Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 645
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124958, 2025 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-39146627

RESUMO

Vanillin is a commonly used synthetic flavoring agent in daily life. However, excessive intake of vanillin may pose risks to human health. Therefore, there is an urgent need for rapid and sensitive detection methods for vanillin. In this study, we developed a fluorescent sensor based on Cd-MOF for the sensitive and selective recognition of vanillin. The presence of vanillin leads to significant fluorescence quenching of Cd-MOF due to competitive absorption and photoinduced electron transfer (PET). The limit of detection was determined to be 39.6 nM, which is the lowest-among the reported fluorescent probes. The sensor was successfully applied for the detection of vanillin in real samples such as powdered milk and milk, with a recovery rate ranging from 96.88 % to 104.83 %. Furthermore, by immobilizing the Cd-MOF probe into a polyvinyl alcohol (PVA) film, we achieved a portable and visual detection composite materials for vanillin.


Assuntos
Benzaldeídos , Estruturas Metalorgânicas , Leite , Espectrometria de Fluorescência , Benzaldeídos/análise , Benzaldeídos/química , Leite/química , Animais , Espectrometria de Fluorescência/métodos , Estruturas Metalorgânicas/química , Pós , Corantes Fluorescentes/química , Limite de Detecção , Cádmio/análise
2.
Talanta ; 281: 126853, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39317068

RESUMO

In today's society, heavy metal ions and antibiotic contaminants have caused great harm to water systems and human health. In this study, six isostructural lanthanide metal-organic frameworks [Ln(H3imda)2(TPA)(H2O)2](Tb for CUST-881, Eu for CUST-882, Dy for CUST-883, Er for CUST-884, Nd for CUST-885, Sm for CUST-886) were constructed by selecting terephthalic acid (TPA) and 4,5-Imidazoledicarboxylic acid (H3imda) and lanthanide metal ions via solvethermal method. Among them, CUST-881 and CUST-882 can selectively detect Fe3+, Cr2O72-, CrO42, and ceftriaxone sodium (CRO) in water systems and uric acid in urine. CUST-881 shows very low detection limits for these five substances. Furthermore, Principal Component Analysis (PCA) was used to distinguish Fe3+, Cr2O72-, CrO42-, and CRO in water. To our knowledge, this is the first time that they have been able to be simultaneously distinguished. In addition, the possible sensing mechanism was studied through UV-visible spectroscopy, Infrared spectroscopy, and PXRD analysis. Furthermore, the probe also showed satisfactory repeatability and recovery when applied to UA samples that simulated urine. Based on the above results, lanthanide metal-organic frameworks have great potential for practical monitoring of contaminants in water environments.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 326: 125170, 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39342725

RESUMO

A new "OFF-ON" coumarin-based fluorescent probe for H2S detection was designed and successfully developed through O-sulfonylation between a dabsyl quencher and 7-hydroxy-4-methylcoumarin as a fluorescent reporter, based on a FRET approach. This H2S responsive probe, utilizing H2S assisted thiolysis of a sulfonate ester as the sensing strategy, demonstrated excellent performance towards H2S with a limit of detection (LoD) of 1.64 µM, along with superb selectivity, good stability and high specificity towards H2S without interference from other biomarkers and analytes. Moreover, dabsyl-7-hydroxy-4-methylcoumarin (dabsylcoumarin) is capable of permeating the cell membrane and effectively visualizing the level of H2S in the living HeLa cells without cytotoxicity.

4.
Molecules ; 29(18)2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39339369

RESUMO

Lonicerae japonicae flos (LJF) and Lonicerae flos (LF) are traditional Chinese herbs that are commonly used and widely known for their medicinal properties and edibility. Although they may have a similar appearance and vary slightly in chemical composition, their effectiveness as medicine and their use in clinical settings vary significantly, making them unsuitable for substitution. In this study, a novel 2 × 3 six-channel fluorescent sensor array is proposed that uses machine learning algorithms in combination with the indicator displacement assay (IDA) method to quickly identify LJF and LF. This array comprises two coumarin-based fluorescent indicators (ES and MS) and three diboronic acid-substituted 4,4'-bipyridinium cation quenchers (Q1-Q3), forming six dynamic complexes (C1-C6). When these complexes react with the ortho-dihydroxy groups of phenolic acid compounds in LJF and LF, they release different fluorescent indicators, which in turn causes distinct fluorescence recovery. By optimizing eight machine learning algorithms, the model achieved 100% and 98.21% accuracy rates in the testing set and the cross-validation predictions, respectively, in distinguishing between LJF and LF using Linear Discriminant Analysis (LDA). The integration of machine learning with this fluorescent sensor array shows great potential in analyzing and detecting foods and pharmaceuticals that contain polyphenols.


Assuntos
Lonicera , Lonicera/química , Corantes Fluorescentes/química , Espectrometria de Fluorescência/métodos , Aprendizado de Máquina , Cumarínicos/química , Cumarínicos/análise , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/análise , Extratos Vegetais/química , Extratos Vegetais/análise
5.
Molecules ; 29(18)2024 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-39339490

RESUMO

A Dy(III) coordination polymer (CP), [Dy(spasds)(H2O)2]n (1) (Na2Hspasds = 5-(4-sulfophenylazo)salicylic disodium salt), has been synthesized using a hydrothermal method and characterized. 1 features a 2D layered structure, where the spasda3- anions act as pentadentate ligands, adopting carboxylate, sulfonate and phenolate groups to bridge with four Dy centers in η3-µ1: µ2, η2-µ1: µ1, and monodentate coordination modes, respectively. It possesses a unique (4,4)-connected net with a Schläfli symbol of {44·62}{4}2. The luminescence study revealed that 1 exhibited a broad fluorescent emission band at 392 nm. Moreover, the visual blue color has been confirmed by the CIE plot. 1 can serve as a dual-functional luminescent sensor toward Fe3+ and MnO4- through the luminescence quenching effect, with limits of detection (LODs) of 9.30 × 10-7 and 1.19 × 10-6 M, respectively. The LODs are relatively low in comparison with those of the reported CP-based sensors for Fe3+ and MnO4-. In addition, 1 also has high selectivity and remarkable anti-interference ability, as well as good recyclability for at least five cycles. Furthermore, the potential application of the sensor for the detection of Fe3+ and MnO4- was studied through simulated wastewater samples with different concentrations. The possible sensing mechanisms were investigated using Ultraviolet-Visible (UV-Vis) absorption spectroscopy and density functional theory (DFT) calculations. The results revealed that the luminescence turn-off effects toward Fe3+ and MnO4- were caused by competitive absorption and photoinduced electron transfer (PET), and competitive absorption and inner filter effect (IFE), respectively.

6.
Polymers (Basel) ; 16(17)2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39274172

RESUMO

In this paper, we developed a paper-based fluorescent sensor using functional composite materials composed of graphene quantum dots (GQDs) coated with molecularly imprinted polymers (MIPs) for the selective detection of tetracycline (TC) in water. GQDs, as eco-friendly fluorophores, were chemically grafted onto the surface of paper fibers. MIPs, serving as the recognition element, were then wrapped around the GQDs via precipitation polymerization using 3-aminopropyltriethoxysilane (APTES) as the functional monomer. Optimal parameters such as quantum dot concentration, grafting time, and elution time were examined to assess the sensor's detection performance. The results revealed that the sensor exhibited a linear response to TC concentrations in the range of 1 to 40 µmol/L, with a limit of detection (LOD) of 0.87 µmol/L. When applied to spiked detection in actual water samples, recoveries ranged from 103.3% to 109.4%. Overall, this paper-based fluorescent sensor (MIPs@GQDs@PAD) shows great potential for portable, multi-channel, and rapid detection of TC in water samples in the future.

7.
Molecules ; 29(17)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39274962

RESUMO

Teicoplanin has been banned in the veterinary field due to the drug resistance of antibiotics. However, teicoplanin residue from the antibiotic abuse of humans and animals poses a threat to people's health. Therefore, it is necessary to develop an efficient way for the highly accurate and reliable detection of teicoplanin from humans, food, and water. In this study, novel imprinted quantum dots of teicoplanin were prepared based on boronate affinity-based precisely controlled surface imprinting. The imprinting factor (IF) for teicoplanin was evaluated and reached a high value of 6.51. The results showed excellent sensitivity and selectivity towards teicoplanin. The relative fluorescence intensity was inversely proportional to the concentration of teicoplanin, in the range of 1.0-17 µM. And its limit of detection (LOD) was obtained as 0.714 µM. The fluorescence quenching process was mainly controlled by a static quenching mechanism via the non-radiative electron-transfer process between QDs and the five-membered cyclic boronate esters. The recoveries for the spiked urine, milk, and water samples ranged from 95.33 to 104.17%, 91.83 to 97.33, and 94.22 to 106.67%, respectively.


Assuntos
Antibacterianos , Ácidos Borônicos , Pontos Quânticos , Teicoplanina , Pontos Quânticos/química , Humanos , Teicoplanina/química , Teicoplanina/análise , Ácidos Borônicos/química , Antibacterianos/análise , Antibacterianos/química , Espectrometria de Fluorescência/métodos , Limite de Detecção , Água/química , Impressão Molecular/métodos , Ésteres/química , Ésteres/análise , Transporte de Elétrons , Contaminação de Alimentos/análise , Análise de Alimentos/métodos , Animais , Técnicas Biossensoriais/métodos , Leite/química , Fluorescência
8.
Heliyon ; 10(18): e37914, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39323834

RESUMO

In this work, an innovative ratiometric sensing platform was developed for the determination of methotrexate (MTX), an antifolate drug, a chemotherapy agent, and an immune system suppressant based on blue emission graphene quantum dots/Rhodamine B doped gold nanostars (B-GQDs/Au NSt-RB). The developed sensor was a dual-emission fluorescent probe with two major emission peaks at 440 nm (B-GQDs) and 580 nm (Au NSt-RB) by exciting at 330 nm. Based on the inhibiting effect of MTX on the system's fluorescence density, the stable ratiometric fluorescent probe was used for the rapid determination of MTX in aquatic solutions and spiked human serum samples. The results indicated good linear correlations over the logarithmic concentration range of 0.3 nM-50.0 µM. In addition, B-GQDs/Au NSt-RB can further realize highly sensitive detection of MTX with a low LOD value of 2.28 × 10-10 M. The RSD% values obtained for the intra-day and inter-day precision were 0.63-3.86 %. With recoveries of 98.2-100.1 % and 98.7-100.5 %, respectively. The short-term temperature and freeze-thaw tests confirmed the higher stability of the developed sensor. In addition, the calculated recoveries for MTX recognition in real samples were in the range of 98-102 %. These findings suggested the excellent potential of the ratiometric fluorescence B-GQDs/Au NSt-RB sensor for detecting MTX in real plasma samples.

9.
Food Chem ; 463(Pt 3): 141288, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39326309

RESUMO

Pesticide residue contamination has emerged as a critical concern due to its potential negative effects on both public health and the natural environment. Consequently, the detection of pesticide residue is of utmost importance. Nanomaterial-based fluorescence sensors, including metal nanoparticles (MNPs), metal nanoclusters (MNCs), carbon dots (CDs), and quantum dots (QDs), are particularly effective for detecting pesticide residues. Herein, we provide a comprehensive review of the recent advances (2018-2024) in fluorescence-based sensors utilizing MNPs, MNCs, CDs and QDs and their composites for the purpose of detecting various pesticides including organophosphates, carbamates, organochlorines, and pyrethroids in food. This review delves into the evolution of nanomaterials, their corresponding fluorescence-based sensing mechanisms, including Förster resonance energy transfer (FRET), photoinduced electron transfer (PET), inner filter effect (IFE), aggregation induced emission (AIE), and the detection principle, focusing on aspects of sensitivity and specificity. We also address the challenges and future perspectives of nanomaterials-based fluorescence sensors.

10.
J Fluoresc ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39325300

RESUMO

Using o-phenylenediamine as carbon source and phytic acid as phosphorus source, two P-rich carbon quantum dots RCDs and BCDs were synthesized successfully by changing the reaction temperature and time of hydrothermal method. It was found that RCDs with red emission could realize sensitive detection of 2-methylimidazole, and 2-methylimidazole had no obvious quenching effect on BCDs with blue emission, which made RCDs a sensitive, quick and selective fluorescence sensor for 2-methylimidazole detection. Under the optimal experimental conditions, the fluorescence intensity of RCDs decreased with the increasing of 2-methylimidazole concentration. The detection of 2-methylimidazole concentration by the carbon quantum dots sensor showed a good linear relationship in the range of 5 ~ 110 µM, and the low detection limit was 0.61 µM (S/N = 3). The sensor is able to detect 2-methylimidazole in lake water, enabling the application of real samples. The results show that this work provides a simple fluorescence method to detect 2-methylimidazole in water.

11.
Spectrochim Acta A Mol Biomol Spectrosc ; 326: 125128, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39332179

RESUMO

While copper (Cu2+) is a vital cofactor in numerous enzymatic processes, its homeostasis is critical. Selective sensors for Cu2+ in food matrices are paramount for ensuring adherence to safety regulations and dietary interaction studies. In this work, novel derivatives of 8-aminoquinoline (L1-L4) with extended π-conjugation and various N-substituents were synthesized and evaluated as fluorescent sensors for Cu2+. The 2-pyridinecarbonyl-substituted derivative L3 exhibited sharp fluorescence quenching selectively in the presence of Cu2+. This compound presents high selectivity for Cu2+ even in the presence of other metal ions. The L3-based fluorescent sensor provides a Cu2+ detection limit of 77 nM, surpassing many existing sensors. The quantifications of Cu2+ in water, food supplements, and wines using this sensor have demonstrated good agreement with those obtained using the standard ICP technique. Notably, L3 also facilitates Cu2+ detection in microliter sample volumes at subnanomole levels using paper-based sensors, opening doors for portable and cost-effective on-site testing.

12.
Talanta ; 281: 126840, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39265419

RESUMO

A boronate-ester structure forming a pH-responsive polymer dot (Plu-PD) coated biosensor between carbonized-sp2 rich dopamine-alginate [PD(Alg)] and boronic acid-grafted Pluronic (BA-Pluronic) was developed for the electrochemical and fluorescence detection of cancer cells. The reduced fluorescence (FL) resulting from fluorescence resonance energy transfer (FRET) mediated by π-π interactions within Plu-PD was successfully reinvigorated through the specific cleavage of the boronate-ester bond, triggered by the acidic conditions prevailing in the cancer microenvironment. The anomalous variations in extracellular pH levels observed in cancer (pH ∼6.8), as opposed to the normal cellular pH range of approximately 7.4, serve as robust indicators for discerning cancer cells from their healthy counterparts. Moreover, the Plu-PD coated surface demonstrated remarkable adaptability in modulating its surface structure, concurrently exhibiting tunable electroconductivity under reduced pH conditions, thereby imparting selective responsiveness to cancer cells. The pH-modulated conductivity change was validated by a reduction in resistance from 211 ± 9.7 kΩ at pH 7.4 to 73.9 ± 9.4 kΩ and 61.5 ± 11.5 kΩ at pH 6.8 and 6.0, respectively. The controllable electrochemical characteristics were corroborated through in vitro treatment of cancer cells (HeLa, B16F10, and SNU-C2A) via LED experiments and wireless output analysis. In contrast, identical treatments yielded a limited response in normal cell line (CHO-K1). Notably, the Plu-PD coated surface can be seamlessly integrated with a wireless system to facilitate real-time monitoring of the sensing performance in the presence of cancer and normal cells, enabling rapid and accurate cancer diagnosis using a smartphone.

13.
ACS Sens ; 9(8): 3921-3927, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39133300

RESUMO

Luminescence-based sensing provides a method for the rapid detection of nerve agents. Previous approaches have generally focused on sensing materials containing a nucleophilic group that can react with the electrophilic phosphorus atom found in nerve agents. Herein we report an alternative approach for the detection of phosphonofluoridate-based G-series nerve agents that utilizes the fact they contain hydrogen fluoride. We have developed silylated sensing materials based on an excited-state intramolecular proton transfer (ESIPT) reporter compound, 2-[benzo[d]thiazol-2-yl]phenol. Thin films of differently silylated 2-[benzo[d]thiazol-2-yl]phenol were found to react with the hydrogen fluoride found in di-iso-propyl fluorophosphate (DFP), a simulant of sarin (G-series nerve agent), and turn on the ESIPT emission of the reporter compound. The use of the ESIPT emission reduced the impact of background fluorescence and improved the sensitivity of the detection. The effectiveness of the approach was dependent on the stability of the silyl protecting group used, with the least sterically hindered (trimethylsilyl) found to be too unstable to the ambient environment while the most sterically hindered, e.g., tri-iso-propylsilyl and tert-butyldiphenylsilyl were found to be insufficiently reactive to be useful in a real detection scenario. The sensing material composed of the tert-butyl dimethylsilyl protected 2-[benzo[d]thiazol-2-yl]phenol was found to have the best balance between stability under ambient conditions, and reactivity and selectivity to hydrogen fluoride. In a 3 s exposure, it could detect hydrogen fluoride down to a concentration of around 23 ppm in DFP with 99% purity.


Assuntos
Ácido Fluorídrico , Agentes Neurotóxicos , Prótons , Ácido Fluorídrico/química , Agentes Neurotóxicos/análise , Agentes Neurotóxicos/química , Éteres/química
14.
Sensors (Basel) ; 24(15)2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39124086

RESUMO

The development of fluorescent molecular imprinting sensors for direct, rapid, and sensitive detection of small organic molecules in aqueous systems has always presented a significant challenge in the field of detection. In this study, we successfully prepared a hydrophilic colloidal molecular imprinted polymer (MIP) with 2,4-dichlorophenoxyacetic acid (2,4-D) using a one-pot approach that incorporated polyglycerol methacrylate (PGMMA-TTC), a hydrophilic macromolecular chain transfer agent, to mediate reversible addition-fragmentation chain transfer precipitation polymerization (RAFTPP). To simplify the polymerization process while achieving ratiometric fluorescence detection, red fluorescent CdTe quantum dots (QDs) and green fluorescent nitrobenzodiazole (NBD) were introduced as fluorophores (with NBD serving as an enhancer to the template and QDs being inert). This strategy effectively eliminated background noise and significantly improved detection accuracy. Uniform-sized MIP microspheres with high surface hydrophilicity and incorporated ratiometric fluorescent labels were successfully synthesized. In aqueous systems, the hydrophilic ratio fluorescent MIP exhibited a linear response range from 0 to 25 µM for the template molecule 2,4-D with a detection limit of 0.13 µM. These results demonstrate that the ratiometric fluorescent MIP possesses excellent recognition characteristics and selectivity towards 2,4-D, thus, making it suitable for selective detection of trace amounts of pesticide 2,4-D in aqueous systems.

15.
Biochem Biophys Res Commun ; 734: 150449, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39096623

RESUMO

Lactate plays a crucial role in energy metabolism and greatly impacts protein activities, exerting diverse physiological and pathological effects. Therefore, convenient lactate assays for tracking spatiotemporal dynamics in living cells are desirable. In this paper, we engineered and optimized a red fluorescent protein sensor for l-lactate named FiLa-Red. This indicator exhibited a maximal fluorescence change of 730 % and an apparent dissociation constant (Kd) of approximately 460 µM. By utilizing FiLa-Red and other sensors, we monitored energy metabolism in a multiplex manner by simultaneously tracking lactate and NAD+/NADH abundance in the cytoplasm, nucleus, and mitochondria. The FiLa-Red sensor is expected to be a useful tool for performing metabolic analysis in vitro, in living cells and in vivo.

16.
Talanta ; 280: 126764, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39197314

RESUMO

Perfluorinated compounds (PFCs), as an important class of environmental pollutants, have chemical and structural similarities that make their detection a great technical challenge. This study synthesized three species of metal-organic frameworks (MOFs) using different lanthanide metal ions or organic ligands, which were integrated into a fluorescent sensor array. This innovative approach offers a straightforward, rapid, and precise detection strategy for PFCs. Different ionization properties and fluorinated hydrophobic tails of PFCs lead to different electrostatic attraction and hydrophobic effects between PFCs and sensing elements, which become the basis for differential sensing. Furthermore, the fluorescence signal is more convenient to collect, making the sensor array simple to complete the identification. Combined with pattern recognition methods, the array successfully identified seven kinds of PFCs and mixtures with a classification accuracy of 100 % and a detection limit as low as 51 nM. Finally, the utility of the sensor array in river water sample analysis was verified. The strategy provides an effective method for identifying and determining PFCs and offers new opportunities for developing sensor arrays based on lanthanide MOFs.

17.
Spectrochim Acta A Mol Biomol Spectrosc ; 323: 124932, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39116596

RESUMO

The trace amount of water in organic solvents can affect the progress of chemical reactions, which will adversely affect chemical production in many industries, resulting in a doubling of costs. In this work, carbon dots (CDs) with abundant polar groups were synthesized by a simple one-step hydrothermal method. The prepared CDs showed superior dispersibility and fluorescence performance compared to the CDs that have been reported for the detection of water content in organic solvents. It can realize the fluorescence detection of trace water in several water-soluble organic solvents such as N,N-dimethylformamide, ethanol and methanol with wide linear range (0 %-100 %) and high sensitivity. This will provide a powerful tool for the rapid detection of water content in organic solvents in chemical production.

18.
ACS Appl Mater Interfaces ; 16(34): 45214-45223, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39145439

RESUMO

The abuse and excessive discharge of organic pollutants such as nitroaromatic compounds (NACs) have become a hot topic of concern for all humanity and society, and the development of fast, effective, and targeted technical means for detecting NACs also faces many challenges. Here, we reported a strontium-based metal-organic framework (MOF) {[Sr2(tcbpe)(H2O)4]}n (Sr-tcbpe), in which tcbpe represents deprotonated 4',4‴,4″‴,4‴‴-(ethene-1,1,2,2-tetrayl)tetrakis(([1,1'biphenyl]-4-carboxylic acid)). In Sr-tcbpe, Sr-O polyhedron and deprotonated tcbpe4- ligand have a staggered connection to form a self-assembled three-dimensional network structure. In addition, it is found that Sr-tcbpe undergoes no luminescent color change when grinding under solvent protection, while mechanochromic fluorescence behavior is observed when grinding directly, leading to luminescent color changes from cyan to green (Sr-tcbpe-G). Additionally, Sr-tcbpe and Sr-tcbpe-G could selectively detect PNP, DNP, and TNP, and Sr-tcbpe achieves visual fluorescence sensing detection toward TNP at a limit of detection as low as 2.25 µM. Moreover, during the detection process, unexpectedly, TNP exhibits a selective etching effect on Sr-tcbpe, which could drill nano holes with different sizes on the surface area of MOF materials to a certain extent, achieving the conversion of chemical energy to mechanical energy. In addition, the successful preparation of a portable sensor Sr-tcbpe@gypsum block provides a platform for the perfect combination of mechanochromic fluorescence behavior and visualization detection toward TNP. It lays the foundation for the practical application of MOF materials in daily life.

19.
Environ Sci Pollut Res Int ; 31(38): 50614-50629, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39102147

RESUMO

In this study, we present the synthesis of gold nanoparticles (AuNPs) using a completely green synthesis method without the use of any additional functionalizing agent, except dried turmeric root extract. The significant synthesis parameters were optimized, and the applicability of AuNPs was investigated in areas such as plasmonic and fluorescent sensing of aluminum (Al3⁺) and chromium (Cr3⁺) ions, reduction of 4-nitrophenol (4-NP), and degradation of methylene blue (MB) and methyl orange (MO) dyes. Characterization studies were performed using UV-Vis spectroscopy, TEM, FTIR, and XRD, revealing that the AuNPs predominantly had a spherical morphology and a very small particle size of 8.5 nm, with stability maintained up to 120 days. The developed AuNP-based plasmonic sensors relied on aggregation-induced decreases in absorption, along with a red shift in the spectra. Fluorescence sensing demonstrated a linear increase in intensity with increasing concentrations of Al3⁺ and Cr3⁺, with detection limits of 0.83 and 1.19 nM, respectively. The catalytic activities of AuNPs were tested in reducing 4-NP and degradations of MB and MO dyes (binary system) in tap water and wastewater, with the reactions following pseudo-first-order kinetics. This study highlights the potential of AuNPs synthesized from turmeric roots for various environmental and sensing applications.


Assuntos
Curcuma , Ouro , Nanopartículas Metálicas , Extratos Vegetais , Ouro/química , Nanopartículas Metálicas/química , Curcuma/química , Extratos Vegetais/química , Química Verde , Raízes de Plantas/química , Catálise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Nitrofenóis
20.
J Hazard Mater ; 478: 135429, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39128154

RESUMO

Real-time monitoring and tracking of extreme toxins that penetrate into living cells by using biocompatible, low-cost visual detection via fluorescent monitors are vitally essential to reduce health hazards. Herein, we report a simple engineering design of biocompatible and fluorescent sensors/trackers for real-time monitoring and ultra-trace tracking (up to ppb) of extremely toxic substances (such as arsenic species) in living cells. The biocompatible As(V) sensor (BAS) design is fabricated via successful dressing/decoration process of 2-hydroxy 5-methyl isophthalaldehyde fluorescent receptor into hierarchical organic-inorganic carriers that have micro-hollow geodes, swirled caves and nest-shaped cages, and uniform cubic structures. The BAS monitors show evidence for the selective trapping/detecting/tracking of As(V) species in biological cells (i.e., HeLa cells) despite the coexistence of highly competitive and interfered species. Our simple batch-contact sensing assays shows real-space evidence of the continuous monitoring of As(V) species in HeLa cells with ultra-sensitive detection (i.e., with a low detection limit of 0.149 ppb) and rapid recognition (i.e., in the order of seconds). Significantly, the BAS monitors did not affect the cell population and achieved low cytotoxicity and high cell viability during the monitoring/tracking process inside HeLa cells. The high biocompatibility of BAS remarkably allows precise quantification and real-time monitoring/tracking of toxicant targets in living cells.


Assuntos
Arsênio , Corantes Fluorescentes , Humanos , Células HeLa , Arsênio/análise , Arsênio/toxicidade , Corantes Fluorescentes/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/toxicidade , Sobrevivência Celular/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA