RESUMO
The class I phosphatidylinositol 3-kinase (PI3K)-AKT signaling pathway is a key regulator of cell survival, growth, and proliferation and is among the most frequently mutated pathways in cancer. However, where and how PI3K-AKT signaling is spatially activated and organized in mammalian cells remains poorly understood. Here, we identify focal adhesions (FAs) as subcellular signaling hubs organizing the activation of PI3K-PI(3,4,5)P3-AKT signaling in human cancer cells containing p110α mutations under basal conditions. We find that class IA PI3Ks are preferentially recruited to FAs for activation, resulting in localized production of PI(3,4,5)P3 around FAs. As the effector protein of PI(3,4,5)P3, AKT1 molecules are dynamically recruited around FAs for activation. The spatial recruitment/activation of the PI3K-PI(3,4,5)P3-AKT cascade is regulated by activated FA kinase (FAK). Furthermore, combined inhibition of p110α and FAK results in a more potent inhibitory effect on cancer cells. Thus, our results unveil a growth-factor independent, compartmentalized organization mechanism for PI3K-PI(3,4,5)P3-AKT signaling.
RESUMO
Cells use traction forces to sense mechanical cues in their environment. While the molecular clutch model effectively explains how cells exert more forces on stiffer substrates, it falls short in addressing their adaptation to dynamic mechanical fluctuations prevalent in tissues and organs. Here, using hydrogel with photo-responsive rigidity, we show that cells' response to rigidity changes is frequency dependent. Strikingly, at certain frequencies, cellular traction forces exceed those on static substrates 4-fold stiffer, challenging the established molecular clutch model. We discover that the discrepancy between the rapid adaptation of traction forces and the slower deactivation of mechanotransduction signaling proteins results in their accumulation, thereby enhancing long-term cellular traction in dynamic settings. Consequently, we propose a new model that melds immediate mechanosensing with extended mechanical signaling. Our study underscores the significance of dynamic rigidity in the development of synthetic biomaterials, emphasizing the importance of considering both immediate and prolonged cellular responses.
RESUMO
INTRODUCTION: NSCLC is the leading cause of cancer-related deaths globally, with a low survival rate primarily due to NSCLC frequently becoming chemoresistant. Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase involved in pathways regulating multiple processes in the cell, including survival, migration, and the TME, that contribute to both tumor progression and drug resistance. Recently, FAK inhibitors (FAKi) have shown promising potential for the treatment of NSCLC. AREAS COVERED: This narrative review aims to summarize key signaling pathways involving FAK that contribute to tumor progression and drug resistance. It will further provide an overview of FAKi currently in pre- and early-phase clinical trials for solid tumors, as well as the therapeutic potential of combining FAKi with chemotherapy, as this has emerged as a promising strategy to overcome chemoresistance in NSCLC. EXPERT OPINION: It is becoming increasingly clear that FAK is not an oncogenic driver but rather contributes to tumor progression and drug resistance. Hence, while FAKi have only demonstrated modest results in clinical trials when given by themselves, treatment regimens combining other therapies with FAKi have shown promising potential to overcome drug resistance. Lastly, of particular novelty are FAK-PROTACs (proteolysis-targeting chimaeras), which uniquely target both cytosolic and nuclear FAK.
RESUMO
This review predominantly acquaints the role of focal adhesion kinase (FAK) and cellular-Src (c-Src) in cell adhesion. Cell adhesion is a crucial phenomenon that causes the cells to interact with the extracellular matrix (ECM) or with each other. There are different proteins involved in cell adhesion including cell adhesion molecules (CAMs)/receptors that are present on the cell surface and various cytoplasmic proteins. FAK and c-Src are two proteins in the cytoplasm, which serve as regulators of different proteins involved in cell adhesion. They activate talin, vinculin and paxillin in turn connect the integrins with the cytoskeleton and in this way strengthen the integrin interaction with ECM. FAK-Src signalling also modulates cell-cell adhesion by regulating actin interactions. Being a key modulator of cell adhesion, FAK and c-Src signalling are linked with different pathological conditions like cancer, cardiovascular diseases, and embryonic developmental disorders. Thus, comprehensive research into FAK-Src signalling is of great importance in the exploration of different signalling targets for therapeutic interpretations. Different inhibitors and antibodies against various cell adhesion proteins, such as FAK, c-Src, and integrins, have already been used in preclinical and clinical trials to treat a variety of diseases, including cancer and chronic inflammatory conditions. Furthermore, this review presents different challenges to FAK-Src and cell adhesion signalling targeted drug development, which include, cytotoxicity and cell resistance to the drug. Finally, this review remarks that FAK and c-Src are important regulators of cell adhesion and are linked to various pathologies, nevertheless, more comprehensive research on these proteins would be a significant step forward in the development of effective therapies for the diseases associated with them.
Assuntos
Adesão Celular , Proteína-Tirosina Quinases de Adesão Focal , Transdução de Sinais , Humanos , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Animais , Proteína Tirosina Quinase CSK/metabolismo , Integrinas/metabolismoRESUMO
Cationic liposomes composed of cholesteryl-3ß-carboxyamidoethylene-N-hydroxyethylamine (OH-chol) and 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE) inhibit mast cell degranulation mediated via crosslinking of high-affinity IgE receptors (FcεRI). Although the inhibitory efficiency of mast cell degranulation is altered by modifying the ratio of OH-chol and DOPE in cationic liposomes, the manner in which physicochemical properties, such as surface charge and size, influence suppression is not clear. We observed that positive surface charge, but not the size, of liposomes plays a role in suppressing rat basophilic leukemia (RBL-2H3) cell activation. Pretreatment with middle-ratio OH-chol liposomes (zeta potential, 62.2 ± 0.5 mV; diameter, 325.4 ± 7.3 nm) exhibited a larger suppression of RBL-2H3 cell degranulation evoked by FcεRI crosslinking compared with that by low-ratio OH-chol liposomes (zeta potential, 48.6 ± 1.9 mV; diameter, 344.4 ± 25.0 nm), although both liposomes were similarly attached to RBL-2H3 cells. Preparation of middle-ratio OH-chol liposomes, classified roughly by size using an extrusion method, revealed that the liposomal size did not affect the inhibitory efficiency of RBL-2H3 cell activation. Mechanistically, we found that middle-ratio OH-chol liposomes increased the inhibition of antigen-induced Akt phosphorylation compared to low-ratio OH-chol liposomes. We measured the phosphorylation of linker for activation of T cells (LAT) and paxillin, which are important proteins in FcεRI- and focal adhesions (FAs)-mediated signaling, respectively. Middle ratio OH-chol liposomes significantly suppressed antigen-induced paxillin phosphorylation, but did not affect LAT phosphorylation, suggesting that middle-ratio OH-chol liposomes attached to RBL-2H3 cells suppress the degranulation by impairing FA-mediated Akt phosphorylation evoked by FcεRI crosslinking.
Assuntos
Degranulação Celular , Lipossomos , Proteínas Proto-Oncogênicas c-akt , Animais , Ratos , Degranulação Celular/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linhagem Celular Tumoral , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Leucemia Basofílica Aguda/metabolismo , Leucemia Basofílica Aguda/patologia , Receptores de IgE/metabolismo , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/metabolismo , Fosfatidiletanolaminas/farmacologiaRESUMO
Collective cell migration (CCM) is involved in multiple biological processes, including embryonic morphogenesis, angiogenesis, and cancer invasion. However, the molecular mechanisms underlying CCM, especially leader cell formation, are poorly understood. Here, we show that a signaling pathway regulating angiomotin (AMOT) cleavage plays a role in CCM, using mammalian epithelial cells and mouse models. In a confluent epithelial monolayer, full-length AMOT localizes at cell-cell junctions and limits cell motility. After cleavage, the C-terminal fragment of AMOT (AMOT-CT) translocates to the cell-matrix interface to promote the maturation of focal adhesions (FAs), generate traction force, and induce leader cell formation. Meanwhile, decreased full-length AMOT at cell-cell junctions leads to tissue fluidization and coherent migration of cell collectives. Hence, the cleavage of AMOT serves as a molecular switch to generate polarized contraction, promoting leader cell formation and CCM.
RESUMO
BACKGROUND: Hepatocellular carcinoma (HCC) is a major health challenge with high incidence and poor survival rates in China. Systemic therapies, particularly tyrosine kinase inhibitors (TKIs), are the first-line treatment for advanced HCC, but resistance is common. The Rho GTPase family member Rho GTPase activating protein 12 (ARHGAP12), which regulates cell adhesion and invasion, is a potential therapeutic target for overcoming TKI resistance in HCC. However, no studies on the expression of ARHGAP12 in HCC and its role in resistance to TKIs have been reported. AIM: To unveil the expression of ARHGAP12 in HCC, its role in TKI resistance and its potential associated pathways. METHODS: This study used single-cell RNA sequencing (scRNA-seq) to evaluate ARHGAP12 mRNA levels and explored its mechanisms through enrichment analysis. CellChat was used to investigate focal adhesion (FA) pathway regulation. We integrated bulk RNA data (RNA-seq and microarray), immunohistochemistry and proteomics to analyze ARHGAP12 mRNA and protein levels, correlating with clinical outcomes. We assessed ARHGAP12 expression in TKI-resistant HCC, integrated conventional HCC to explore its mechanism, identified intersecting FA pathway genes with scRNA-seq data and evaluated its response to TKI and immunotherapy. RESULTS: ARHGAP12 mRNA was found to be highly expressed in malignant hepatocytes and to regulate FA. In malignant hepatocytes in high-score FA groups, MDK-[integrin alpha 6 (ITGA6) + integrin ß-1 (ITGB1)] showed specificity in ligand-receptor interactions. ARHGAP12 mRNA and protein were upregulated in bulk RNA, immunohistochemistry and proteomics, and higher expression was associated with a worse prognosis. ARHGAP12 was also found to be a TKI resistance gene that regulated the FA pathway. ITGB1 was identified as a crossover gene in the FA pathway in both scRNA-seq and bulk RNA. High expression of ARHGAP12 was associated with adverse reactions to sorafenib, cabozantinib and regorafenib, but not to immunotherapy. CONCLUSION: ARHGAP12 expression is elevated in HCC and TKI-resistant HCC, and its regulatory role in FA may underlie the TKI-resistant phenotype.
RESUMO
Despite advancements in nanomedicine for drug delivery, many drug-loaded nanoparticles reduce tumor sizes but often fail to prevent metastasis. Mesoporous silica nanoparticles (MSNs) have attracted attention as promising nanocarriers. Here, we demonstrated that MSN-PEG/TA 25, with proper surface modifications, exhibited unique antimetastatic properties. In vivo studies showed that overall tumor metastasis decreased in 4T1 xenografts mice treated with MSN-PEG/TA 25 with a notable reduction in lung tumor metastasis. In vitro assays, including wound-healing, Boyden chamber, tube-formation, and real-time cell analyses, showed that MSN-PEG/TA 25 could modulate cell migration of 4T1 breast cancer cells and interrupt tube formation by human umbilical vein endothelial cells (HUVECs), key factors in suppressing cancer metastasis. The synergistic effect of MSN-PEG/TA 25 combined with liposomal-encapsulated doxorubicin (Lipo-Dox) significantly boosted mouse survival rates, outperforming Lipo-Dox monotherapy. We attributed the improved survival to the antimetastatic capabilities of MSN-PEG/TA 25. Moreover, Dox-loaded MSN-PEG/TA 25 suppressed primary tumors while retaining the antimetastatic effect, thereby enhancing therapeutic outcomes and overall survival. Western blot and qPCR analyses revealed that MSN-PEG/TA 25 interfered with the phosphorylation of ERK, FAK, and paxillin, thus impacting focal adhesion turnover and inhibiting cell motility. Our findings suggest that drug-free MSN-PEG/TA 25 is highly efficient for cancer treatment via suppressing metastatic activity and angiogenesis.
RESUMO
The regeneration of epithelia is crucial for maintaining intestinal homeostasis. Irisin is an exercise-induced hormone originally found to be secreted by skeletal muscles, thereby regulating energy metabolism. Recent studies have revealed that irisin protected against gut inflammation. However, the direct effects of irisin on the intestinal epithelial cells remain to be elucidated. In this study, mouse intestinal organoids were used to assess the effects of irisin on the proliferation of the intestinal epithelial cells. At a concentration of 100 ng/mL irisin significantly increased the growth of the intestinal organoids and upregulated the Wnt/ß-catenin and focal adhesion kinase (FAK) signaling pathway genes. Notably, a FAK inhibitor 14 blocked the effects of irisin on the proliferation of the intestinal epithelial cells by inhibiting FAK phosphorylation, as well as the expressions of Wnt target genes. Furthermore, irisin (100 ng/mL) improved the recovery of the intestinal organoids from cellular damages caused by TNF-α, and markedly increased the expression of Wnt target genes in the intestinal epithelial cells. Taken together, irisin activates Wnt/ß-catenin and FAK signaling pathways in the intestinal epithelial cells, thereby promoting intestinal epithelial self-renewal under normal homeostatic conditions and intestinal epithelial regeneration upon damages.
Assuntos
Proliferação de Células , Células Epiteliais , Fibronectinas , Proteína-Tirosina Quinases de Adesão Focal , Mucosa Intestinal , Via de Sinalização Wnt , Animais , Proliferação de Células/efeitos dos fármacos , Camundongos , Via de Sinalização Wnt/efeitos dos fármacos , Fibronectinas/metabolismo , Fibronectinas/farmacologia , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/citologia , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , beta Catenina/metabolismo , Organoides/metabolismo , Organoides/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Camundongos Endogâmicos C57BLRESUMO
The Gram-negative bacterium Myxococcus xanthus glides on solid surfaces. Dynamic bacterial focal adhesion complexes (bFACs) convert proton motive force from the inner membrane into mechanical propulsion on the cell surface. It is unclear how the mechanical force transmits across the rigid peptidoglycan (PG) cell wall. Here, we show that AgmT, a highly abundant lytic PG transglycosylase homologous to Escherichia coli MltG, couples bFACs to PG. Coprecipitation assay and single-particle microscopy reveal that the gliding motors fail to connect to PG and thus are unable to assemble into bFACs in the absence of an active AgmT. Heterologous expression of E. coli MltG restores the connection between PG and bFACs and thus rescues gliding motility in the M. xanthus cells that lack AgmT. Our results indicate that bFACs anchor to AgmT-modified PG to transmit mechanical force across the PG cell wall.
Assuntos
Parede Celular , Glicosiltransferases , Myxococcus xanthus , Peptidoglicano , Peptidoglicano/metabolismo , Parede Celular/metabolismo , Myxococcus xanthus/genética , Myxococcus xanthus/fisiologia , Myxococcus xanthus/metabolismo , Myxococcus xanthus/enzimologia , Glicosiltransferases/metabolismo , Glicosiltransferases/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Adesões Focais/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Aderência BacterianaRESUMO
OBJECTIVE: In highly aggressive malignant cancers including breast cancer, vasculogenic mimicry (VM) is the potential of tumor cells to generate a vascular channel network for delivering blood to tumor cells. Detection of genes involved in this process is critical to designing targeted therapy against breast cancer metastasis. In this study, we evaluated the roles of FAK and ILK in the progression of VM in metastatic breast tumor cells. RESULTS: Primary (4T1T), and highly metastatic (4T1B and 4T1L) breast tumor cells were isolated from cancerous mice. The potential of cancer cells to organize themselves into vascular-like structures (VM) has been evaluated with in vitro assessment. The expression of ILK and FAK were examined using real-time polymerase chain reaction. We confirmed the high ability of metastatic tumor cells in vascular-like structure formation. In molecular analysis, our data showed that ILK and FAK expression was significantly elevated in metastatic breast tumor cells. These results indicated that the higher potential of metastatic tumor cells in vascular-like structure formation may be related to higher expression of ILK and FAK. Analysis of molecular features of metastatic tumor cells could be utilized to create a targeted therapeutic strategy against metastasis in breast cancer.
Assuntos
Neoplasias da Mama , Metástase Neoplásica , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Animais , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Feminino , Camundongos , Linhagem Celular Tumoral , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/irrigação sanguínea , Neoplasias da Mama/metabolismo , Neovascularização Patológica/patologia , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Camundongos Endogâmicos BALB C , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Quinase 1 de Adesão Focal/genética , Regulação Neoplásica da Expressão GênicaRESUMO
Burn injury-induced pain (BIP) is a significant global health concern, affecting diverse populations including children, military veterans, and accident victims. Current pharmacotherapeutics for the management of BIP are associated with severe side effects including drug addiction, respiratory depression, sedation, and constipation posing significant barrier to their clinical utility. In the present study, we have investigated the potential role of focal adhesion kinase (p-FAK) for the very first time in BIP and elucidated the associated underlying mechanisms. Defactinib (DFT), a potent p-FAK inhibitor, administered at doses of 5, 10, and 20 mg/kg via intraperitoneal injection, demonstrates significant efficacy in reducing both evoked and spontaneous pain without causing addiction or other central nervous system toxicities. Burn injury triggers p-FAK-mediated phosphorylation of Erk1/2 and NR2B signaling in the DRG, resulting in heightened hypersensitivity through microglial activation, neuropeptide release, and elevated proinflammatory cytokines. Defactinib (DFT) counteracts these effects by reducing NR2B upregulation, lowering substance P levels, inhibiting microglial activation, and restoring IL-10 levels while leaving CGRP levels unchanged. These findings provide valuable insights into the pivotal role of p-FAK in regulating BIP and highlight the potential for developing novel therapeutics for burn injury-induced pain with minimal side effects.
RESUMO
Tissue factor pathway inhibitor-2 (TFPI2) is a Kunitz-type serine protease inhibitor and an ovarian clear cell carcinoma (CCC) biomarker. TFPI2 is expressed in several cancers and exerts tumor-suppressive effects; however, the role of TFPI2 in the CCC cell phenotype remains unclear. Therefore, in this study, we investigated the function of TFPI2 by establishing a gene knockout (KO) in ES-2 CCC cells and observed the change in phenotypes in vitro and in vivo. TFPI2 KO inhibited ES-2 cell proliferation, increased extracellular matrix protein adhesion, enhanced focal adhesion formation and activated integrin ß1 cell surface clustering in vitro, and markedly increased ES-2 tumor growth and dissemination in the peritoneal cavity of a mouse xenograft model. These findings suggest a novel function of TFPI2 expression in suppressing the formation of focal adhesions in CCC cells, potentially by activating integrin ß1. This function plays a role in the peritoneal growth characteristics of CCC cells.
RESUMO
Cisplatin-induced renal tubular injury largely restricts the wide-spread usage of cisplatin in the treatment of malignancies. Identifying the key signaling pathways that regulate cisplatin-induced renal tubular injury is thus clinically important. PARVB, a focal adhesion protein, plays a crucial role in tumorigenesis. However, the function of PARVB in kidney disease is largely unknown. To investigate whether and how PARVB contributes to cisplatin-induced renal tubular injury, a mouse model (PARVB cKO) was generated in which PARVB gene was specifically deleted from proximal tubular epithelial cells using the Cre-LoxP system. In this study, we found depletion of PARVB in proximal tubular epithelial cells significantly attenuates cisplatin-induced renal tubular injury, including tubular cell death and inflammation. Mechanistically, PARVB associates with transforming growth factor-ß-activated kinase 1 (TAK1), a central regulator of cell survival and inflammation that is critically involved in mediating cisplatin-induced renal tubular injury. Depletion of PARVB promotes cisplatin-induced TAK1 degradation, inhibits TAK1 downstream signaling, and ultimately alleviates cisplatin-induced tubular cell damage. Restoration of PARVB or TAK1 in PARVB-deficient cells aggravates cisplatin-induced tubular cell injury. Finally, we demonstrated that PARVB regulates TAK1 protein expression through an E3 ligase ITCH-dependent pathway. PARVB prevents ITCH association with TAK1 to block its ubiquitination. Our study reveals that PARVB deficiency protects against cisplatin-induced tubular injury through regulation of TAK1 signaling and indicates targeting this pathway may provide a novel therapeutic strategy to alleviate cisplatin-induced kidney damage.
Assuntos
Cisplatino , MAP Quinase Quinase Quinases , Camundongos Knockout , Transdução de Sinais , Cisplatino/efeitos adversos , Cisplatino/toxicidade , Animais , MAP Quinase Quinase Quinases/metabolismo , MAP Quinase Quinase Quinases/genética , Transdução de Sinais/efeitos dos fármacos , Camundongos , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Túbulos Renais Proximais/efeitos dos fármacos , Humanos , Camundongos Endogâmicos C57BL , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Antineoplásicos/farmacologia , Antineoplásicos/efeitos adversos , Túbulos Renais/patologia , Túbulos Renais/metabolismo , Túbulos Renais/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de SinalRESUMO
Human periodontal ligament cells (hPDLCs) contain multipotent postnatal stem cells that can differentiate into PDL fibroblasts, osteoblasts, and cementoblasts. Interaction between the extracellular environment and stem cells is an important factor for differentiation into other progenitor cells. To identify cell surface molecules that induce PDL fibroblastic differentiation, we developed a series of monoclonal antibodies against membrane/ECM molecules. One of these antibodies, an anti-PDL25 antibody, recognizes approximately a 100 kDa protein, and this antigenic molecule accumulates in the periodontal ligament region of tooth roots. By mass spectrometric analysis, we found that the antigenic molecule recognized by the anti-PDL25 antibody is fibroblast activation protein α (FAPα). The expression level of FAPα/PDL25 increased in TGF-ß1-induced PDL fibroblasts, and this protein was localized in the cell boundaries and elongated processes of the fibroblastic cells. Ectopic expression of FAPα induced fibroblastic differentiation. In contrast, expression of representative markers for PDL differentiation was decreased by knock down and antibody blocking of FAPα/PDL25. Inhibition of dipeptidyl peptidase activity by a potent FAPα inhibitor dramatically inhibited PDL fibroblastic marker expression but did not affect in cell proliferation and migration.
Assuntos
Diferenciação Celular , Endopeptidases , Fibroblastos , Gelatinases , Proteínas de Membrana , Ligamento Periodontal , Serina Endopeptidases , Fator de Crescimento Transformador beta1 , Humanos , Ligamento Periodontal/citologia , Ligamento Periodontal/metabolismo , Diferenciação Celular/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Serina Endopeptidases/metabolismo , Proteínas de Membrana/metabolismo , Endopeptidases/metabolismo , Gelatinases/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Células Cultivadas , Proliferação de Células , Anticorpos Monoclonais/farmacologia , AnimaisRESUMO
Introduction: The potential toxic effects of wastewater discharges containing silver nanoparticles (AgNPs) and their release into aquatic ecosystems on aquatic organisms are becoming a major concern for environmental and human health. However, the potential risks of AgNPs to aquatic organisms, especially for cardiac development by Focal adhesion pathway, are still poorly understood. Methods: The cardiac development of various concentrations of AgNPs in zebrafish were examined using stereoscopic microscope. The expression levels of cardiac development-related genes were analyzed by qRT-PCR and Whole-mount in situ hybridization (WISH). In addition, Illumina high-throughput global transcriptome analysis was performed to explore the potential signaling pathway involved in the treatment of zebrafish embryos by AgNPs after 72 h. Results: We systematically investigated the cardiac developing toxicity of AgNPs on the embryos of zebrafish. The results demonstrated that 2 or 4 mg/L AgNPs exposure induces cardiac developmental malformations, such as the appearance of pericardial edema phenotype. In addition, after 72 h of exposure, the mRNA levels of cardiac development-related genes, such as myh7, myh6, tpm1, nppa, tbx5, tbx20, myl7 and cmlc1, were significantly lower in AgNPs-treated zebrafish embryos than in control zebrafish embryos. Moreover, RNA sequencing, KEGG (Kyoto Encyclopedia of Genes) and Genomes and GSEA (gene set enrichment analysis) of the DEGs (differentially expressed genes) between the AgNPs-exposed and control groups indicated that the downregulated DEGs were mainly enriched in focal adhesion pathways. Further investigations demonstrated that the mRNA levels of focal adhesion pathway-related genes, such as igf1ra, shc3, grb2b, ptk2aa, akt1, itga4, parvaa, akt3b and vcla, were significantly decreased after AgNPs treatment in zebrafish. Conclusion: Thus, our findings illustrated that AgNPs could impair cardiac development by regulating the focal adhesion pathway in zebrafish.
Assuntos
Adesões Focais , Coração , Nanopartículas Metálicas , Prata , Peixe-Zebra , Animais , Peixe-Zebra/embriologia , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Coração/efeitos dos fármacos , Coração/embriologia , Prata/toxicidade , Prata/química , Adesões Focais/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismoRESUMO
Triple negative breast cancer (TNBC) is the most aggressive subtype in breast tumors. When re-analyzing TCGA breast cancer dataset, we found cell adhesion molecules are highly enriched in differentially expressed genes in TNBC samples, among which Focal Adhesion Kinase (FAK) is most significantly associated with poor survival of TNBC patients. FAK is precisely modulated in the focal adhesion dynamics. To investigate whether lncRNAs regulate FAK signaling, we performed RNA immunoprecipitation sequencing and found FAISL (FAK Interacting and Stabilizing LncRNA) abundantly enriched in FAK-interacting lncRNAs and frequently overexpressed in TCGA TNBC tissues. FAISL promotes TNBC cell adhesion, cytoskeleton spreading, proliferation, and anchor-independent survival. FAISL doesn't affect FAK mRNA but positively regulates FAK protein level by blocking Calpain 2-mediated proteolysis. FAISL interacts with the C-terminus domain of FAK, whereby masks the binding site of Calpain 2 and prevents FAK cleavage. High level of FAISL correlates with FAK expression in tumor tissues and poor prognosis of TNBC patients. A siRNA delivery system targeting FAISL using reduction-responsive nanoparticles effectively inhibits tumor growth and metastasis in TNBC mouse models. Together, these findings uncover a lncRNA-mediated mechanism of regulating FAK proteolysis in the TNBC progression, and highlight the potential of targeting lncRNA FAISL for TNBC treatment.
RESUMO
Gastric cancer is one of the most malignant digestive tract tumors worldwide and its progression is associated with gene expression and metabolic alteration. We revealed that the gastric cancer patients with lower expression level of TOB1 exhibited poorer overall survivals according to the data in Kaplan-Meier Plotter. The unphosphorylated TOB1 protein which is effective expressed lower in gastric cancer cells. The gastric cancer cells with TOB1 gene depletion performed higher abilities of proliferation, migration and invasion and lower ability of apoptosis in vitro. The TOB1 gene depletion also promoted the tumorigenesis of gastric cancer cells in vivo. The gastric cancer cells with TOB1 gene overexpression had the converse behaviors. The transcriptional and metabolic sequencing was performed. The analyzation results showed that genes correlate-expressed with TOB1 gene were enriched in the pathways related to ERK pathway, including focal adhesion pathway, which was verified using real-time quantitative PCR. After inhibiting ERK pathway, the proliferation, colony formation and migration abilities were reduced in gastric cancer cells with low phosphorylated TOB1 protein expression level. Moreover, Pearson correlation analysis was adopted to further analyze the correlation of enriched metabolic products and differentially expressed genes. The expression of Choline, UDP-N-acetylglucosamine, Adenosine and GMP were related to the function of TOB1. This study demonstrates the genes and metabolites related to focal adhesion pathway and ERK pathway are the potential diagnosis and therapeutic targets to gastric cancer with TOB1 depletion.
Assuntos
Movimento Celular , Proliferação de Células , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Sistema de Sinalização das MAP Quinases , Neoplasias Gástricas , Proteínas Supressoras de Tumor , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/mortalidade , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Movimento Celular/genética , Linhagem Celular Tumoral , Animais , Camundongos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Adesões Focais/genética , Adesões Focais/metabolismo , Apoptose/genéticaRESUMO
The efficacy of dendritic cell (DC)-based cancer vaccines is critically determined by the functionalities of in vitro maturated DCs. The maturation of DCs typically relies on chemicals that are cytotoxic or hinder the ability of DCs to efficiently activate the antigen-specific cytotoxic T-lymphocytes (CTLs) against tumors. Herein, the maturation chemicals are replaced with extracellular silica nanomatrices, fabricated by glancing angle deposition, to promote in vitro maturation of murine bone marrow-derived DCs (mBMDCs). The extracellular nanomatrices composed of silica nanozigzags (NZs) enable the generation of mature mBMDCs with upregulated levels of co-stimulatory molecules, C-C chemokine receptor type-7, X-C motif chemokine recetpor-1, DC-specific ICAM-3 grabbing nonintegrin, and enhanced endocytic capacity. The in vitro maturation is partially governed by focal adhesion kinase (FAK) that is mechanically activated in the curved cell adhesions formed at the DC-NZ interfaces. The NZ-maturated mBMDCs can prime the antigen-specific CTLs into programmed cell death protein-1 (PD-1)lowCD44high memory phenotypes in vitro and suppress the growth of tumors in vivo. Meanwhile, the NZ-mediated beneficial effects are also observed in human monocyte-derived DCs. This work demonstrates that the silica NZs promote the anti-tumor capacity of in vitro maturated DCs via the mechanoactivation of FAK, supporting the potential of silica NZs being a promising biomaterial for cancer immunotherapy.