserved characteristic regions. Phylogenetic analyses identified a pair of paralogue NF-YC proteins in chrysanthemums. Gene structure and conserved motifs were also analyzed for functional understanding. According to the results of the expression experiments, CiNF-YC1 and CiNF-YC5 were mainly expressed in leaves or flowers, and their expression levels varied greatly from the seedling to flower bud differentiation stage. Arabidopsis overexpressing CiNF-YC1 and CiNF-YC3 showed significantly delayed flowering, accompanied by other morphological alterations. RT-qPCR analysis revealed that genes associated with photoperiod, vernalization, aging, and gibberellin pathways were downregulated in CiNF-YC1-OX lines, relative to the wild type, whereas in CiNF-YC3-OX lines, only SHORT VEGETATIVE PHASE (AtSVP), the key factor in the ambient temperature pathway, was upregulated. Taken together, these findings suggest that CiNF-YC1 and CiNF-YC3 negatively regulate flowering in Arabidopsis via different flowering pathways.


Assuntos
Arabidopsis , Chrysanthemum , Chrysanthemum/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Filogenia , Flores , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
18.
Genes (Basel) ; 13(5)2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35627286

RESUMO

Trifolium repens is the most widely cultivated perennial legume forage in temperate region around the world. It has rich nutritional value and good palatability, seasonal complementarity with grasses, and can improve the feed intake and digestibility of livestock. However, flowering time and inflorescence development directly affects the quality and yield of T. repens, as well as seed production. The Squa promoter binding protein-like (SPL) gene family is a plant specific transcription factor family, which has been proved to play a critical role in regulating plant formation time and development of flowers. In this study, a total of 37 TrSPL genes were identified from the whole genome of T. repens and were divided into nine clades based on phylogenetic tree. Seventeen TrSPL genes have potential target sites for miR156. The conserved motif of squamosa promoter binding protein (SBP) contains two zinc finger structures and one NLS structure. Gene structure analysis showed that all TrSPL genes contained SBP domain, while ankyrin repeat region was just distributed in part of genes. 37 TrSPL genes were relatively dispersedly distributed on 16 chromosomes, and 5 pairs of segmental repeat genes were found, which indicated that segmental duplication was the main way of gene expansion. Furthermore, the gene expression profiling showed that TrSPL11, TrSPL13, TrSPL22, and TrSPL26 were highly expressed only in the early stage of inflorescence development, while TrSPL1 and TrSPL6 are highly expressed only in the mature inflorescence. Significantly, the expression of TrSPL4 and TrSPL12 increased gradually with the development of inflorescences. The results of this study will provide valuable clues for candidate gene selection and elucidating the molecular mechanism of T. repens flowering regulation.


Assuntos
Trifolium , Inflorescência/metabolismo , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Trifolium/genética , Trifolium/metabolismo
19.
Tree Physiol ; 42(9): 1899-1911, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-35466991

RESUMO

Bamboo has a unique flowering characteristics of long and unpredictable vegetative period, which differs from annual herbs and perennial woody plants. In order to understand the molecular regulatory mechanism of bamboo flowering, a comprehensive study was conducted in ma bamboo (Dendrocalamus latiflorus Munro), including morphological, physiological and transcriptiome analyses. Differentially expressed genes related to the flowering pathway were identified by comparative transcriptome analysis. DlFT1, a homologous gene of FT/Hd3a, was significantly upregulated in flowering bamboo. Direct differentiation of spikelets from calli occurred and the downstream gene AP1 was upregulated in the transgenic bamboo overexpressing DlFT1. Transgenic rice overexpressing DlFT1 showed a strong early flowering phenotype. DlFT1 and DlTFL1 could interact with DlFD, and DlTFL1 delayed flowering. It is presumed that DlTFL1 plays an antagonistic role with DlFT1 in ma bamboo. In addition, the expression of DlFT1 was regulated by DlCO1, indicating that a CO-FT regulatory module might exist in ma bamboo. These results suggest that DlFT1 is a florigen candidate gene with conservative function in promoting flowering. Interestingly, the results have shown for the first time that DlFT2 can specifically interact with E3 ubiquitin ligase WAV3, while DlFT3 transcripts are mainly nonsense splicing. These findings provide better understanding of the roles of the florigen gene in bamboo and lay a theoretical basis for regulating bamboo flowering in the future.


Assuntos
Bambusa , Florígeno , Bambusa/genética , Bambusa/metabolismo , Florígeno/metabolismo , Flores/genética , Flores/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Transcriptoma
20.
Front Plant Sci ; 12: 736419, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34819938

RESUMO

Photoperiod sensitivity is a dominant determinant for the phase transition in cereal crops. CCT (CONSTANS, CO-like, and TOC1) transcription factors (TFs) are involved in many physiological functions including the regulation of the photoperiodic flowering. However, the functional roles of CCT TFs have not been elucidated in the wild progenitors of crops. In this study, we identified 41 CCT TFs, including 19 CMF, 17 COL, and five PRR TFs in Oryza rufipogon, the presumed wild ancestor of Asian cultivated rice. There are thirty-eight orthologous CCT genes in Oryza sativa, of which ten pairs of duplicated CCT TFs are shared with O. rufipogon. We investigated daily expression patterns, showing that 36 OrCCT genes exhibited circadian rhythmic expression. A total of thirteen OrCCT genes were identified as putative flowering suppressors in O. rufipogon based on rhythmic and developmental expression patterns and transgenic phenotypes. We propose that OrCCT08, OrCCT24, and OrCCT26 are the strong functional alleles of rice DTH2, Ghd7, and OsPRR37, respectively. The SD treatment at 80 DAG stimulated flowering of the LD-grown O. rufipogon plants. Our results further showed that the nine OrCCT genes were significantly downregulated under the treatment. Our findings would provide valuable information for the construction of photoperiodic flowering regulatory network and functional characterization of the CCT TFs in both O. rufipogon and O. sativa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA