Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.913
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Food Chem ; 460(Pt 2): 140606, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39089032

RESUMO

Fresh, unpasteurized carrot juice is a popular element of the everyday diet of many consumers, and as such the matter of the juice's microbial safety remains an important one. Imaging flow cytometry (FCM) allows a fast enumeration and determination of cells, as well as their further differentiation. However, carrot juice is a difficult food product to analyze with the use of FCM due to interference from autofluorescence and the presence of plant debris. In this research, we aimed to obtain an effective and repeatable protocol for the preparation of carrot juice samples for FCM analysis. Through experimental and software-based means we successfully determined a reliable protocol for the preparation of fresh, unpasteurized carrot juice, which consisted of a sequence of filtering, centrifugation, enzyme treatment, and finally the implementation of the Machine Learning protocol for the best result.

2.
Food Chem ; 460(Pt 2): 140625, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39089030

RESUMO

Tert-butylhydroquinone (TBHQ) is easily overused or illegally added to edible oil and attracts a growing concern because of its cytotoxic, liver-damaging, and carcinogenic effects. Thus, a sensitive and intelligent point-of-care testing (iPOCT) method is developed to fulfill the on-site monitoring. This iPOCT method depended on a fluorescent immunochromatographic assay within 15 min. Under optimization, the limit of quantification (LOQ) was calculated as 0.03 µg mL-1. The iPOCT method provided a low limit of detection (LOD) of 0.02 µg mL-1, a wide linear range of 0.03-100 µg mL-1, and great selectivity. Recoveries by the spiking experiments ranged from 97.4% to 103.5% with relative standard deviations (RSDs) of 2.4%-4.9% in soybean, peanut, rapeseed, and corn oil samples. The results showed that the iPOCT method is highly consistent with the high-performance liquid chromatography (HPLC) method.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 323: 124886, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39089069

RESUMO

Mercury, one of the various harmful metals, is particularly significant in affecting aquatic organisms, currently gaining more attentions and sparking discussions. In response to the limitations of traditional detections, fluorescent probes have emerged as a promising solution with some advantages, such as weaker background interference, shorter processing time, higher accuracy. Thus, a novel fluorescent probe, FS-Hg-1, has been developed for assessing mercury ion (Hg2+) concentrations in aquatic products. This probe displays specific recognition of mercury ions in fluorescence spectra. Notably, FS-Hg-1 exhibits a distinct color change to pink when combined with Hg2+ (with a 948-fold increase in absorption at 568 nm) and a substantial fluorescence change towards Hg2+ (361-fold increase, excitation at 562 nm, emission at 594 nm) in N, N-dimethylformamide. The probe boasts a detection limit of 0.14 µM and rapid reaction with Hg2+ within 10 s, showing an excellent linear correlation with [Hg2+] in the range of 0 to 10 µM. Through thorough analysis using FS-Hg-1, the results align with those from the standard method (P > 0.05), with spiked recovery rates ranging from 108.4% to 113.2%. With its precise recognition, low detection limit, and remarkable sensitivity, this fluorescent assay proves effective in mercury concentration determination in aquatic samples without interference. The potential of FS-Hg-1 is promising for speedy detection of residual Hg2+ and holds significance in ensuring food safety.

4.
Front Chem ; 12: 1425774, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39114265

RESUMO

Biotoxins are ranges of toxic substances produced by animals, plants, and microorganisms, which could contaminate foods during their production, processing, transportation, or storage, thus leading to foodborne illness, even food terrorism. Therefore, proposing simple, rapid, and effective detection methods for ensuring food free from biotoxin contamination shows a highly realistic demand. Aptamers are single-stranded oligonucleotides obtained from the systematic evolution of ligands by performing exponential enrichment (SELEX). They can specifically bind to wide ranges of targets with high affinity; thus, they have become important recognizing units in safety monitoring in food control and anti-terrorism. In this paper, we reviewed the technical points and difficulties of typical aptamer screening processes for biotoxins. For promoting the understanding of food control in the food supply chain, the latest progresses in rapid optical detection of biotoxins based on aptamers were summarized. In the end, we outlined some challenges and prospects in this field. We hope this paper could stimulate widespread interest in developing advanced sensing systems for ensuring food safety.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 323: 124927, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39116591

RESUMO

Hypochlorite (ClO-) and gallium (Ⅲ) ions (Ga3+) have extensive applications in various human industries and daily activities. However, their inherent toxicity poses significant risks to environmental preservation and human well-being. Hence, the development of reliable and handy detection tools for ClO- and Ga3+ in the environment and food is crucial. In this study, a ratiometric fluorescent probe was prepared based on benzothiazolaldehyde and pyridine-2-carboxylic acid hydrazide, which exhibited exceptional performance characteristics for the selective detection of ClO- and Ga3+. These features include high specificity, low detection limits (0.28 µM for ClO-, 0.13 µM for Ga3+), mild pH conditions (pH 4-11 for ClO-, pH 6-11 for Ga3+), fast response time (within 30 s), as well as versatile applicability across different matrices such as water, soil, food, and plant samples. Additionally, this probe can be used with a smartphone color recognition app. The probe offers a convenient and effective tool for the detection of ClO- and Ga3+, demonstrating its potential application value in environmental monitoring and food safety.

6.
Talanta ; 279: 126618, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39116729

RESUMO

Foodborne illnesses caused by Salmonella and Staphylococcus aureus are a significant public health concern, leading to societal and economic repercussions. It is important to develop a simple and straightforward bacteria detection and identification method. A triple-probe multiplex rolling circle amplification technique has been developed to simultaneously detect Salmonella Typhimurium and S. aureus. This method utilizes fluorophore-labeled long padlock probes targeting S. Typhimurium invA and S. aureus glnA specific genes, along with a pH-based detection approach for direct visual identification. The multiplex hyperbranched saltatory rolling circle amplification assay at 30 °C has showed promising results with synthetic targets within 30 min and real bacteria within 2 h after establishing the detection settings. The assay is specific for S. aureus and S. Typhimurium, with a limit of detection of 39 µM for fluorescence and 78 µM for colorimetric. In the simulative test of this method for the detection of S. Typhimurium and S. aureus in milk, the limit of detection for the fluorescence signal after 2 h of amplification was 10 CFU/mL and 5 CFU/mL, respectively. The detection method was evaluated to be stable enough to detect pathogen for 3.29 months. Consequently, this triple-probe-multiplex rolling circle amplification method displays notable specificity, sensitivity, as well as ease of interpretation when testing food samples for harmful pathogens.

7.
Int J Food Microbiol ; 424: 110847, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39106593

RESUMO

Escherichia coli is one of the most prevalent foodborne pathogens, frequently found in meat and dairy products. Current decontamination methods are often associated with changes in organoleptic characteristics, nutrient loss, and potentially harmful side effects. Furthermore, despite the array of available methods, foodborne outbreaks still frequently occur. For this reason, bacteriophages (or simply phages) emerged as a natural alternative for the biocontrol of bacterial contamination in food without altering their organoleptic properties. In this study, the potential of phage phT4A was assessed in the biocontrol of E. coli in liquid (milk) and solid (ham) food matrices. Firstly, as foods have different pH and temperature values, the influence of these parameters on phage phT4A viability was also assessed to develop an effective protocol. Phage phT4A proved to be stable for long storage periods at pH 7-8 (56 days) and temperatures of 4-37 °C (21 days). Before application of phages to inactivate pathogenic bacteria in food, previous assays were carried out in Tryptic Soy Broth (TSB) to study the dynamics of phage-bacteria interaction. Then, the antibacterial potential of phage phT4A was evaluated in the two food matrices at different temperatures (4, 10 and 25 °C). This phage was more efficient at 25 °C in all tested matrices (maximum inactivation of 6.6, 3.9 and 1.8 log CFU/mL in TSB, milk and ham, respectively) than at 10 °C (maximum decrease of 4.7, 2.1 and 1.0 log CFU/mL in TSB, milk and ham, respectively) and 4 °C (maximum reduction of 2.6 and 0.7 log CFU/mL in TSB and milk, respectively). However, the decrease of temperature from 25 °C to 10 and 4 °C prevented bacterial regrowth. The results suggest that during phage treatment, a balance between an incubation temperature that provide effective results in terms of bacterial inactivation by the phages and at the same time prevents or delays bacterial regrowth, is needed. The application of phage phT4A at a temperature of 10 °C can be an effective strategy in terms of bacterial inactivation, delaying bacterial regrowth and also reducing energy costs.

8.
Food Chem ; 460(Pt 3): 140690, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39106752

RESUMO

The misuse of tetracyclines in livestock production poses significant health risks. Thus, establishing convenient detection methods to replace complex laboratory tests for food safety is crucial. In this study, a heterostructure Zn-BTC/IRMOF-3 (denoted as ZBI) asynchronous response fluorescence sensor was developed for the qualitative and quantitative detection of tetracyclines in foods. The ZBI solution exhibited blue fluorescence under UV excitation; upon the introduction of tetracyclines, ZBI selectively recognized the tetracycline molecules through electron transfer, π-π stacking, and chelation, resulting in blue fluorescence quenching and green fluorescence enhancement. The ZBI sensor for tetracycline detection achieved recovery rates ranging from 93.91 to 111.91% in food samples, with a detection limit of as low as 0.086 µmol/L. Lastly, a portable sensing device using support vector classifier was constructed for detecting tetracyclines in real-life scenarios. Our findings introduce a new approach for fabricating fluorescence sensors and offer a novel method for detecting tetracyclines.

9.
Nano Lett ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39109676

RESUMO

Food safety is vital to human health, necessitating the development of nondestructive, convenient, and highly sensitive methods for detecting harmful substances. This study integrates cellulose dissolution, aligned regeneration, in situ nanoparticle synthesis, and structural reconstitution to create flexible, transparent, customizable, and nanowrinkled cellulose/Ag nanoparticle membranes (NWCM-Ag). These three-dimensional nanowrinkled structures considerably improve the spatial-electromagnetic-coupling effect of metal nanoparticles on the membrane surface, providing a 2.3 × 108 enhancement factor for the surface-enhanced Raman scattering (SERS) effect for trace detection of pesticides in foods. Notably, the distribution of pesticides in the apple peel and pulp layers is visualized through Raman imaging, confirming that the pesticides penetrate the peel layer into the pulp layer (∼30 µm depth). Thus, the risk of pesticide ingestion from fruits cannot be avoided by simple washing other than peeling. This study provides a new idea for designing nanowrinkled structures and broadening cellulose utilization in food safety.

10.
Food Chem ; 460(Pt 3): 140714, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39111041

RESUMO

Mercury ion (Hg2+), a highly toxic metal pollutant, is widely found in the environment and can enter the human body through the food chain, causing various health issues. Sensitive and accurate methods for monitoring Hg2+ are highly desirable for ensuring food safety. Herein, we propose a self-sustainable multiple amplification system (MAS) for Hg2+ determination through the reciprocal activation between catalytic hairpin assembly (CHA) and rolling circle amplification (RCA). The thymine-encoded recognition element specifically recognizes Hg2+, triggering the exposure of the initiator. The initiator then motivates the mutual activation of CHA and RCA to accelerate the production of an exponentially amplified signal. The MAS method achieved a low detection limit of 11 pM. Due to its reliable target recognition and robust amplification efficiency, the MAS circuit facilitated the highly efficient and accurate analysis of low-abundance Hg2+ in milk and snakehead samples, thus providing a potentially new tool for food safety control.

11.
Int J Biol Macromol ; 277(Pt 4): 134486, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39102913

RESUMO

Food from animal sources (e.g., fish) represents the food group most likely to disseminate diseases to humans. To prevent food contamination and foodborne illnesses, intelligent packaging has been developed to monitor fish freshness by real-time tracking their physicochemical attributes and informing consumers about their conservation state. In this context, we investigated the influence of ionic strength (IS) provided by CaCl2 on the chromatic response of anthocyanin açai extracts incorporated into methylcellulose (MC) within hydrocolloid-based colorimetric sensors for monitoring the freshness of Lambari fish. The color sensitivity of the sensors was modulated by IS in the presence of NH3 volatile and/or TVB-N. Increasing IS led to a plasticizing effect in the MC matrix, which influenced the chromatic properties of anthocyanin in the presence of NH3 and/or TVB-N. The perception of distinct colors by untrained eyes improved from 10 min with the control sensor to 2.5 min for sensors with IS >50 mM. Adjusting the IS to 500 mM with LiCl, CaCl2, or MgCl2 resulted in gray-green, blue, or moss-green colors, respectively, diverging from the control sensor's color (pink and gray) after 10 min of ammonia exposure, confirming salt-induced copigmentation. Color irreversibility in the sensors was achieved when the IS exceeded 250 mM. Through principal component analysis, we statistically validate the efficacy of the sensor in assessing the freshness of Lambari fish. The sensor maintained its color-change capability even after 60 d of storage and was able to classify Lambari fish freshness according to Brazilian and European standards. This study elucidates the interrelation between the structures and properties of natural compounds such as MC, anthocyanin, and CaCl2, providing a method to control the chromatic properties of sensors intended to monitor food quality, safety, and shelf-life.

12.
Discov Nano ; 19(1): 124, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39105889

RESUMO

Salmonella, the prevailing zoonotic pathogen within the Enterobacteriaceae family, holds the foremost position in global bacterial poisoning incidents, thereby signifying its paramount importance in public health. Consequently, the imperative for expeditious and uncomplicated detection techniques for Salmonella in food is underscored. After more than two decades of development, loop-mediated isothermal amplification (LAMP) has emerged as a potent adjunct to the polymerase chain reaction, demonstrating significant advantages in the realm of isothermal amplification. Its growing prominence is evident in the increasing number of reports on its application in the rapid detection of Salmonella. This paper provides a systematic exposition of the technical principles and characteristics of LAMP, along with an overview of the research progress made in the rapid detection of Salmonella using LAMP and its derivatives. Additionally, the target genes reported in various levels, including Salmonella genus, species, serogroup, and serotype, are summarized, aiming to offer a valuable reference for the advancement of LAMP application in Salmonella detection. Finally, we look forward to the development direction of LAMP and expect more competitive methods to provide strong support for food safety applications.

13.
Food Control ; 162: 110463, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39092408

RESUMO

Designing and implementing processing procedures for producing safe complementary foods in dynamic and unregulated food systems where common food staples are frequently contaminated with mycotoxins is challenging. This paper presents lessons about minimizing aflatoxins (AF) in groundnut flour and AF and/or fumonisins (FUM) in maize and groundnut pre-blended flour for complementary feeding in the context of a dietary research intervention in rural Tanzania. The flours were processed in collaboration with Halisi Products Limited (Halisi), a medium scale enterprise with experience in milling cereal-based flours in Arusha, Tanzania. Using a hazard analysis critical control point (HACCP) approach for quality assurance, two critical control points (CCPs) for AF in processing the pre-blended flour were identified: 1) screening maize before procurement, and 2) blending during the processing of each constituent flour. Blending of maize flour was also identified as a CCP for FUM. Visual inspection during screening and sorting were identified as important control measures for reducing AF, but these steps did not meet the criteria for a CCP due to lack of objective measurement and verifiable standards for AF. The HACCP approach enabled the production of low AF (<5 µg/kg) and FUM (<2 µg/g) flours with low rejection rates for the final products. The paper presents practical lessons that could be of value to a range of commercial processors in similar low- and middle-income contexts who are keen on improving food quality.

14.
Food Chem ; 460(Pt 2): 140620, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39094338

RESUMO

Food contamination has long plagued agriculture, posing significant health risks to consumers. The use of volatile gases for food safety detection has proven highly effective, with composite gas sensors that leverage the two-dimensional material MXene exhibiting notable advancements in detecting various target gases. This paper reviews the progress of MXene-based composite gas sensors in the detection of food safety-related gases. The review begins by examining MXene material synthesis methods and then presents an overview of techniques aimed at enhancing MXene-based sensor detection capabilities. Recently, advancements in MXene composite gas sensors tailored for food safety gases have been highlighted. Finally, challenges encountered in gas-sensing applications of MXene-based composites are outlined, alongside predictions for their future development, aiming to offer insights for the application and advancement of intelligent gas sensors for target gases in food safety.

15.
Front Toxicol ; 6: 1333746, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39100893

RESUMO

Titanium dioxide (TiO2), also known as E171, is commonly used as a white colorant in food, pharmaceuticals, cosmetics, and toothpaste. However, in May 2021, the European Food Safety Authority (EFSA) expert panel, in evaluating the safety of titanium dioxide (E171) as a food additive, concluded that a concern for genotoxicity could not be ruled out. This occurred several years after EFSA had previously considered titanium dioxide to be safe as a food additive. EFSA based this new interpretation on the results of genotoxicity tests of TiO2 nanomaterials. EFSA noted that available data are insufficient to define threshold doses/concentrations of TiO2 particles below which genotoxicity will not occur in tissues containing these particles. Here, it is argued that EFSA made a manifest error regarding the safety of titanium dioxide (E171) particles as a food additive for humans. First, the notion of particle size distribution of TiO2 particles is explained. Second, the changing opinions from the various EFSA evaluations in 2016, 2018, 2019 vs. 2021 are discussed. Third, the low toxicity of TiO2 particles is described in rats exposed by oral gavage and feeding studies in rats and mice. Fourth, the importance of low absorption rates from the gastrointestinal tract vs. circulation in rats and humans but not in mice is identified. Fifth, other international health scientists have weighed in on the EFSA (EFSA J, 2021, 19 (5), 6585) decision and generally disagreed with EFSA's opinion on the safety of E171 TiO2. A common theme voiced by the United Kingdom, Canada, Australia, and New Zealand agencies is that it is inappropriate to compare nanoparticle toxicity studies of dispersed/sonicated nanoparticles with the content of E171 TiO2 in foods because the test materials used in key studies considered by EFSA (EFSA J, 2021, 19 (5), 6585) are not representative of E171 TiO2 particles. Finally, a group of experts recently considered the genotoxicity of TiO2 and could not find support for a direct DNA damaging mechanism of TiO2 (nano and other forms). For these reasons, it is suggested that EFSA made a manifest error on the safety of E171 as a food additive.

16.
Int J Food Microbiol ; 424: 110849, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39098160

RESUMO

Biofilm formation in natural environments involving complex multi-structural arrangements hinders challenges in antimicrobial resistance. This study investigated the antimicrobial resistance potential of grapefruit seed extract (GSE) by examining the formation of mono-, dual-, and multi-species biofilms. We also explored the counterintuitive effect in response to GSE at various concentrations, including minimum inhibitory concentration (MIC) and sub-MIC (1/2 and 1/4 MIC). The results of the swimming and swarming motility tests revealed increased motility at the sub-MIC of GSE. The crystal violet assay demonstrated increased biofilm formation in multi-species biofilms, highlighting the synergistic effect of Escherichia coli, Salmonella Typhimurium, and Listeria monocytogenes. At the MIC concentration of GSE, field emission scanning electron microscopy (FE-SEM) revealed cell morphology damage, while sub-MIC increased biofilm formation and architectural complexity. Multi-species biofilms demonstrated greater biofilm-forming ability and antimicrobial resistance than mono-species biofilms, indicating synergistic interactions and enhanced resilience. These findings highlight the importance of understanding biofilm dynamics and antimicrobial resistance to ensure environmental safety.

17.
Talanta ; 279: 126653, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39098239

RESUMO

Patulin (PAT) is a mycotoxin-produced secondary metabolite that can contaminate foods, causing toxic effects on animal and human health. Therefore, for the first time, we have constructed a "turn-on" dual-mode aptamer sensor for PAT using oleic acid-coated upconversion nanomaterials (OA-UCNPs) and G-Quadruplex-hemin DNAzyme (G4-DNAzyme) as fluorescent and colorimetry probes. The sensor employs aptamers binding to PAT as recognition elements for specific molecule detection. Mxene-Au can be used as a biological inducer to assist OA-UCNPs in controlling fluorescence intensity. In addition, colorimetric signal amplification was performed using the trivalent G4-DNAzyme to increase detection sensitivity and reduce false positives. Under optimal conditions, the dual-mode aptasensor has a detection limit of 5.3 pg mL-1 in fluorescence and 2.4 pg mL-1 in colorimetric methods, respectively, with the wider linear range and limit of detection (LOD) of the colorimetric assay. The combination aptasensor can detect PAT with high sensitivity and high specificity and has broad application prospects in the field of food safety detection.

18.
Environ Monit Assess ; 196(9): 784, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39098846

RESUMO

For the first time in Iran, in this study, the amount of 19 trace elements in some types of commonly consumed Iranian fruits (in their peel and pulp) was evaluated by ICP-OES (Inductively coupled plasma-optical emission spectrometry) method. Based on the outcomes, the highest and lowest average detected elements in all fruits samples were related to (Al) aluminum (1842.18) and (V) vanadium (0.28) ppm, respectively. Mercury (Hg) and antimony (Sb) were not detected (ND) in any samples. Also, the maximum mean of elements in quince, lemon, grapefruit, kiwi, orange south, orange north and tangerine samples was related to(Fe) iron (2048.32 ppm), (Zn)zinc(753.45 ppm), Fe (1056.33 ppm), Al (9794.41 ppm), Zn (717.78 ppm), Fe (1334.87 ppm) and Fe (974.93 ppm), respectively. Furthermore, our outcomes revealed, the highest mean of elements in kiwi peel, kiwi pulp, orange North peel, orange North pulp, orange South peel, orange South pulp, quince peel, quince pulp, grapefruit peel, grapefruit pulp, lemon peel, lemon pulp, tangerine peel and tangerine pulp was related to Al (17967.79 ppm), Al (1621.03 ppm), Fe (1350.01 ppm), Al (1457.66 ppm), Zn (934.71 ppm), Fe (728.06 ppm), Fe (2768.11 ppm), Fe (1328.54 ppm), Zn (1008.54 ppm), Fe (1198.00 ppm), Zn (683.35 ppm), Zn (823.55 ppm), Fe (1182.59 ppm), and Fe (767.27 ppm), respectively. Based on the Monte Carlo simulation results, the THQ (target hazard quotient) and ILCR (Incremental Lifetime Cancer Risk) related to exposure to heavy metals via fruits for adults and children showed that there is no significant non-carcinogenic risk (THQ < 1) and carcinogenic risk (ILCR < 1E-4) for adults and children.


Assuntos
Contaminação de Alimentos , Frutas , Oligoelementos , Oligoelementos/análise , Frutas/química , Irã (Geográfico) , Medição de Risco , Contaminação de Alimentos/análise , Humanos , Monitoramento Ambiental/métodos , Poluentes Ambientais/análise
19.
Adv Exp Med Biol ; 1458: 349-369, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39102208

RESUMO

After the COVID-19 pandemic, innovative methods have emerged for the management of food safety, child nutrition has become more important than ever, and increasing attention has been paid to the consequences of COVID-19. For instance, since SARS-CoV-2 is an animal-based zoonotic virus, there is a changing trend in consumer preferences from conventional meat products to cultured meat and vegan supplementation. Due to the effects mentioned, this chapter provides strategic guidance on novel foods, food safety innovations, and novel health and safety procedures in public places such as restaurants or bars. There are also long-term health impacts on children in the aftermath of COVID-19. Since the risk of myopia is one of the important long-term effects to be considered, trending nutritional immunology approaches are presented to reduce emerging problems in child eye health. The enhancement of immune system remains problematic for many children considering that they cannot use the COVID-19 vaccine. Therefore, this chapter also emphasizes the importance of breastfeeding on the side effects of viral infections and new supplements, such as probiotic drops, to improve children's and babies' immune health. Additionally, efforts should be undertaken to improve nanoencapsulation techniques to prepare for future epidemics and pandemics. Nanomaterial-supported nutraceuticals, nanoencapsulation of functional ingredients or their nanoparticles, and nano-combination of phytochemicals, fatty acids, or probiotics should be investigated to improve the immunity of children. In this sense, detailed further research in this area needs to be adapted to innovative technologies for the treatment of infants and children against future zoonotic viruses.


Assuntos
COVID-19 , Saúde da Criança , Suplementos Nutricionais , Inocuidade dos Alimentos , SARS-CoV-2 , Humanos , COVID-19/prevenção & controle , COVID-19/epidemiologia , COVID-19/imunologia , Criança , Inocuidade dos Alimentos/métodos , SARS-CoV-2/imunologia
20.
Int J Food Sci ; 2024: 9526283, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39119017

RESUMO

Meat content and physically hazardous contaminants in the internal section of meatballs cannot be detected by the naked eye or surface detectors. This study is aimed at analyzing the meat content of cattle meatballs and detecting foreign objects using ultrasonography (USG), digital radiography (DR), and electrical impedance tomography (EIT). Meatballs were produced using four different meat formulations (0%, 25%, 50%, and 75% meat) and three treatments (no preservative (control), borax, and formalin preservatives). Cast iron and plastic beads were used as models of foreign objects embedded in the samples. The echogenicity, opacity, and resistivity values of each sample were evaluated and compared across groups. The results showed that the shelf life of the control meatballs was shorter than that of meatballs with preservatives. The echogenicity and opacity values for the different meat formulations were hypoechoic in USG and grey in DR. USG was able to distinguish between control and preservative-treated meatballs but could not differentiate meat content and detect foreign objects. Conversely, DR effectively assessed meat content and detected iron-based foreign objects, while EIT showed higher resistivity values for iron and plastic beads compared to the meatball bodies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA